
Sequential Monte Carlo estimations in
Robotics

Nagesh Adluru

1 Sequential Monte Carlo estimations or in

other words PARTICLE FILTERS

BASIC IDEA: Instead of heuristically assuming features about distribu-
tions and tracking them simulate distributions using randomly drawn samples
(particles) from the distributions.

The drawn particles can be used to for a functional estimate (E(f(x)))
as:

E(f(x)) =

∫

x

f(x)p(x|y)dx (1)

≈ 1

N

N∑
i=1

f(x(i)) where x i.i.d from p(x|y) (2)

As N →∞ the simulation converges to true estimate.
ADVANTAGE: Gives power to filter non-linear, non-Gaussian without

working out complicated analytical math governing the processes and gives
us computational feasibility.

BIGGEST HURDLE: Drawing samples from a distribution and trying
to estimate it is a chicken-egg problem! So we constantly have to iterate be-
tween updating the distribution and drawing samples and this can go wrong
in several problem instances. The idea can be engineered based on an appli-
cation.

BAYESIAN UPDATES: Almost always the update procedure in fil-
tering techniques rests on Bayes rule.

1

2 Robot pose learning (localization)

Pose of a robot is it’s position and it’s heading direction (x, y, θ). From now
on pose is represented by using only x.

The online learning of the pose is posed as the following filtering problem:

p(xt|z1:t, u1:t,m) (3)

where

• u1:t is the sequence of odometry measurements.

• z1:t is the sequence of range measurements.

• m is the map of the environment the robot is in.

Using Bayes rule and assumptions (1st order Markov process, observational
independence) to figure out the updates:

p(xt|z1:t, u1:t,m) = p(xt|z1:t−1, u1:t,m, zt)

=
p(zt|xt, z1:t−1, u1:t,m)p(xt|z1:t−1, u1:t, m)

p(zt|z1:t−1, u1:t,m)

= ηp(zt|xt,m)

∫

xt−1

p(xt|xt−1, ut,m)p(xt−1|z1:t−1, u1:t−1,m)dxt−1 (4)

NOW where comes the MC estimation? Thinking as an engineer only suffices
:) As you can see we need to estimate the integral. We have the integral
approximated by previous stage MC-estimation of p(xt−1|z1:t−1, u1:t−1,m) and
hence can approximate the integral with the weighted kernel estimate as:

∫

xt−1

p(xt|xt−1, ut,m)p(xt−1|z1:t−1, u1:t−1,m)dxt−1 ≈
N∑

i=1

p(xt|x(i)
t−1, ut,m)w

(i)
t−1

(5)
OK! We have samples for p(xt−1|z1:t−1, u1:t−1,m) but what about samples
for p(xt|z1:t, u1:t,m). Since we cannot sample from p(xt|z1:t, u1:t,m) directly
(if we could then there’s no need for this ”predict-update” problem) let’s
use

∫
xt−1

p(xt|xt−1, ut,m)p(xt−1|z1:t−1, u1:t−1,m)dxt−1 as the ”proposal” and

2

weight the particles as

ŵt(xt) =
p(xt|z1:t, u1:t,m)∫

xt−1
p(xt|xt−1, ut,m)p(xt−1|z1:t−1, u1:t−1, m)dxt−1

(6)

=
ηp(zt|xt,m)

((((((((((((((((((((((((((
∫

xt−1
p(xt|xt−1, ut,m)p(xt−1|z1:t−1, u1:t−1,m)dxt−1

((((((((((((((((((((((((((
∫

xt−1
p(xt|xt−1, ut,m)p(xt−1|z1:t−1, u1:t−1,m)dxt−1

(7)

Guess what, we just saw an example of Sequential MC estimation! It is
iterative but we get new observations in every stage that let’s us improve our
estimate. Contrast this with Metropolis-Hastings (on your own) if interested.

ALGORITHMIC PERSPECTIVE:

• Initializing: For i = 1, . . . , N draw x
(i)
1 from p(x1).

• Sampling/Predicting: For i = 1, . . . , N sample from the proposal

x
(i)
t ∼ ∑N

j=1 p(xt|x(j)
t−1, ut,m)w

(j)
t−1.

