Random Variables and Random Vectors

Good Review Materials

http://www.imageprocessingbook.com/DIP2E/dip2e_downloads/review_material_downloads.htm

- (Gonzales \& Woods review materials)
- Chapt. 1: Linear Algebra Review
- Chapt. 2: Probability, Random Variables, Random Vectors

Random variables

- Samples from a random variable are real numbers
- A random variable is associated with a probability distribution over these real values
- Two types of random variables
- Discrete
- Only finitely many possible values for the random variable: $X \in\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
- (Could also have a countable infinity of possible values)
» e.g., the random variable could take any positive integer value
- Each possible value has a finite probability of occurring.
- Continuous
- Infinitely many possible values for the random variable
- E.g., $X \in\{$ Real numbers $\}$

Discrete random variables

- Discrete random variables have a pmf (probability mass function), \boldsymbol{P} $\mathrm{P}(X=a)=\boldsymbol{P}(\mathrm{a})$
- Example: Coin flip
$\mathrm{X}=0 \quad$ if heads
$\mathrm{X}=1 \quad$ if tails
- What is the pmf of this random variable?

[^0]
Discrete random variables

- Discrete random variables have a pmf (probability mass function), \boldsymbol{P} $\mathrm{P}(X=a)=\boldsymbol{P}(\mathrm{a})$
- Example: Die roll $X \in\{1,2,3,4,5,6\}$
- What is the pmf of this random variable?

$\stackrel{\square}{\square}$ UCSD

Continuous random variables

- Continuous random variables have a pdf (probability density function), \boldsymbol{p}
- Example: Uniform distribution

$$
p(1.3)=? \quad p(2.4)=?
$$

What is the probability
that $X=1.3$ exactly:

$$
\mathrm{P}(X=1.3)=?
$$

Probability corresponds to area under the pdf.

$$
\mathrm{P}(1<X<1.5)=\int_{1}^{1.5} p(x) d x=0.25
$$

Continuous random variables

- What is the total area under any pdf?

$$
\int_{-\infty}^{\infty} p(x) d x=1
$$

- Example continuous random variable: Human heights

$\xlongequal{\overline{2}}$ UCSD Tim Marks, Cognitive Science Department

Random variables

- How much change do you have on you?
- Asking a person (chosen at random) that question can be thought of as sampling from a random variable.
- Is the random variable
"Amount of change people carry" discrete or continuous?

Random variables: Mean \& Variance

- These formulas can be used to find the mean and variance of a random variable when its true probability distribution is known.

Definition Discrete r.v. Continuous r.v.

Mean μ	$\mu=\mathrm{E}(X)$	$\mu=\sum_{i} a_{i} P\left(a_{i}\right)$	$\mu=\int_{-\infty}^{\infty} x p(x) d x$
Variance	$\mathrm{E}\left((X-\mu)^{2}\right)$	$\sum_{i}\left(a_{i}-\mu\right)^{2} P\left(a_{i}\right)$	$\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) d x$
$\operatorname{Var}(X)$			

An important type of random variable

Estimating the Mean \& Variance

- After sampling from a random variable n times, these formulas can be used to estimate the mean and variance of the random variable.
- Samples $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$

Estimated mean: $\quad m=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
Estimated variance: $\quad \sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m\right)^{2} \quad \leftarrow \underset{\text { likelihood estimate }}{\text { maximum }}$
$\sigma^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-m\right)^{2} \leftarrow$ unbiased estimate

\approx UCSD

Finding mean, variance in Matlab

- Samples $x=\left[\begin{array}{lllll}x_{1} & x_{2} & x_{3} & \cdots & x_{n}\end{array}\right]$
- Mean
$\gg m=(1 / n)^{*}$ sum (x)
- Variance

$$
\begin{aligned}
& \sigma^{2}=\frac{1}{n}\left[\begin{array}{llll}
x_{1}-m & x_{2}-m & \cdots & x_{n}-m
\end{array}\right]\left[\begin{array}{c}
x_{1}-m \\
x_{2}-m \\
\vdots \\
x_{n}-m
\end{array}\right]
\end{aligned}
$$

Method 1: $\quad \gg v=(1 / n)^{*}(x-m)^{*}(x-m)^{\prime}$
Method 2: $\quad \gg z=x-m$ $\gg v=(1 / n)^{*} z^{*} z^{\prime}$

$\xlongequal{=}$ UCSD Tim Marks, Cognitive Science Department

Example continuous random variable

- People's heights (made up)
- Gaussian

$$
\mu=67, \sigma^{2}=20
$$

- What if you went to a planet where heights Gaussian

$$
\mu=75, \sigma^{2}=5
$$

- How would they be different from us?

