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Abstract

This report introduces the concept of factorizing a matrix based on
the singular value decomposition. It discusses methods that operate on
square-symmetric matrices such as spectral decomposition. The singu-
lar value decomposition technique is explained and related to solving
linear systems of equations. Examples are presented based on over and
under determined systems.

1 Introduction

The Singular Value Decomposition (SVD) is a widely used technique to
decompose a matrix into several component matrices, exposing many of the
useful and interesting properties of the original matrix. The decomposition
of a matrix is often called a factorization. Ideally, the matrix is decomposed
into a set of factors (often orthogonal or independent) that are optimal based
on some criterion. For example, a criterion might be the reconstruction of
the decomposed matrix. The decomposition of a matrix is also useful when
the matrix is not of full rank. That is, the rows or columns of the matrix
are linearly dependent. Theoretically, one can use Gaussian elimination to
reduce the matrix to row echelon form and then count the number of nonzero
rows to determine the rank. However, this approach is not practical when
working in finite precision arithmetic. A similar case presents itself when
using LU decomposition where L is in lower triangular form with 1’s on the
diagonal and U is in upper triangular form. Ideally, a rank-deficient matrix
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may be decomposed into a smaller number of factors than the original matrix
and still preserve all of the information in the matrix. The SVD, in general,
represents an expansion of the original data in a coordinate system where
the covariance matrix is diagonal.

Using the SVD, one can determine the dimension of the matrix range or
more-often called the rank. The rank of a matrix is equal to the number of
linear independent rows or columns. This is often referred to as a minimum
spanning set or simply a basis. The SVD can also quantify the sensitivity of
a linear system to numerical error or obtain a matrix inverse. Additionally,
it provides solutions to least-squares problems and handles situations when
matrices are either singular or numerically very close to singular.

2 Spectral Decomposition and Square-Symmetric
Matrices

We now turn to the simple case of factoring matrices that are both square
and symmetric. An example of a square-symmetric matrix would be the
k × k co-variance matrix, Σ. If matrix A has the property A = AT , then
it is said to be symmetric. If A is a square-symmetric matrix, then a useful
decomposition is based on its eigenvalues and eigenvectors. That is,

AX = XΛ (1)

where X is a matrix of eigenvectors and Λ is the diagonal matrix of eigenval-
ues. Diagonal in the sense that all the entries off the main diagonal are zero.
The eigenvectors have the convenient mathematical property of orthogonal-
ity (i.e., eTe = I, where I is the identity matrix) and span the entire space
of A. That is, form a basis or minimum spanning set.

The set of eigenvalues is called the spectrum of A. If two or more eigen-
values of A are identical, the spectrum of the matrix is called degenerate.
The “spectrum” nomenclature is an exact analogy with the idea of the spec-
trum of light as depicted in a rainbow. The brightness of each color of the
spectrum tell us “how much” light of that wavelenght existed in the undis-
persed white light. For this reason, the procedure is often referred to as a
spectral decomposition.

Additionally, the spectral decomposition can be re-formulated in terms
of eigenvalue-eigenvector pairs. That is, first let A be a k × k symmetric
matrix. Then A can be expressed in terms of its k eigenvalue-eigenvector
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pairs (λi, ei) as the expansion

A =
k∑

i=1

λieieT
i (2)

This is a useful result in that it helps facilitate the computation of A−1,A1/2,
and A−1/2. First, let the normalized eigenvectors be the columns of another
matrix P = [e1, e2, . . . , ek]. Then

A = PΛPT =
k∑

i=1

λieieT
i (3)

where PPT = PTP = I and Λ is the diagonal matrix with eigenvalues λi on
the diagonal (we will soon see that that this is the form of the SVD). Thus
to compute the inverses, we simply take the reciprocal of the eigenvalues in
the diagonal matrix Λ. That is

A−1 = PΛ−1PT =
k∑

i=1

1
λi

eieT
i (4)

Similarly, the computation of the square root and inverse square root ma-
trices are performed as follows:

A1/2 = PΛ1/2PT =
k∑

i=1

√
λieieT

i (5)

A−1/2 = PΛ−1/2PT =
k∑

i=1

1√
λi

eieT
i (6)

