Image Segmentation by

Background Subtraction

Using Gaussians

CIS750

Graduate Seminar in CIS

Video Processing and Mining

submitted by:

Ken Gorman

20 April 2003

Abstract

Various methods for segmenting objects in video have been developed which rely on various algorithmic means to identify those objects. In the special case of moving objects, much research has been applied to background subtraction. By identifying the background of an image, one can use background subtraction methods to identify a moving foreground image. Both foreground and background regions are represented by pixels, and these pixels are a mixture of Gaussian distributions. By matching a pixel with a foreground or background Gaussian distribution, one can determine whether that pixel is in the foreground or the background. This paper summarizes the work done by Stuaffer [1] and Harville [2] and provides an efficient implementation in C++.

Objective

The objective of the problem was to attempt to detect motion in a video sequence by using background subtraction methods and adaptive mixture Gaussian models as described primarily in the paper “Learning Patterns of Activity Using Real-Time Tracking” by Chris Stauffer, Member, W. Eric L. Grimson.

Further, a similar method has been described in the paper, Foreground Segmentation Using Adaptive Mixture Models in Color and Depth” by Michael Harville, Gaile Gordon, and John Woodfill

Problem Description:

The detection of movement is an area of concentration in imaging today. There are many examples of motion detection applications that are outside the scope of this paper. The current methods of motion detection fail to perform adequately for some specific sets of images and fail to meet some requirements.

Specifically, changes in lighting in a video cause false positives using some methods. Outdoor scenes, with changing weather condition, i.e. clouds, rain, snow, etc. pose significant problems for current motion detection methods.

The problem can be summarized as follows by the following requirements:

· a method is desired which can detect movement of objects in a video that is not caused by clouds, rain, snow etc.

· the method doesn’t require an initial learning period to “learn” the background.

· The method is adaptive. Moving objects which stop moving (i.e. parked cars) become part of the background.

· The method adapts to changing lighting conditions.

· The method proposed can process a video in real-time, i.e. the time necessary to process a frame is less than the time between frames.

· The method is tunable, i.e. the method can be tuned for higher accuracy or faster processing.

Configuration

In its ideal embodiment, the system would consist of a video processing system which could process incoming video either through a video capture board, video frames via a network, or some other real-time distribution method. In its present form, the system processes example video clips that have already been captured for post-capture processing. The system consists of a 1.5 GHz Pentium 4 Processor with 512 megabytes of RAM running the Microsoft Windows 2000 Operating System. Example video clips were captured using a Logitech Webcam through the USB port.

Case Study

Working with Matlab 6.5 Release 13 running on a Microsoft 2000 Professional machine, a video application was created that analyzes a stored video clip and identifies the frames in which motion is detected by using the algorithmic methods described in the referenced papers.

Through the use of the Matlab Image Processing Toolkit and a series of supplied test video sequences, an application was developed that identified motion in a video. Because empirical testing showed the Matlab application couldn’t meet the real-time requirement stated in the problem description above, the Matlab application was abandoned for a dedicated C++ application.

Working with Microsoft Visual Studio 6.0 and various libraries described elsewhere in this document, a Win32 graphical application was developed which processes an

Learning Process

The creation of the motion detection programs involved primarily the rapid learning of Matlab and various portions of it, including:

· Matlab image processing toolkit and associated functions.

· Ability to have Matlab generate C language files and Dynamic Link Libraries (DLL). The C source files could be compiled into a Microsoft Visual Studio project in order to increase performance. The user could opt to create a DLL which would allow the user to create a more feature rich user interface using the Visual Studio tools while still retaining the functionality of Matlab.

The following tools/utilities were utilized during the creation of the Video motion detection application:

Microsoft Visual Studio 6.0

The Visual Studio 6.0 development suite is a comprehensive developer productivity tool allowing development of applications across all the popular languages. Visual Studio 6.0 Professional Edition includes the complete set of development tools for building reusable applications in many high level languages, including C++. It provides easy integration with the Internet and a full Web page authoring environment.

Implementation/Deployment

The creation of the application involved several parts. Because

Pre-Requisites

Microsoft Foundation Classes – MFC

Microsoft DirectX 9.0 Software Development Kit (SDK) for C/C++

http://www.microsoft.com/windows/directx/default.aspx
Microsoft Platform SDK (Software Developer’s Kit) http://www.microsoft.com/msdownload/platformsdk/sdkupdate/
Intel IPP – Integrated Performance Primitives

http://www.intel.com/software/products/ipp/downloads/ippwin.htm
Open Computer Vision Library

http://sourceforge.net/projects/opencvlibrary/

Video Codecs

Microsoft Foundation Classes (MFC)

The Microsoft Foundation Class Library (MFC) is an object oriented C++ set of classes that allow developers to quickly build Win32 applications. It provides an application framework library that abstracts many of the Win32 APIs.