• Weighting/Updating: For i = 1, . . . , N evaluate the importance

weights ŵ
(i)
t = ηp(zt|x(i)

t ,m). Then normalize the importance weights

w
(i)
t =

ŵ
(i)
t∑N

j=1 ŵ
(j)
t

.

3 Robot map learning (mapping)

Here the state to be learnt is the map of the environment the robot is in.
For an online learning the filter would be

p(mt|x1:t, z1:t) (8)

Guess what we have analytical solution for this filter!!! Occupancy grids is
one example. We don’t need MC-estimation. It would not be wise to use
MC anyways since mt is usually very high dimensional (equal to number
of features in a map) and particle filter also suffers curse of dimensionality.
Which says in a high dimensional space we need lot of data reason something
strong because of the exponential increase in volume of the hypercube.

3

4 Simultaneous Localization and Mapping

The filter here is:
p(x1:t,mt|z1:t, u1:t) (9)

For this there is no known analytic expression so we use MC estimation. So
usually it’s hard to filter more than ∼ 50 features in mt. But fortunately
Rao-Blackwellization with state-decomposition theorem which roughly stat-
ing leads that if a state can be decomposed into analytical sub-parts then
it’s indeed better than direct estimation!

Since we know p(mt|x1:t, z1:t) is analytically computable let’s decompose
the SLAM posterior as:

p(x1:t,mt|z1:t, u1:t) = p(x1:t|z1:t, u1:t)p(mt|z1:t, u1:t, x1:t)

= p(x1:t|z1:t, u1:t)p(mt|z1:t, x1:t) (∵ mt is independent of u1:t given z1:t, x1:t)
(10)

So we need to track only p(x1:t|z1:t, u1:t) using SMC estimation. Let’s follow
the approach we took for pose learning. Let’s first get the update equation

4

using Bayes rule:

p(x1:t|z1:t, u1:t) = ηp(zt|z1:t−1, x1:t, u1:t)p(xt|x1:t−1, u1:t)p(x1:t−1|z1:t−1, u1:t−1)
(11)

The derivation follows:

p(x1:t|z1:t, u1:t) =
p(x1:t|u1:t)p(z1:t|x1:t, u1:t)

p(z1:t|u1:t)(
using Baye’s rule p(A|B,C) =

p(A|B)p(C|A,B)

p(C|B)

)

where A = x1:t, B = u1:t, C = z1:t

=
p(xt|x1:t−1, u1:t) p(x1:t−1|u1:t−1) p(zt|z1:t−1, x1:t, u1:t) p(z1:t−1|x1:t−1, u1:t−1)

p(zt|z1:t−1, u1:t) p(z1:t−1|u1:t−1)

=
p(xt|x1:t−1, u1:t)p(zt|z1:t−1, x1:t, u1:t) p(x1:t−1|z1:t−1, u1:t−1)

p(zt|z1:t−1, u1:t)

using Bayes rule with A = x1:t−1, B = u1:t−1, C = z1:t−1

= ηp(zt|z1:t−1, x1:t, u1:t)p(xt|x1:t−1, u1:t)p(x1:t−1|z1:t−1, u1:t−1) (12)

Contrast this with pose learning (eq. (4)) where we have an additional inte-
gral.

Since sampling directly from p(x1:t|z1:t, u1:t) is hard we sample from a
proposal π that is constructed sequentially as:

π(x1:t|z1:t, u1:t) = π(xt|x1:t−1, z1:t, u1:t)π(x1:t−1|z1:t−1, u1:t−1) (13)

which implies that x1:t ∼ π(x1:t|z1:t, u1:t) actually means xt ∼ π(xt|x1:t−1, z1:t, u1:t)
and x1:t =< xt, x1:t−1 >.

The important weights are computed as:

ŵt(x1:t) =
p(x1:t|z1:t, u1:t)

π(x1:t|z1:t, u1:t)

=
ηp(zt|z1:t−1, x1:t, u1:t)p(xt|x1:t−1, u1:t) p(x1:t−1|z1:t−1, u1:t−1)

π(xt|x1:t−1, z1:t, u1:t) π(x1:t−1|z1:t−1, u1:t−1)

= ŵt−1(x1:t−1)
ηp(zt|z1:t−1, x1:t, u1:t)p(xt|x1:t−1, u1:t)

π(xt|x1:t−1, z1:t, u1:t)
(14)

ALGORITHMIC PERSPECTIVE:

5

• Initializing: For i = 1, . . . , N , draw x
(i)
1 from p(x1).

