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The singular value decomposition (SVD) concerns the factorization of an arbitrary
matrix A into a product UDV" of orthogonal matrices U and V and a “diagonal”
matrix D. The SVD is applied frequently in numerical linear algebra; for example,
it provides an excellent method for estimating the rank of a matrix, the standard
method for computing the matrix norm || A |2, and a robust method for solving
ill-conditioned least squares problems [2, 3, 14]. The SVD and its close cousin the
polar decomposition also come up in continuum mechanics, materials science [4],
and light polarization [11].

Few instructors seem to find the enthusiasm or time to teach the SVD in the first
(and too frequently only) linear algebra course. Even Dan Kalman, in his delightful
article [7], concluded that “it is probably not feasible to include the SVD in the
first linear algebra course.” We aim to convince the reader that the singular value
decomposition is in fact a very natural and approachable topic. It is equivalent, in
the case of invertible square matrices, to the easy to motivate (and establish) polar
decomposition. Using the SVD we can deduce a useful theorem that students—and
indeed many instructors—will surely find surprising:

Theorem. Every matrix is invertible, and bence every linear system can be solved.

What we have of course stumbled on here is the concept of pseudo-inverses and
the method of least squares, but without the baggage normally associated with those
topics. Students with access to software such as Matlab, Maple, Mathematica, Derive,
or Macsyma can then “solve” any inconsistent (as well as any under-determined)
system in a meaningful way, thus supplementing their knowledge of the unique
solution case. Since this returns to the topic with which most linear algebra courses
start—namely, solving linear systems—it seems a fitting note on which to end an
introductory course.
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We also mention in passing some geometric interpretations of the SVD. While
our treatment is far from complete, we still feel that this whirlwind tour of the
singular value decomposition, omitting proofs and technicalities when it suits us, has
pedagogical value. For simplicity we only work with very small matrices, and ignore
the interesting Hermitian considerations that arise when complex-valued matrices
are allowed. The point is that the concepts and methods introduced all apply to
arbitrary matrices, where computer software such as Matlab can be used to gain
access to useful solutions to real-world problems. For a more thorough, in-depth,
and traditional introduction to the SVD, see [7].

Polar Decomposition

In what follows, we assume only this standard basic result on eigenvalues and eigen-
vectors: If A is a real symmetric matrix, then A = UDU’, where D is diagonal and
U is orthogonal (i.e., UU' = I); moreover, the diagonal entries of D are the eigenval-
ues of A, and the columns of U are corresponding eigenvectors. (We adopt Matlab
notation, denoting the transpose of a matrix U by U’)) Following Kalman’s lead [7],
we refer to this as an EVD (for Eigenvalue Decomposition) of A. It is trivial to check
that nonsymmetric matrices have no such decomposition. Throughout, all matrices
considered are real.

Real square matrices enjoy some properties with respect to the transpose operation
that are reminiscent of complex numbers with respect to complex conjugation. First,
recall that each z € C can be written uniquely as z = z +14y, where z is real and 7y is
purely imaginary, and that if z is nonzero it can also be written uniquely as z = rw,
where r is nonnegative real and w is “unitary.” The first (rectangular representation)
facilitates the addition of complex numbers, and the second (polar decomposition)
facilitates multiplication. In terms of the conjugation map z — Zz, we have z is real
when Z = z, purely imaginary when Z = —z, and “unitary” when zZz = 1—that is,
when 271 = 1/z = Zi (so that z lies on the unit circle and has modulus 1).

Now consider real square matrices of some fixed size. It is well known that any
such matrix A can be written (uniquely) as A = S+ K, the sum of a symmetric matrix
S and a skew-symmetric matrix K (by definition, B is symmetric when B’ = B and
skew-symmetric when B’ = —B). It is easy to prove that S = (4 + A’)/2 and
K = (A — A’)/2. Thus the representation A = S + K parallels the rectangular
representation z = x + iy for complex numbers, where of course z = (2 +%)/2, and
iy=(2—2)/2.