Microsoft DirectX [3]

Microsoft DirectX is a Software Developer Kit (SDK) provided by Microsoft that provides an API that abstracts graphics hardware by providing a common set of functions to exploit the high-performance capabilities of this hardware, i.e. graphics acceleration. This API eliminates the need for developers to have to write hardware-specific code.

Intel IPP – Integrated Performance Primitives [4]

The Intel Integrated Performance Primitives (Intel IPP) is a software library which provides a range of library functions for multimedia, audio codecs, video codecs (for example H.263, MPEG-4), image compression (JPEG), image processing, plus computer vision as well as math support routines for such processing capabilities.
Specific features include
· vector and image manipulation

· image conversion

· filtering

· windowing

· thresholding

· transforms

· arithmetic, statistical, and morphological operations.
File Reading and Conversion

A sample Matlab .m file was supplied which converted an .avi video file into individual bitmap (.bmp) files representing individual frames of the original video. The frames were distinguished by appending their frame number to their filename, for example:

Building the Executables:

Shortcuts:

Stauffer suggests that the covariance matrix be of the form:

[image: image1.wmf]å

=

t

k

k

I

,

2

s

This assumes that the red, green, and blue pixel values have the same variance. While it is certainly not the case, it avoids a computationally costly matrix inversion operation.

“Every new pixel value, Xt, is checked against the existing K Gaussian distributions until a match is found. A match is defined as a pixel value within 2.5 standard deviations of a distribution.”

((alpha) – adaptive learning rate. The learning rate doesn’t change in Stauffer’s paper.

In high dimensional spaces with full covariance matrices, it is sometimes advantageous to use a constant (to reduce computation and provide faster Gaussian tracking.

Variables used

K – number of Gaussian distributions. Based on computational power of the computer, reasonable numbers are between 3 and 5.

t – time step t. This is the time between each successive frame.

((alpha) – adaptive learning rate.

(- weightings

(- mean

(2 – variance

(- Gaussian Probability Density Function

(- Co-variance matrix

Algorithm Description:

The probability P of observing a pixel Xt is

[image: image2.wmf](

)

)

,

,

(

,

,

1

,

t

i

t

i

t

K

i

t

i

t

X

X

P

S

*

=

å

=

m

h

w

where (i,t is the weight (note: ((= 1, i.e. all weights sum up to 1) of the ith Gaussian in the mixture at time t, (i,t is the mean, and (i,t is the covariance matrix.

The function ((eta) is the Gaussian Probability Density function defined as:

[image: image3.wmf](

)

(

)

(

)

t

t

t

t

X

X

n

t

e

X

m

m

p

m

h

-

S

-

-

-

S

=

S

1

2

2

1

2

1

2

2

1

,

,

For simplification, the following is used for the covariance matrix:

[image: image4.wmf]I

=

S

2

,

K

t

K

s

where I is the identity matrix.

Tobs – Tracked Objects

Vnum –

Raw – unprocessed input

Segmented – after segmentation – colors are assigned to each tracked region in a sequential order.

Areas for Improvement

The current project could be easily updated to work with a live camera. Because the project already links to the open source Computer Vision Library, the Microsoft DirectX SDK (version 9), and the Intel IPP, all the functions are there to take advantage of this feature.

Known Bugs

1. In analyzer.cpp on or around line 233, the following line occasionally crashes with a 0xC0000005 exception error:

 k = *(id + idOfs[i]);

This can be demonstrated by rapidly moving forward and backwards between successive frames when in the paused mode.

2. The program will crash if the proper video codec isn’t installed (i.e. MP42)

Future Research

References

[1] M. Harville, G. Gordon, and J. Woodfill. Foreground segmen-tation using adaptive mixture models in color and depth. In Proceedings of the IEEE Workshop on Detection and Recogni-tion of Events in Video, 2001.

[2] C. Stauffer and W. Grimson. Adaptive background mixture models for real-time tracking. In Proc. CVPR, pages 246–252, 1999.

[3] http://www.microsoft.com/windows/directx/productinfo/overview/default.htm
[4] Getting Started with Intel Integrated Performance Primitives. Installation documentation, <root>\IPP\training\ipp_wbt\index.htm

_1112276185.unknown

_1112276195.unknown

_1112276570.unknown

_1112270476.unknown

