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Figure 1: The process to by analysed by the Kalman filter

1 Introduction

In his 1960 famous publication (“A new approach to linear filtering and prediction problems”, Trans.
ASME J. Basic Engineering., vol 82, March 1960, pp 34-45), Rudolf Kalman based the construction of the
state estimation filter on probability theory, and more specifically, on the properties of conditional Gaussian
random variables. The criterion he proposed to minimize is the state vector covariance norm, yielding to
the classical recursion : the new state estimate is deduced from the previous estimation by addition of a
correction term proportional to the prediction error (or the innovation of the measured signal).

If one tries to explain this remarkable and elegant construction to students having not a sufficient back-
ground in probability theory, there is an inherent difficulty (it is perhaps preferable to speak of a quite
paradoxal aspect): its understanding requires a good knowledge of conditional gaussian random variables,
while in the simple and efficient final formulation, the corresponding intermediate steps are not visible.
In this presentation, I give a first construction based on probability theory in simple cases where Kalman
approach is quite easy to follow : assuming the linearity of the predictor and avoiding the construction in
the case of gaussian variables (this formulation based on linearity is mentionnend in Kalman’s paper, but
not developped, probably because considered as obvious by him). Then I propose a construction that is
completely deterministic, (but as a consequence rather unnatural and inelegant ...) Perhaps some readers
will be interested by this alternative construction?

In this deterministic construction, we consider two cases : in the first case, we start from a criterion
based on the minimization of the prediction error ; we see in the final expressions that this formulation
yields to the Kalman filter in the case where there is an observation noise but no control noise. In the second
case, we modify the criterion by adding a penalty term in order to obtain a formula taking into account the
control noise as well as the measurement noise ; however this second construction is quite artificial.

2 The Kalman filter

The state evolution is given by (cf. fig. 1)

X(t + 1) = A(t)X(t) + b(t) + w(t), (1)

whereX is the state vector we intend to estimate,A(t) is the known square transition matrix of the process.
The controlb(t) is given and there is a zero mean process noisew(t) with known covariancerw(t). The
measured vectory(t) is given by the measurement equation :

y(t) = H(t)X(t) + v(t). (2)

H(t) is the rectangular measurement matrix,v(t) is the zero mean measurement noise, of known covariance
rv(t). The dimension ofw(t) is the dimension ofx(t) ; the dimension ofv(t) is the dimension ofy(t). The
covariance of the state vectorX(t) is

P (t) = E
[
(X(t)− E[X(t)])

(
XT (t)− E[XT (t)]

) ]
, (3)
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whereXT is the transpose (possibly conjugate) ofX. The purpose of the Kalman filter is to deduce from
y(t) the vectorX(t) whose covariance matrix has the lowest norm (its trace). The steps of the estimation
are the following:

• Prediction of the stateX(t) :
Xt+1/t = A(t)X(t) + b(t); (4)

• Intermediate update of the state covariance matrix that takes into account the evolution given by the
process transition :

Pt+1/t = A(t)P (t)AT (t) + rw(t); (5)

• Computation of the optimal gain :

Kt+1 = Pt+1/tH
T (t + 1)

(
H(t + 1)Pt+1/tH

T (t + 1) + rv(t + 1)
)−1; (6)

this optimal gain depends on the statistical characteristics of the measurement noise, but it does not take
the measures into account : it may be computeda priori.

• Update of the state covariance matrix :

P (t + 1) = Pt+1/t (7)

−Pt+1/tH
T (t + 1)

(
H(t + 1)Pt+1/tH

T (t + 1) + rv(t + 1)
)−1

H(t + 1)Pt+1/t,

or, expressed as a function ofKt+1

P (t + 1) = [I −Kt+1H(t + 1)]Pt+1/t; (8)

• Computation of the new estimate of the state :

X(t + 1) = Xt+1/t + Kt+1[y(t + 1)−H(t + 1)Xt+1/t]. (9)

2.1 A simple case : estimation of a scalar

We consider the following problem : In order to estimate a constantm, we do several measurements on it ;
let y be one of these measurements.y is a random variable with averagem and fluctuationsv :

y = m + v. (10)

The zero mean noisev has varianceσ2
v . We will perform a recursive estimation ofm : we suppose that we

have a first biasless estimation ofm in the form of a random variablex0 :

x0 = m + w. (11)

The zero mean noisew has varianceσ2
w.

