

Good Review Materials

http://www.imageprocessingbook.com/DIP2E/dip2e_downloads/review_material_downloads.htm (Gonzales & Woods review materials)

Chapt. 1: Linear Algebra Review Chapt. 2: Probability, Random Variables, Random Vectors

 $\boldsymbol{z} = \alpha \boldsymbol{x}$

for a scalar α then

$$\boldsymbol{z} = \alpha \left(\begin{array}{c} 3\\2\\5 \end{array} \right) = \left(\begin{array}{c} 3\alpha\\5\alpha\\2\alpha \end{array} \right)$$

(This is just like stretching/shrinking the vector by a factor α

Example (on board)

Eigenvalues and Eigenvectors in Matlab In Matlab use $[V,D] = eig(A)$ to get a matrix V whose columns are the eigenvectors of A and a diagonal matrix D whose entries on the diagonal are the corresponding eigenvalues.		
Α =		
1 2 3 4		
>> [V,D] = eig(A)		
V =	D =	
-0.8246 -0.4160 0.5658 -0.9094	-0.3723 0 0 5.3723	

Some Properties of Eigenvalues and Eigenvectors

- If $\lambda_1, ..., \lambda_n$ are *distinct* eigenvalues of a matrix, then the corresponding eigenvectors $e_1, ..., e_n$ are linearly independent.
- A real, symmetric square matrix has real eigenvalues, with eigenvectors that can be chosen to be orthonormal.

Linear Independence• A set of vectors is linearly dependent if one of
the vectors can be expressed as a linear
combination of the other vectors.Example: $\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}$ • A set of vectors is linearly independent if none
of the vectors can be expressed as a linear
combination of the other vectors.Example: $\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\end{bmatrix}, \begin{bmatrix} 2\\1\\0\\1\\3\end{bmatrix}$

Orthogonal and Orthonormal Bases

n linearly independent real vectors span \mathbf{R}^n , *n*-dimensional Euclidean space

- They form a **basis** for the space.
- An **orthogonal** basis, $a_1, ..., a_n$ satisfies
 - $a_i \cdot a_j = 0$ if $i \neq j$
- An **orthonormal** basis, a_1, \ldots, a_n satisfies

 $a_i \cdot a_j = 0$ if $i \neq j$

$$a_i \cdot a_i = 1$$
 if $i = j$

- Examples.

SVD in Matlab		
>> x = $[1 2 3; 2 7 4; -3 0 6; 2 4 9; 5 -8 0]$ x = 1 2 3 2 7 4 -3 0 6 2 4 9 5 -8 0 >> $[u,s,v] = svd(x)$ u = -0.24538 0.11781 -0.11291 -0.47421 -0.82963 -0.53253 -0.11684 -0.52806 -0.45036 0.4702 -0.30668 0.24939 0.79767 -0.38766 0.23915 -0.64223 0.44212 -0.057905 0.61667 -0.091874 0.38691 0.84546 -0.26226 -0.20428 0.15809	$s = 14.412 0 0 \\ 0 8.8258 0 \\ 0 0 5.6928 \\ 0 0 0 \\ 0 0 0 \\ v = 0.01802 0.48126 -0.87639 \\ -0.68573 -0.63195 -0.36112 \\ -0.72763 0.60748 0.31863 \\ \end{array}$	

Some Properties of SVD

- The rank of matrix A is equal to the number of nonzero singular values σ_i
- A square $(n \times n)$ matrix A is singular iff at least one of its singular values $\sigma_1, \ldots, \sigma_n$ is zero.

Geometric Interpretation of SVD If *A* is a square $(n \times n)$ matrix, $\begin{array}{c} A & U & D & V^{T} \\ (\cdot \cdot \cdot) \\ (\cdot \cdot) \\ \end{array}$ $\begin{array}{c} D & D & V^{T} \\ (\cdot) & U & D \\ (\cdot) & U$