This raises the question: Does the polar form of complex numbers have an ana-
logue for invertible square matrices? It appears that we would like to prove:

Theorem 1. Any invertible square matrix A can be written as A = RW, where R
is “positive” symmetric and W is orthogonal.

Proof. This is modeled on the proof in the complex number case. How do we
show that each nonzero z € C can be written as z = rw, where r > 0 and ww = 1?
One way is to pretend that we have such a representation, see what r and w have
to be, and then go back and check that these values really do work. If z = rw, with
r,w as above, then zZ = wr (note the optional switch in order) and 2z = rwwr = r2.
Thus r must be the positive square root of zZ, which is a positive real number since
(22) = 2z = |z|. Conversely, given some nonzero z € C, if we define r to be the
positive square root of 2z, and then take w to be r~1z, it can easily be verified that

ww = 1.
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Let’s mimic this argument for an invertible square matrix A. If A = RW, with R
symmetric and W orthogonal, then A’ = W’R (the switch in order here is forced
upon us) and AA’ = RWW'R = R?. If we could claim that R must be “the positive
square root of AA’)” then matrix division on the left of A = RW would yield
W = R~'A, which can easily be shown to satisfty WW’ = 1. So it all boils down to
our ability to take a “positive square root” of AA’. It turns out that there are several
ways to do this. Certainly (AA") = AA’, ie., AA is symmetric, and it is routine
to check that the eigenvalues of AA’ must be positive, bearing in mind that AA’
is invertible since A is. So there exist matrices B and P such that AA’ = PBP’,
where B is diagonal—with positive diagonal entries, which are the eigenvalues of
AA'—and P is orthogonal. The columns of P are eigenvectors of AA’, and we
can order them so that the entries of B are in non-decreasing order down the
diagonal. Now if we let D be the diagonal matrix whose entries are the square
roots of the corresponding entries of B, and define R = PDP’, it is clear that
R? = PDP'PDP' = PD?P = PBP' = AA’. This R will do nicely as a “positive
square root of AA’.” We note that P is not unique, and neither is R, but once an R
is chosen it determines W. [

11

Example 1. If A = {0 1

J, then AA" = [2 1] . Proceeding as above, we have

1 1

34V5 1, 1.5 1_ L. /5]
AA'=PDP', where B=| 2 0 ,and P= \/2 10 \/2 10 '
0 35 \/l_i 5 _\/1+L\/§
2 210 2 T 10V |
3+V5 0 14v5 3 17
Thus D = 2 =[ 2 1_0\/5],andR:PDP’: Vs V5
0 3_2\/5 0 2 VERRVER
[T 2 L
Hence, W = R~1A = \{5 \ég {0 1] = [ \{5 ‘ég , S0 a polar decom-
RERVCERVCE TV VB

position of A is given by:

ol

In most of the examples here we follow the convention of giving precise (but
radical-intensive) expressions for everything. Decimal approximations, such as those
which Matlab yields, make the calculations look less fearsome but often obscure
the patterns. It is easy to write a short program to automate finding such polar
decompositions using one of the standard software packages; we offer a short Matlab
routine later on.

%— [ % % N [1.3416 0.4472H 0.8944 0.4472]
2 2 .
=

1 —
v 0.4472 0.8944 0.4472 0.8944

V5 |

S-Sl

Remark. We could just as easily have attempted to factor a given A as W R with
W orthogonal and R symmetric. An interesting exercise is to repeat our previous
analysis in this case and apply it to the matrices A in the last two examples. What
changes? What stays the same?

For 2x2 or 3x3 matrices A, interpreted as geometric transformations acting on 2- or
3-dimensional space via left-multiplication, the polar decomposition A = RW shows
that the effect of A on an object can be interpreted as a rigid rotation (or a rotation and
reflection) induced by W, followed by stretching and/or compression corresponding
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to R. In materials science one studies deformations of elastic bodies, and when such
a transformation is decomposed into a rotation followed by a stretching and/or
compression, much of the interest is in the energy required to elongate or compress
the body [4]. The following example illustrates this geometrical view of the polar
decomposition.