We intend to compute a new estimatex1 with the following form :

x1 = x0 + k(y − x0). (12)

The specific chararacteristics of this correction are
• The new estimate is a linear function of the previous estimate and of the measurement ;
• The previous and the new estimators have no bias, or equivalently : if the measurey is perfectly

predicted by the previous estimatex0, this implies that it not necessary to correct this estimate as shows eq.
(12) ; We note that the average of the new estimate ism : in replacingx0 andy by their values :

x1 = m + w + k(m + v −m− w), (13)

x1 = m + w + k(v − w), (14)

E(x1) = m. (15)

We compute the variance of the new estimator assuming that the noisev is independant ofx0 ; so the
variance ofx1 is

σ2
1 = E(x1 −m)2 = E[w + k(v − w)]2, (16)
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Figure 2: Two biasless estimators with variancesσ2
w andσ2

v ; we look for a linear combination of these
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σ2
1 = (1− k)2E[w]2 + k2E[v]2, (17)

σ2
1 = (1− k)2σ2

w + k2σ2
v . (18)

It is reasonable to look for the estimatex1 with lower variance and to compute the correspondingk. For
this purpose we write

σ2
1 = (1− 2k + k2)σ2

w + k2σ2
v , (19)

σ2
1 = σ2

w − 2kσ2
w + k2(σ2

w + σ2
v), (20)

where we exhibit a constant term and a quadratic function ofk

σ2
1 = σ2

w − β2 +
(
β − k

√
σ2

w + σ2
v

)2

, (21)

σ2
1 = σ2

w − 2βk
√

σ2
w + σ2

v + k2(σ2
w + σ2

v). (22)

Consequently,

β =
σ2

w√
σ2

w + σ2
v

, (23)

σ2
1 = σ2

w −
σ4

w

σ2
w + σ2

v

+

(
σ2

w√
σ2

w + σ2
v

− k
√

σ2
w + σ2

v

)2

. (24)

The minimum ofσ2
1 is obtained for

k =
σ2

w

σ2
w + σ2

v

. (25)

The value of this minimum is

σ2
1 = σ2

w −
σ4

w

σ2
w + σ2

v

, (26)

σ2
1 =

σ2
wσ2

v

σ2
w + σ2

v

, (27)

1
σ2

1

=
1

σ2
w

+
1
σ2

v

. (28)

We note that when the varianceσ2
w of the previous estimate is very large, the new estimate reduces to the

new measure, and its variance isσ2
v : so, when initializing the Kalman filter, it is reasonable to start from

an uncertain initial state with large covariance if there is noa priori knowledge on the initial variance of the
estimator ofm. (fig. 4).

This simple case, which is quite easy to follow, gives the basic idea of the Kalman filter : the genera-
lisation to the vectorial case and the introduction of the transition matrixA and of the control signal and
noises are straightforwards.

2.2 State variance minimization in the case of vectorial data

In probabilistic terms, the problem considered by Kalman is the following : we have a biasless estimator of
a vectorX, we know its covariance ; we perform a new measureY linearly dependant ofX ; this measure
has no bias and a given covariance ; how can we use this new measure in order to correctX by a linear
term so that the new estimate is also biasless and has minimal variance?

The fact that the vectorX can be interpreted as a state is important in applications in automatic control
and filtering. However, this interpretation is not used in the computation of the optimal estimator. If we
admit that the form of the Kalman filter is pertinent : that is the new vector state estimate is a biasless linear
combination of the previous state estimate and of the the prediction error ; then the identification of the
minimum covariance solution is similar to the formula given above in the scalar case.

The state estimate isx0 (x0 is a vector) :

x0 = m + n, (29)

m is the true value of the state (no bias) andn is the zero mean estimation noise .
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Figure 4: Evolution deσ2
1 en fonction deσ2

w for different values ofσ2
v in the scalar case.

The prediction of the measurey (y is also a vector,H is a rectangular matrix, since in general there are
less measures than state components, then the dimension ofy is less than the dimension ofx) :

y = Hm + v (30)

v is a noise independant ofm and ofn
We write the new state estimation in the form :

x1 = x0 + K(y1 −Hx0) (31)

We look for a linear biasless estimator ; or equivalently : if we assume that the state estimate must not be
correctedx1 = x0 if the prediction error(y1−Hx0) vanishes, then it is always possible to writex1 in such
a form : the mean ofx1 is equal tom as the mean ofx0 :

x1 −m = x0 −m + K(y1 −Hm−H(x0 −m)), (32)

x1 −m = x0 −m + K(v −Hn), (33)

E(x1) = E(x0) = m. (34)

We assume that the measurement noisev is independant of the estimation errorn (v does not appear in
the computation ofx0).