Example continuous random variable

- Time people woke up this morning
- Gaussian

$$
\mu=9, \sigma^{2}=1
$$

Random vectors

- An n-dimensional random vector consists of n random variables that are all associated with the same events.
- Example 2-D random vector:

$$
\mathbf{V}=\left[\begin{array}{l}
X \\
Y
\end{array}\right] \quad \text { where } X \text { is random variable of human heights }
$$

- Sample n times from V.

$$
\begin{gathered}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\cdots
\end{gathered} \mathbf{v}_{n}, ~\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]
$$

Let's collect some
samples and graph them:
y

(wake-up
times)

$x_{\text {(heights) }}$

[^1]Tim Marks, Cognitive Science Department

Random Vectors

- What will the graph of V look like?

- What is mean of V ?
- Mean of X is 67
- Mean of Y is 10

$$
m=\left[\begin{array}{l}
67 \\
10
\end{array}\right]
$$

Mean of a random vector

- Estimating the mean

$$
\begin{array}{cccc}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n} \\
{\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]}
\end{array}
$$ of a random vector

- n samples from V

Mean $\quad \mathbf{m}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{v}_{i}=\frac{1}{n} \sum_{i=1}^{n}\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]=\left[\begin{array}{l}m_{x} \\ m_{y}\end{array}\right]$

- To estimate mean of V in Matlab

$$
\gg(1 / n) * \operatorname{sum}(v, 2)
$$

*UCSD

Random vector

- Example 2-D random vector:

$$
V=\left[\begin{array}{l}
X \\
Y
\end{array}\right] \quad \text { where } X \text { is random variable of human heights }
$$

- Sample n times from $V \quad \begin{array}{lllll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}\end{array}$
- What will graph look like?

$$
\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]
$$

Covariance of two random variables

- Height and wake-up time are uncorrelated, but height and weight are correlated.
- Covariance
$\operatorname{Cov}(X, Y)=0 \quad$ for $X=$ height, $Y=$ wake-up times
$\operatorname{Cov}(X, Y)>0 \quad$ for $X=$ height, $Y=$ weight
- Definition:

$$
\operatorname{Cov}(X, Y)=\mathrm{E}\left(\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right)
$$

If $\operatorname{Cov}(X, Y)<0$ for two random variables X, Y, what would a scatterplot of samples from X, Y look like?

* UCSD

Estimating covariance from samples

- Sample n times: $\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n} \\ y_{1} & y_{2} & \cdots & y_{n}\end{array}\right]$ $\operatorname{Cov}(X, Y)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m_{x}\right)\left(y_{i}-m_{y}\right) \quad \leftarrow$ maximum $\quad \begin{aligned} & \text { likelihood estimate }\end{aligned}$ $\operatorname{Cov}(X, Y)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-m_{x}\right)\left(y_{i}-m_{y}\right) \quad \leftarrow$ unbiased estimate
- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- How are $\operatorname{Cov}(X, Y)$ and $\operatorname{Cov}(Y, X)$ related?
$\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$

Estimating covariance in Matlab

- Samples
$x=\left[\begin{array}{lllll}x_{1} & x_{2} & x_{3} & \cdots & x_{n}\end{array}\right]$
$y=\left[\begin{array}{lllll}y_{1} & y_{2} & y_{3} & \cdots & y_{n}\end{array}\right]$
- Means
- Covariance