3 The Singular Value Decomposition

The ideas that lead to the spectral decomposition can be extended to provide
a decomposition for a rectangular, rather than a square, matrix. We can
decompose a matrix that is not square nor symmetric by first considering
a matrix A that is of dimension m × n where m ≥ n. This assumption is
made for convenience only; all the results will also hold if m < n. As it turns
out, the vectors in the the expansion of A are the eigenvectors of the square
matrices AAT and ATA. The former is a outer product and results in a
matrix that is spanned by the row space of A. The latter is a inner product
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and results in a matrix that is spanned by the column space (i.e., the range)
of A.

The singular values are the nonzero square roots of the eigenvalues from
AAT and ATA. The eigenvectors of AAT are called the “left” singular
vectors (U) while the eigenvectors of ATA are the “right” singular vectors
(V). By retaining the nonzero eigenvalues k = min(m,n), a singular value
decomposition (SVD) can be constructed. That is

A = UΛVT (7)

where U is an m×m orthogonal matrix (UTU = I), V is an n×n orthogonal
matrix (VTV = I), and Λ is an m×n matrix whose off-diagonal entries are
all 0’s and whose diagonal elements satisfy

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 (8)

It can be shown that the rank of A equals the number of nonzero singular
values and that the magnitudes of the nonzero singular values provide a
measure of how close A is to a matrix of lower rank. That is, if A is nearly
rank deficient (singular), then the singular values will be small. In general,
the SVD represents an expansion of the original data A in a coordinate
system where the covariance matrix ΣA is diagonal.

Remember, this is called the singular value decomposition because the
factorization finds values or eigenvalues or characteristic roots (all the same)
that make the the following characteristic equation true or singular. That
is

|A− λI| = 0 (9)

Using the determinant this way helps solve the linear system of equations
thus generating an nth degree polynomial in the variable λ. This polynomial,
that yields n-roots, is called the characteristic polynomial.

Equation (9) actually comes from the more generalized eigenvalue equa-
tion which has the form

Ax = λx (10)

which, when written in matrix form, is expressed as Eqn. (1) introduced
earlier. This implies

Ax− λx = 0 (11)

or
(A− λI)x = 0 (12)

The theory of simultaneous equations tells us that for this equation to be
true it is necessary to have either x = 0 or |A−λI| = 0. Thus the motivation
to solve Eqn. (9).
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4 Examples

4.1 Inverses of Square-Symmetric Matrices

The covariance matrix Σ is an example of a square-symmetric matrix. Con-
sider the following

Σ =

[
2.2 0.4
0.4 2.8

]

The matrix is not singular since the determinant |Σ| = 6 therefore Σ−1

exists. The eigenvalues and eigenvectors are obtained directly from Σ since
it is already square. Furthermore, the left and right singular vectors (U,V)
will be the same due to symmetry. We solve for the eigenvalues via Eqn. (9)
to obtain λ1 = 3 and λ2 = 2 which are also the singular values in this case.
We then compute the corresponding eigenvectors via Eqn. (10) to obtain
eT

1 = [1/
√

5, 2/
√

5] and eT
2 = [2/

√
5,−1/

√
5]. Finally we factor Σ into a

singular value decomposition.

Σ = UΛVT =

[
1√
5

2√
5

2√
5

−1√
5

] [
3 0
0 2

] [
1√
5

2√
5

2√
5

−1√
5

]T

=

[
2.2 0.4
0.4 2.8

]

It is now trivial to compute Σ−1 and Σ−1/2.

Σ−1 = UΛ−1VT =

[
1√
5

2√
5

2√
5

−1√
5

] [
1
3 0
0 1

2

] [
1√
5

2√
5

2√
5

−1√
5

]T

=

[
0.47 −0.07

−0.07 0.37

]

Σ−1/2 = UΛ−1/2VT =

[
1√
5

2√
5

2√
5

−1√
5

] [
1√
3

0
0 1√

2

] [
1√
5

2√
5

2√
5

−1√
5

]T

=

[
0.68 −0.05

−0.05 0.60

]

4.2 Solving A System of Linear Equations

A set of linear algebraic equations can be written as

Ax = b (13)

where A is a matrix of coefficients (m×n), and b (m× 1) is some form of a
system output vector. The vector x is what we usually solve for. If m = n
then there are as many equations as unknowns, and there is a good chance
of solving for x. That is

A−1Ax = A−1b (14)
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x = A−1b (15)

Here, we simply compute the inverse of A. This can prove to be a challenging
task, however, for there are many situations where the inverse of A does not
exist. In these cases we will approximate the inverse via the SVD which can
turn a singular problem into a non-singular one.