• Sampling/Predicting: For i = 1, . . . , N , sample from the proposal

x
(i)
t ∼ π(xt|x(i)

1:t−1, z1:t, u1:t). And x
(i)
1:t ≡< x

(i)
t , x

(i)
1:t−1 >.

• Weighting/Updating: For i = 1, . . . , N , evaluate the importance
weights

ŵ
(i)
t = ŵ

(i)
t−1

ηp(zt|z1:t−1,x
(i)
1:t,u1:t)p(x

(i)
t |x(i)

1:t−1,u1:t)

π(x
(i)
t |x(i)

1:t−1,z1:t,u1:t)
Then normalize the impor-

tance weights w
(i)
t =

ŵ
(i)
t∑N

j=1 ŵ
(j)
t

.

5 Optimality, resampling schedule and pro-

posal

OPTIMALITY: Optimality of filtering via simulation can be measured
using variance of the importance weights of the particles. In a perfect sim-
ulation scenario, weights of all particles must be same meaning the samples
are randomly drawn from the posterior which is being simulated. This can
also be noted in the weight equations above where the importance weights
would be 1 if π = p and the normalized weights would be 1/N . In such a
case the variance of weights will be 0.

But it’s been shown that the variance increases over time for a finite N .
This problem is called weight degeneracy problem.

RESAMPLING: Resampling helps in reducing the variance by replac-
ing low weight particles with duplicates of higher weight particles. But naive
resampling might lead to having only one particle duplicated which is called
particle depletion and if you notice this also means the particles are not ran-
dom in fact they are too deterministic. One important note is that after
resampling, the weights of all particles are reset to 1/N .

Adaptive resampling is an easy engineering fix that let’s us schedule re-
sampling according to a flag that tries to maintain a balance between reducing
variance and avoiding bias.

The flag variable is Neff = 1∑N
i=1 w

(i)
t

. If Neff < N/2 resampling is not

done otherwise we resample.
There are more complex fixes available.
PROPOSAL DISTRIBUTION: Though resampling is a temporary

relief it is not a solution. Selection and design of proposal distribution can

6

be helpful in spreading around particles into low variance and high likelihood
regions. But in general there is no restriction from the particle filter point of
view to choose a proposal distribution. We will look at two of them viz.

(a) p(xt|x1:t−1, u1:t)

(b) p(xt|x1:t−1, z1:t, u1:t)

If we choose the first option then besides drawing samples the main difference
is in the weight recursion eq. (14).

• Sampling: Drawing xt ∼ p(xt|x1:t−1, u1:t) is simple because we are
given a closed form which is usually Gaussian of the form N (µ, Σ)
based on the odometry motion model of the robot.

• Weight update: By plugging in the proposal eq. (14) is simplified as:

wt(x1:t) = ηwt−1(x1:t−1)
(((((((((
p(xt|x1:t−1, u1:t)p(zt|z1:t−1, x1:t, u1:t)

(((((((((
p(xt|x1:t−1, u1:t)

= ηwt−1(x1:t−1)p(zt|z1:t−1, x1:t, u1:t)

= ηwt−1(x1:t−1)p(zt|mt−1, xt) ∵ zt is independent of u1:t (15)

and conditioning on x1:t−1, z1:t−1 is equivalent to conditioning on mt−1.

If we choose the second option then sampling is also non-trivial because there
is no easy closed form available. So we use MC-estimation to simulate the
proposal distribution!

