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Vectors

The length of x, a.k.a. the norm or 2-norm of x, is

e.g.,
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Good Review Materials

http://www.imageprocessingbook.com/DIP2E/dip2e_downloads/review_material_downloads.htm

(Gonzales & Woods review materials)

Chapt. 1: Linear Algebra Review

Chapt. 2: Probability, Random Variables, Random Vectors

Online vector addition demo:

http://www.pa.uky.edu/~phy211/VecArith/index.html
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Vector Addition
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Example (on board)

Inner product (dot product) of
two vectors
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Inner (dot) Product
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The inner product is a The inner product is a SCALAR.SCALAR.
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Transpose of a Matrix

Transpose:Transpose:

If If , we say A is , we say A is symmetricsymmetric..

Examples:Examples:

Example of symmetric matrixExample of symmetric matrix
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Matrix Product
Product:Product:

Examples:Examples:

A and B must haveA and B must have
compatible dimensionscompatible dimensions

Matrix Multiplication is not commutative:Matrix Multiplication is not commutative:

In Matlab:    >> A*B
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Matrix Sum

Sum:Sum:

Example:Example:

A and B must have theA and B must have the
same dimensionssame dimensions

Determinant of a Matrix

Determinant:Determinant:

Example:Example:

A must be squareA must be square
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Determinant in Matlab

Inverse of a Matrix

If A is a square matrix, the inverse of A, called A-1,
satisfies

AA-1 = I     and   A-1A = I,

Where I, the identity matrix, is a diagonal matrix
with all 1’s on the diagonal.
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Inverse of a 2D Matrix

Example:Example:

Inverses in Matlab
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Other Terms
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Matrix Transformation: Scale

A square diagonal matrix scales each dimension by
the corresponding diagonal element.

Example:
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http://www.math.ubc.ca/~cass/courses/m309-8a/java/m309gfx/eigen.html
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Some Properties of
Eigenvalues and Eigenvectors

– If  λ1, …, λn are distinct eigenvalues of a matrix, then
the corresponding eigenvectors e1, …, en are linearly
independent.

– A real, symmetric square matrix has real eigenvalues,
with eigenvectors that can be chosen to be orthonormal.

Linear Independence
• A set of vectors is linearly dependent if one of

the vectors can be expressed as a linear
combination of the other vectors.

Example:
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• A set of vectors is linearly independent if none
of the vectors can be expressed as a linear
combination of the other vectors.

Example:
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Rank of a matrix
• The rank of a matrix is the number of linearly

independent columns of the matrix.
Examples:

has rank 2
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• Note: the rank of a matrix is also the number of
linearly independent rows of the matrix.

has rank 3
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Singular Matrix

All of the following conditions are equivalent. We
say a square (n × n) matrix is singular if any one
of these conditions (and hence all of them) is
satisfied.
– The columns are linearly dependent

– The rows are linearly dependent

– The determinant = 0

– The matrix is not invertible

– The matrix is not full rank (i.e., rank < n)
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Linear Spaces

A linear space is the set of all vectors that can be
expressed as a linear combination of a set of basis
vectors. We say this space is the span of the basis
vectors.
– Example: R3, 3-dimensional Euclidean space, is

spanned by each of the following two bases:

! 

1

0

0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

  ,   

0

1

0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

  ,   

0

0

1

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

! 

1

0

0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

  ,   

0

1

2

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

  ,   

0

0

1

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

Linear Subspaces

A linear subspace is the space spanned by a subset
of the vectors in a linear space.
– The space spanned by the following vectors is a

two-dimensional subspace of R3.
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What does it look like?

What does it look like?

– The space spanned by the following vectors is a
two-dimensional subspace of R3.
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Orthogonal and Orthonormal
Bases

n linearly independent real vectors
span Rn, n-dimensional Euclidean space

• They form a basis for the space.

– An orthogonal basis, a1, …, an satisfies
ai ⋅ aj = 0     if  i ≠ j

– An orthonormal basis, a1, …, an satisfies
ai ⋅ aj = 0     if  i ≠ j
ai ⋅ aj = 1     if  i = j

– Examples.

Orthonormal Matrices

A square matrix is orthonormal (also called
unitary) if its columns are orthonormal vectors.
– A matrix A is orthonormal  iff  AAT = I.

• If A is orthonormal, A-1 = AT

AAT = ATA = I.

– A rotation matrix is an orthonormal matrix with
determinant = 1.

• It is also possible for an orthonormal matrix to have
determinant = -1. This is a rotation plus a flip (reflection).
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SVD: Singular Value Decomposition
Any matrix A (m × n) can be written as the product of three

matrices:
A = UDV T

where

– U is an  m × m  orthonormal matrix

– D is an  m × n  diagonal matrix. Its diagonal elements, σ1, σ2, …, are
called the singular values of A, and satisfy σ1 ≥ σ2 ≥ …  ≥ 0.

– V is an  n × n  orthonormal matrix

Example: if m > n
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A U D V T

SVD in Matlab
>> x = [1 2 3; 2 7 4; -3 0 6; 2 4 9; 5 -8 0]
x =
     1     2     3
     2     7     4
    -3     0     6
     2     4     9
     5    -8     0

>> [u,s,v] = svd(x)
u =
     -0.24538      0.11781     -0.11291     -0.47421     -0.82963
     -0.53253     -0.11684     -0.52806     -0.45036       0.4702
     -0.30668      0.24939      0.79767     -0.38766      0.23915
     -0.64223      0.44212    -0.057905      0.61667    -0.091874
      0.38691      0.84546     -0.26226     -0.20428      0.15809

s =

       14.412        0            0

            0       8.8258       0

            0            0       5.6928

            0            0            0

            0            0            0

v =

      0.01802      0.48126     -0.87639

     -0.68573     -0.63195     -0.36112

     -0.72763      0.60748      0.31863
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Some Properties of SVD

– The rank of matrix A is equal to the number of nonzero
singular values σi

– A square (n × n) matrix A is singular  iff  at least one of
its singular values  σ1, …, σn  is zero.

Geometric Interpretation of SVD
If A is a square (n × n) matrix,

– U is a unitary matrix: rotation (possibly plus flip)
– D is a scale matrix
– V (and thus V T) is a unitary matrix

Punchline: An arbitrary n-D linear transformation is
equivalent to a rotation (plus perhaps a flip), followed by a
scale transformation, followed by a rotation
Advanced: y = Ax = UDV Tx
– V T expresses x in terms of the basis V.
– D rescales each coordinate (each dimension)
– The new coordinates are the coordinates of y in terms of the basis U
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