Vector x in Eqn. 13 can also be solved for by using the transpose of A.
That is

ATAx = ATb (16)

x = (ATA)−1ATb (17)

This is the form of the solution in a least-squares sense from standard mul-
tivariate regression theory where the inverse of A is express as

A† = (ATA)−1AT (18)

where A† is called the More-Penrose pseudoinverse. We will see that the use
of the SVD can aid in the computation of the generalized pseudoinverse.

4.2.1 Equal Number of Equations and Unknowns

This is the case when matrix A is square. We have already presented the
case when A is both square and symmetric. But what if it is only square, or
more importantly, square and singular or degenerate (i.e., one of the rows
or columns of the original matrix is a linear combination of another one)
Here again we use SVD. Take for example the following matrix

A =

[
1 1
2 2

]

This matrix is square but not symmetric. Furthermore it is singular since
the determinant |A| = 0. This would imply A−1 does not exist. Using the
SVD, however, we can approximate an inverse. The SVD approach tells us
to compute eigenvalues and eigenvectors from the inner and outer product
matrices:

ATA =

[
5 5
5 5

]
and AAT =

[
2 4
4 8

]

The inner and outer product matrices are both symmetric. The eigenvalues
from these matrices are λ1 = 0 and λ2 = 10. Consequently, the singular

6



values of A are σ1 = 0 and σ2 =
√

10. Therefore the rank of A is 1. The
decomposition is then expressed as

A = UΛVT =

[
2√
5

1√
5−1√

5
2√
5

] [
0 0
0

√
10

] [
1√
2

1√
2−1√

2
1√
2

]T

=

[
1 1
2 2

]

4.2.2 Underdetermined - Fewer Equations than Unknowns

B =

[
3 1 1

−1 3 1

]

BTB =




10 0 2
0 10 4
2 4 2


 and BBT =

[
11 1
1 11

]

The eigenvalues from BTB are λ1 = 12, λ2 = 10 and λ3 = 0. The
eigenvalues from BBT are λ1 = 12 and λ2 = 10. Consequently, the non-zero
singular values of B are σ1 =

√
12 and σ2 =

√
10. Therefore the rank of B

is 2. The decomposition is then expressed as

B = UΛVT =

[
1√
2

1√
2

1√
2

−1√
2

] [ √
12 0 0
0

√
10 0

]



1√
6

2√
5

1√
30

2√
6

−1√
5

2√
30

1√
6

0 −5√
30




T

=

[
3 1 1

−1 3 1

]

4.2.3 Overdetermined - More Equations than Unknowns

C =




1 1
1 1
0 0




CTC =

[
2 2
2 2

]
and CCT =




2 2 0
2 2 0
0 0 0




The eigenvalues from CTC are λ1 = 4 and λ2 = 0. The eigenvalues from
CCT are λ1 = 4, λ2 = 0 and λ3 = 0. Consequently, the non-zero singular
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values of C are σ1 =
√

4 and σ2 = 0. Therefore the rank of C is 1. The
decomposition is then expressed as

C = UΛVT =




1√
2

1√
2

0
1√
2

−1√
2

0
0 0 1







√
4 0

0 0
0 0




[
1√
2

1√
2

1√
2

−1√
2

]T

=




1 1
1 1
0 0




4.2.4 Overdetermined: Least-Squares Solution

When we have a set of linear equations with more equations than unknowns,
and we wish to solve for the vector x, as in Eqn. 17, we usually do so
in a least-squares sense. However, use of the SVD provides a numerically
robust solution to the least-squares problem presented in Eqn. 17 which
now becomes

x = (ATA)−1ATb = UΛ−1VTb (19)
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