Example 2. (7he golden pumpkin.) The shearing linear transformation induced

(1) ” , is a self-mapping of the plane. Applying

this mapping to the 2-dimensional pumpkin face in Figure la, we obtain Figure lc.

by the matrix of example 1, A =

a. b. C.
1 1 1
o <2
0 0 0 bt
O —_—
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1

Figure 1. Squashing the pumpkin without losing face.

Now consider the polar decomposition A = RW in example 1. Here W is a
rotation matrix, corresponding to a rotation of € radians counterclockwise about the
origin, where cos(8) = 2/v/5 and sin(f) = —1/+/5. Hence 6 = arctan(—1/2) =
—0.4637 radians, or —26.4585 degrees. Thus W produces a clockwise rotation of
about 26.5 degrees. The effect of this on the pumpkin face in Figure 1a is shown in
Figure 1b. It remains to describe what R does to this rotated pumpkin face. As we
saw,

3 L 1+v5
R= \{g \ég = PDP’, where D= [ 2 1_0\/5] o~ [1'60180 06(?[80] )
ARG 0 == '
and

po |VatwVs - 5V5 N[o.85o7 0.5257}

~ 10.5257 —0.8507

Since the eigenvalues of R are (1 + \/5) /2 (the golden ratio) and its reciprocal, R
has the effect of stretching and compressing (by this factor) along the perpendicular
axes determined by the columns of P, yielding the golden pumpkin in Figure lc.
Note that D, R, and A all have determinant 1, so that the area of each displayed
pumpkin face is the same—at no stage did we lose face!

Singular Value Decomposition

In one sense, the singular value decomposition does for all matrices what orthogonal
diagonalization (EVD) can only hope to do for symmetric square matrices. In the
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case of invertible square matrices, we can obtain SVD factorizations directly from
polar decompositions. What makes an SVD special is that one can be found for any
matrix, square or not, invertible or singular.

Theorem 2. Given any m X n matrix A, there exists a “diagonal” m x n matrix D,
together with orthogonal matrices U (n x n) and V (m x m) such that A = UDV’.
More specifically, if r is the rank of A, then we can arrange it so that the only nonzero
entries of D are the positive square roots dy,da, .. .,d,, of the nonzero eigenvalues
of AA’ (these are known as the “singular values of A”), listed in non-increasing
order down the principal diagonal of D. The first r columns of U (respectively V) are
eigenvectors of AA" (vespectively A’ A), corresponding to dy,da, ..., d.,.

Proof. (For the invertible square case.) Assume m = n and A is invertible, and
fix a polar decomposition A = RW. As we saw before, R = PDP’, where P is
orthogonal, and D has positive entries on its diagonal and zeros elsewhere. Thus
A = (PDP" YW = (P)(D)(P'W). Setting U = P, and V = P'W (which is easily
shown to be orthogonal), we then have A = UDV" as desired. O

The first question we should ask is how does such an SVD compare with an
EVD (orthogonal diagonalization) in the case of a symmetric matrix? The answer
is simple: the SVD takes the absolute values of the eigenvalues, arranging them in
non-increasing order.

Example 3. The matrix A = [1 2] has eigenvalues 3 and —1, and singular

2 1
1 R i
\/E] [3 O]l\/ﬁ \/5} s
_ 1 0 1 1 1

values 3 and 1. This time we find that A =

S-S

an SVD. This should be compared to the EVD:

1 1 1 177

[1 2]_[ﬁ ﬂH—l on fJ
- 1 1 1 1 *
21 -5 #lL0 3|-% &

We now move on to nonsymmetric matrices—which cannot be orthogonally di-
agonalized.

Example 4. Using the matrices P, D, and W worked out in example 1 for A =
[(1) ”,We see that the singular values of A are (v/5 + 1) /2 and (\/3—1) /2, and
(Vi 66 —B+ V5
P'W = -
1,1 1

\/§+ﬁ\/5 \/5—1—0 5

VBT mvE 1= l_f 0 ]
V5-1

VR NCERVE R V) B Sl § RERNCRRRVE R A

108507 —0.5257 | | 1.6180 0 0.5257 —0.8507]
~ 10.5257  0.8507 0 0.6180| | 0.8507  0.5257 | °

. We thus get the following SVD of A:

VE- V5 —\/i+55vB
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What do we do if A is not invertible, or not even square? In such cases we may
not use the polar decomposition presented earlier, as our derivation required A
to be invertible. According to the statement of Theorem 2, we must ensure that if
r = rank(A), then the first r columns of U (respectively V) are eigenvectors of AA’
(respectively A’ A).