Its covariance is
P1 = E

[
(n−KHn + Kv)(n−KHn + Kkv)T

]
, (35)

P1 = (I −KH)P0(I −KH)T + KV KT . (36)

In order to minimize the norm (the trace) of the positive covarianceP1, it is useful to write it in the form

P1 = P0 −KHP0 − P0h
T KT + K(HP0H

T + V )KT (37)
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and exhibit a sum of squares, so that only one of these squares will depend on the gainK we look for (this
is one of the essential points of the original proof of R. Kalman, that was also present in the optimal filtering
of N. Wiener.)

P1 = P0 − ααT +
(
α−K(HP0H

T + V )1/2
)(

α−K(HP0H
T + V )1/2)T (38)

where we assume that we can factorizeHP0H
T + V in

HP0H
T + V = (HP0H

T + V )1/2(HP0H
T + Q)T/2 (39)

These factors may be triangular, but any other factorization could be used. The value ofα is then

α(HP0H
T + V )T/2KT = P0H

T KT (40)

α = P0H
T (HP0H

T + V )−T/2 (41)

We chooseK yielding the minimum ofP1 : it is obtained when the third term in eq. (38) vanishes,
since it is the only one depending ofK and definite non negative. So,

K = α(HP0H
T + V )−1/2, (42)

K = P0H
T (HP0H

T + V )−T/2(HP0H
T + V )−1/2, (43)

K = P0H
T (HP0H

T + V )−1. (44)

and the covariance with minimal norm is

P1 = P0 − P0H
T (HP0H

T + V )−1HP0 (45)

If instead of
x1 = m + n, (46)

the new state writes
x1 = Am + An′ + w, (47)

wherew is a control noise independant of the estimation errorn′, then in the previous equationsP0 is
replaced by(AP0A

T + R) and the Kalman filter equations become

K = (AP0A
T + R)HT [H(AP0A

T + R)HT + V ]−1 (48)

P1 = (AP0A
T + R)− (AP0A

T + R)HT [H(AP0A
T + R)HT + V ]−1H(AP0A

T + R) (49)

In the case where the transition equation contains a nonlinear transformation ofxt instead ofAxt, one
has to replace the factor(AP0A

T + R) by a term taking into account the nonlinearity.
A remark on nonlinear extensions : S. J. Julier et J. K. Uhlmann (A New Extension of the Kalman

Filter to Nonlinear Systems. In Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing,
Simulation and Controls., 1997) have proposed to analyse the effects of the nonlinearity on several points
surrounding the estimated vectorx in order to estimate the covariance of the nonlinearity output (fig. 5)

3 A deterministic construction of the Kalman filter

It is not always obvious (at least for me...) to see the link between the rather abstract probabilistic formula-
tion of the previous section and prediction error minimization that is more familiar when dealing with actual
engineering problems. Here I propose another approach to the construction of the Kalman filter where no
probability theory is necessary.

In a first step, we suppose that there is only a measurement noise, and that the covariance of the control
noisew(t) is zero. The control noise will be added in a second step.
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Figure 5: Transformation of a probability density by a nonlinearity ; in Julier’s and Uhlman approach, the
necessary information is a sufficient description of the probability density of the state so that its covariance
can be estimated after the application of the nonlinearity .

3.1 The quadratic criterion to be minimized in the absence of process control noise
and the corresponding solution

First, we note that in the case where the control noise is zero, there is no fundamental difference in estima-
ting the state at time 0, at timet, at timeT or at timeT + 1 :

One changes from one of the estimates to another through a deterministic reversible formula : the state
estimated at timet + 1 can be deduced from the state that would have been estimated at timet by the
transition equation :

x′(t + 1) = A(t)x′(t) + b(t). (50)

whent increases ; ift decreases, we have the corresponding computation by eq. (52) below.
At time t, the “prediction” error, that is the error between the measurey(t) and its prediction from the

state estimatex′T (t) is
ε(t) = y(t)−H ′(t)x′T (t), (51)

with the recursive computation ofx′T (t) given by

x′T (t) = A−1[x′T (t + 1)− b(t)], , (52)

starting from
x′T (T ) = x(T ).. (53)

We look forx′T that minimizes

T∑
t=0

ε(t)T C(t)ε(t) + ε(T + 1)T C(T + 1)ε(T + 1). (54)

where
ε(T + 1) = y(T + 1)−H(T + 1) [A(T )x′T + b(T )] (55)

C(t) is a definite positive weighting matrix that will not appear explicitely in the sequel of the compu-
tations (fort ≤ T ) ; C(T + 1) is the weight of the new measurement error that will appear explicitely.