So let’s get the update equation for the optimal proposal.

p(xt|x1:t−1, u1:t, z1:t) = p(xt|x1:t−1, u1:t, z1:t−1, zt)

=
p(zt|xt, x1:t−1, u1:t, z1:t−1)p(xt|x1:t−1, u1:t, z1:t−1)

p(zt|x1:t−1, u1:t, z1:t−1)(
using Bayes rule p(A|B, C, D, E) =

p(E|A,B, C, D)p(A|B, C, D)

p(E|B, C, D)

)

where A = xt, B = x1:t−1, C = u1:t, D = z1:t−1, E = zt

=
p(zt|xt, x1:t−1, u1:t, z1:t−1)p(xt|x1:t−1, u1:t, z1:t−1)∫

xt
p(zt|xt, x1:t−1, u1:t, z1:t−1)dxt

(16)

Since we cannot directly sample from the optimal proposal let’s sample
from p(xt|x1:t−1, u1:t, z1:t−1) and assign weights (CAUTION: these are called

7

first-stage weights and not to be confused with the actual weights for the
particles representing the state x

(i)
1:t) to be:

w̃(xt) =
p(xt|x1:t−1, u1:t, z1:t)

p(xt|x1:t−1, u1:t, z1:t−1)

=

p(zt|xt,x1:t−1,u1:t,z1:t−1)(((((((((
p(xt|x1:t−1,u1:t,z1:t−1)∫

xt
p(zt|xt,x1:t−1,u1:t,z1:t−1)dxt

((((((((((((
p(xt|x1:t−1, u1:t, z1:t−1)

=
p(zt|xt, x1:t−1, u1:t, z1:t−1)∫

xt
p(zt|xt, x1:t−1, u1:t, z1:t−1)dxt

≈ p(zt|xt, x1:t−1, z1:t−1, u1:t)∑K
j=1 p(zt|x̃(j)

t , x1:t−1, z1:t−1, u1:t)

=
p(zt|xt,mt−1)∑K

j=1 p(zt|x̃(j)
t ,mt−1)

(17)

where {x̃(j)
t }K

j=1 are the K samples drawn from p(xt|x1:t−1, u1:t, z1:t−1). And
conditioning x1:t−1, z1:t−1 is equivalent to conditioning on mt−1. And zt is
independent of u1:t. Now let’s look at the weight update.

wt(x1:t) = wt−1(x1:t−1)
ηp(xt|x1:t−1, u1:t)p(zt|z1:t−1, x1:t, u1:t)

p(xt|x1:t−1, z1:t, u1:t)

= wt−1(x1:t−1)
ηp(xt|x1:t−1, u1:t)p(zt|z1:t−1, x1:t, u1:t)

p(xt|x1:t−1, u1:t, z1:t−1, zt)

= wt−1(x1:t−1)
ηp(xt|x1:t−1, u1:t)p(zt|z1:t−1, x1:t, u1:t)
p(zt|xt,x1:t−1,u1:t,z1:t−1)p(xt|x1:t−1,u1:t,z1:t−1)

p(zt|x1:t−1,u1:t,z1:t−1)

using Bayes rule

= wt−1(x1:t−1)
ηp(xt|x1:t−1, u1:t)(((((((((((

p(zt|z1:t−1, x1:t, u1:t)

((((((((((
p(zt|xt,x1:t−1,u1:t,z1:t−1)p(xt|x1:t−1,u1:t,z1:t−1)

p(zt|x1:t−1,u1:t,z1:t−1)

= wt−1(x1:t−1)
ηp(xt|x1:t−1, u1:t)

p(xt|x1:t−1, u1:t, z1:t−1)
p(zt|x1:t−1, u1:t, z1:t−1)

= wt−1(x1:t−1)
p(xt|x1:t−1, u1:t)

p(xt|x1:t−1, u1:t, z1:t−1)

∫
xt

p(zt|xt, x1:t−1, u1:t, z1:t−1)dxt

≈ wt−1(x1:t−1)
p(xt|x1:t−1, u1:t)

p(xt|x1:t−1, u1:t, z1:t−1)

∑K
j=1 p(zt|x̃(j)

t , x1:t−1, z1:t−1, u1:t) (18)

8

6 Caveats to be aware of

Filtering SLAM posterior is significantly more involved compared to Local-
ization. Most important catch is that we sample in an increasing space of
dimension with time and it is bound to diverge!!! There’s already work done
to fix this to some extent using Marginal Particle Filters which filters in
the fixed dimension only. The key contributions by those guys was reduc-
ing the SLAM posterior to similar to that of Localization and also clever
computational speedups.

9