Example 5. The rank one matrix A = {_; _i] has eigenvalues 0 and —5. Here
-1 2 2 _17
AA = AA = {_18 _;8} = { f ‘f] {28 8} {_f _\/ig] is an EVD
VAR 5 V5
12 1 27
of AA’. Consequently, we have A = [ ‘ég ‘{5} [g 8] { ‘ég \{g] is an SVD.
Vs VB V5 VB
_2 1 _ 2 17’
(Note: [_; _Z] = l_f _f} [8 _g] l_f _f} is an EVD of A.)
NG

Example 6. IfA:[”,thenAA’:{l 1}2[

and A’A = [2]. We get the SVD A = [1] = [

Pseudo-inverses

One popular application of orthogonal diagonalizations of symmetric matrices is to
the computation of matrix powers. This is based on the observations that if A =
PDP’, with P orthogonal and D diagonal, then A¥ = PD* P’ and if k is an integer,
then DF is trivial to find. In discussing polar decomposition, we effectively looked at
the case k = 1/2. When k = —1, this approach yields a quick way to find the inverse
of A (when all of the eigenvalues of A are nonzero). A similar application of the
SVD can also be given: If A = UDV"’ is an SVD of an invertible square matrix, then
A"l = (UDV") "' = VD~'U’, where D! can be computed by simply reciprocating
each diagonal entry.

1 1 1 1’
Example 7. GiventheSVDA:[; ﬂ:[‘? ‘{5} [g ﬂ[\? ‘{5],
V2 V2 V2 V2
1 1 1 119 1 2
wegetA—1=[«f “Ho QHW f} -7 4]
V2 V2 vZV2 3 3

We can try this in general: first if D is any diagonal m x n matrix (meaning
any nonzero entries occur on the principal diagonal) then we define the pseudo-
inverse DT of D to be the matrix obtained by transposing D and reciprocating
each nonzero (diagonal) entry. See [1, 6, 8, 9, 12, 13] for further discussion. This is a
dream come true for linear algebra novices—invert what you can and ignore the rest!
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(Don't forget to transpose too when D is not square.) For example,
+ 1 +
2 0 = 0 00 0 0 -3
— 2 = —-1— + ==
I N E ) B R B i
Theorem 3. Every matrix is “invertible.”

Proof. 1f A=UDV'is an SVD, then A has pseudo-inverse A* = VDYU'. 0O

Remark. All we are really doing here is providing a definition of the pseudo-inverse
of an arbitrary matrix. It can be shown that this is well defined, in other words, while
SVDs are not unique, pseudo-inverses are. One way to see this [6] entails proving
that the pseudo-inverse (also known as the Moore-Penrose inverse) we have defined
is the unique matrix AT such that

i. AAT and At A are symmetric.
ii. AATA=A.
iii. ATAAT = AT,

From this one can show various algebraic identities, for example (AT)T = A. We
offer another proof of uniqueness in the next section.
If A is square and invertible, so D has only nonzero entries on its diagonal, then

as we saw in example 7 the pseudo-inverse AT = VDTU’ is the ordinary inverse
AL

Example 8. From example 5,
1 91* [-
2 —4| =

Example 9. From example 6,

Shosl-
Shshe

N
[a—

[
I
—
2=

Solving All Systems
Now that we have a way to invert any matrix, what could be more natural than to
try to apply this to solving linear systems?

Theorem 4. Every linear system is “solvable.”

Proof. 1f Ax = b is a linear system, where A is m X n, x is a column vector of n

unknowns, and b is a known vector of length m, then w = A*b is the “solution.”
]

In the case where A is square and invertible, w = Atb = A~'b is clearly the
usual unique solution to the system; that is, Az = b if and only if z = w. The point
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is that we now have a way to “solve” all systems, even the traditionally discredited
underdetermined and overdetermined (inconsistent) ones!