Covariance
$\operatorname{Cov}(X, Y)=\frac{1}{n}\left[\begin{array}{llll}x_{1}-m_{x} & x_{2}-m_{x} & \cdots & x_{n}-m_{x}\end{array}\right]\left[\begin{array}{c}y_{1}-m_{y} \\ y_{2}-m_{y} \\ \vdots \\ y_{n}-m_{y}\end{array}\right]$
Method 1: >> v = $(1 / n) *\left(x-m_{-} x\right) *\left(y-m _y\right)^{\prime}$
Method 2: >> w $=x-m _x$

$$
\text { >> } z=y-m _y
$$

*UCSD

$$
\gg v=(1 / \bar{n}) *_{\mathrm{w}}{ }^{*} \mathrm{z}^{\prime}
$$

Covariance matrix of a D-dimensional random vector

- In 2 dimensions

$$
\begin{aligned}
& V=\left[\begin{array}{l}
X \\
Y
\end{array}\right] \\
& \begin{aligned}
\operatorname{Cov}(\mathbf{V}) & =\mathrm{E}\left((\mathbf{V}-\mu)(\mathbf{V}-\mu)^{T}\right) \\
& =\mathrm{E}\left(\left[\begin{array}{ll}
X-\mu_{X} \\
Y-\mu_{Y}
\end{array}\right]\left[\begin{array}{ll}
X-\mu_{X} & Y-\mu_{Y}
\end{array}\right]\right)=\left[\begin{array}{cc}
\operatorname{Var}(X) & \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(X, Y) & \operatorname{Var}(Y)
\end{array}\right]
\end{aligned}
\end{aligned}
$$

- In D dimensions

$$
\operatorname{Cov}(\mathbf{V})=\mathrm{E}\left((\mathbf{V}-\boldsymbol{\mu})(\mathbf{V}-\boldsymbol{\mu})^{T}\right)
$$

- When is a covariance matrix symmetric?
A. always,
B. sometimes, or
C. never

- UCSD Tim Marks, Cogitive Science Department

Example covariance matrix

- People's heights (made up)

$$
X \sim \mathrm{~N}(67,20)
$$

- Time people woke up this morning

$$
X \sim \mathrm{~N}(9,1)
$$

- What is the covariance matrix of

$$
V=\left[\begin{array}{l}
X \\
Y
\end{array}\right] ?
$$

Estimating the covariance matrix from samples (including Matlab code)

- Sample n times and find mean of samples

$$
V=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n} \\
x_{1} & x_{2} & \cdots & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right] \quad \mathbf{m}=\left[\begin{array}{c}
m_{x} \\
m_{y}
\end{array}\right]
$$

$$
\begin{aligned}
& - \text { Find the covariance matrix } \\
& \qquad \begin{array}{l}
\operatorname{Cov}(V)=\frac{1}{n}\left[\begin{array}{llll}
x_{1}-m_{x} & x_{2}-m_{x} & \cdots & x_{n}-m_{x} \\
y_{1}-m_{y} & y_{2}-m_{y} & \cdots & y_{n}-m_{y}
\end{array}\right]\left[\begin{array}{cc}
x_{1}-m_{x} & y_{1}-m_{y} \\
x_{2}-m_{x} & y_{2}-m_{y} \\
\vdots & \vdots \\
x_{n}-m_{x} & y_{n}-m_{y}
\end{array}\right] \\
\quad>\mathrm{m}=(1 / \mathrm{n}) \star \operatorname{sum}(\mathrm{v}, 2) \\
>\mathrm{z}=\mathrm{v}=\operatorname{repmat}(\mathrm{m}, 1, \mathrm{n}) \\
>\mathrm{V}=(1 / \mathrm{n}) \star \mathrm{Z}^{\star} \mathrm{Z}^{\prime}
\end{array}
\end{aligned}
$$

Gaussian distribution in D dimensions

- 1-dimensional Gaussian is completely determined by its mean, μ, and variance, σ^{2} :

$$
X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right) \quad p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- D-dimensional Gaussian is completely determined by its mean, μ, and covariance matrix, Σ :

$$
X \sim \mathrm{~N}(\mu, \Sigma) \quad p(\mathbf{x})=\frac{1}{(2 \pi)^{D / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^{\mathrm{T}} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

-What happens when $D=1$ in the Gaussian formula?

[^2]
[^0]: \rightleftharpoons UCSD

[^1]: \because UCSD

[^2]: \because UCSD