Example 10. The underdetermined system: {_ ; _i] [;] = H] yields the
+ L 2 2

solution w = |: _; i:| |:(]).:| = [ 225 245 :| |:(;:| = |: 245 :| , using the pSCUdO-
- 25 T 25 25

inverse found in example 8. One can easily check that out of the infinitude of
solutions, this solution is the closest to the origin, i.e., the one of smallest norm.

0
1

of answer seems reasonable here? Using the pseudo-inverse found in example 9, we

Example 11. The simplest inconsistent system is surely [” (z) = { ] . What sort

+
find w = [ ” [(1)] = [% %] [(1]] = %, which is a pretty good compromise given

that we started with x = 0 and z = 1!

Remark. What we have here is the method of least squares. It turns out thatw = A™b
gives the least squares solution to Az = b with minimum norm. In other words the
technique of the last two examples works for any underdetermined or any inconsis-
tent linear system, provided we can compute the pseudo-inverse of the coefficient
matrix [5, 6, 13, 14].

The proof that w = A™b gives the least squares solution to Az = b with minimum
norm in no way depends on the particular matrices U and V in the SVD of A. So if
AT and A are pseudo-inverses obtained from distinct SVDs of A, they must give
the same result when multiplied on the right by b, for all vectors b, hence A and
AZF must be identical. This is another way to see that pseudo-inverses are unique.

Many software packages will provide an SVD and the pseudo-inverse of a matrix.
For example, in Matlab, given A, to obtain matrices U, D,V with A = UDV”, just
enter the command [U,D,V]= SVD(2). To obtain the pseudo-inverse of A enter
pinv (A) . The easiest way to find a polar decomposition of a matrix A using software
is perhaps to work backwards from an SVD of A. In Matlab this simple m-file routine
does the job:

function [R,W]=polard(A)
[U,D,V]l=svd(A) ;

R=U*D*U"

W=inv (R) *A

This approach gives an answer for non-invertible matrices (and even rectangular
ones), which raises some interesting questions worth pondering.

Closing Remarks

The SVD is one of several matrix factorization techniques (also including LU and
QR decompositions) that seem to be making a long overdue appearance in some
basic undergraduate linear algebra courses. These techniques are discussed in the
emerging generation of basic undergraduate textbooks such as [1, 5, 8, 13, 15].
The SVD has a reputation for being relatively difficult, and indeed its usual pre-
sentation is rather different in flavor from the bulk of the material in a standard
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introductory course. Also, it seems to require more time to develop than we may
have available. As a result, even if instructors include the SVD in their syllabi, fully
intending to cover it in some fashion, when push comes to shove late in the term,
it often gets dropped unceremoniously.

Perhaps there is another reason why the SVD gets left out in cold: We teach what
we know. How many of us are as familiar with the SVD as we might be? The simple
truth is that the SVD did not feature in the pure mathematics training that many of us
received, not even in graduate school. Under these circumstances, is it any wonder
that we fail to “pass it on” to so many generations of our own students?

While our treatment of the SVD is far from mathematically complete, we believe
that it is nevertheless worthwhile because it gives students some appreciation of an
important topic in a short amount of time. What we present here can be discussed in
class in two hours. We believe that the advantages of knowing a little about the SVD
(and how to implement it with software) outweigh the disadvantages of not having
seen every claimed result proved in detail, and certainly our approach is preferable
to learning absolutely nothing about it.

Figure 1 was generated using the ATLAST Matlab routine transfor .m. (ATLAST
is an NSF-funded project to Augment the Teaching of Linear Algebra through the use
of Software Tools [10].) This routine, and other m-files, some of which also explore
the SVD, are available from < http://www2.gasou.edu/atlast >.

Acknowledgment. We thank ATLAST Project Director Steven Leon, and David Hill, who led the ATLAST
Developers Workshop at the University of Washington, Seattle, in August 1996. This article grew out of
our experiences at that workshop. Thanks also to Rick Elderkin for guidance in the early stages.
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