In a first step we intend to updatexT , which yieldsx′T+1 from which we shall deducexT+1 by (50).
We look for an iterative solution in assuming that we know the solutionxT that minimizes

T∑
t=0

ε(t)T C(t)ε(t), (56)
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that is [
T∑

t=0

H ′
T (t)T C(t)H ′

T (t)

]
x(T ) =

T∑
t=0

H ′
T (t)T C(t)y′(t). (57)

In eq. (57),H ′
T (t) is given by

H ′
T (t) = H(t)A−1(t)× . . .×A−1(T ). (58)

In eq. (57) they′T (t) would given by

y′T (t) = y(t)−H(t)b′T (t) (59)

Theb′T (t) are computed recursively

b′T (t) = b(t)−A−1(t)b′T (t + 1), (60)

b′T (T ) = b(T ). (61)

Since we look for a recursive solution, these terms will not need to be computed explicitely.
We shall denote the matrices of eq. (57) in the form

P−1
T xT = QT . (62)

As we assume that we know this solution, we do not need to compute explicitely the termsε(t) orH ′(t).
The solution that minimizes (54) can be written

[
P−1

T + AT (T )HT (T + 1)C(T + 1)H(T + 1)A(T )
]
x′T+1 = (63)

QT + AT (T )HT (T + 1)C(T + 1) [y(T + 1)−H(T + 1)b(T )] ,

that we shall rewrite in using the same notations as in eq. (62):

P−1
T+1x

′
T+1 = QT+1, (64)

with
P−1

T+1 = P−1
T + AT (T )HT (T + 1)C(T + 1)H(T + 1)A(T ). (65)

In the sequel, in order to lighten the expressions, we shall rewrite (63)

[
P−1 + AT HT CHA

]
x′T+1 = Q + AT HT C [y −Hb] (66)

3.2 Iterative expression of the solution

3.2.1 Recursion on the matrixP

According to the matrix inversion lemma applied to eq. (65),PT+1 can be written

PT+1 =
[
P−1 + AT HT CHA

]−1
= P − PAT HT

[
C−1 + HAPAT HT

]−1
HAP, (67)

that we rewrite

PT+1 = P − PAT HT GHAP, (68)

where we name
G =

(
C−1 + HAPAT HT

)−1
. (69)

One can left multiply (67) byA and right multiply byAT , which yields a result that we shall use subse-
quently in the Kalman filter recursion :

APT+1A
T = APAT −APAT HT GHAPAT . (70)
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3.2.2 Modification of the expression of the solution

According to (63), the solution we look for is

x′T+1 =
[
P − PAT HT GHAP

] [
Q + AT HT C [y −Hb]

]
(71)

or, in developping :

x′T+1 =
[
PQ− PAT HT GHAPQ

]
(72)

+
( [

P − PAT HT GHAP
]
AT HT C [y −Hb]

)
.

In makingxT appear, according to (62)

x′T+1 =
[
xT − PAT HT GHAxT

]
(73)

+
( [

P − PAT HT GHAP
]
AT HT C [y −Hb]

)
.

We develop the factor of[y −Hb] that we nameS

S =
[
P − PAT HT GHAP

]
AT HT C (74)

in the second term of the sum (73). We can simplify the expression ofS :

S = PAT HT C − PAT HT GHAPAT HT C. (75)

We introduce artificially0 = C(T + 1)−1 − C(T + 1)−1 :

S = PAT HT C −
(

PAT HT G
(
HAPAT HT + C−1 − C−1

)
C

)
(76)

and we recognizeG−1

S = PAT HT C − PAT HT G
(
G−1 − C−1

)
C (77)

S = PAT HT C − PAT HT
(
I −GC−1

)
C (78)

S = PAT HT C − (
PAT HT C − PAT HT GC−1C

)
(79)

S = PAT HT G (80)

3.3 Final expression of the solution

So, the solution of (63) writes

x′T+1 = xT − PAT HT GHAxT + PAT HT G [y −Hb] . (81)

x′T+1 = xT − PAT HT G
(
HAxT − y + Hb

)
(82)

x′T+1 = xT + PAT HT G
(
y −H(AxT + b)

)
. (83)

In the following iterations, the state to be memorized is no longerx′T+1 but instead

xT+1 = A(T )x′T+1 + b(t) (84)

In reintroducing the notations taking account of time, and in replacingG by its expression (69)

G =
(
C−1 + HAPAT HT

)−1
. (85)

xT+1 writes

xT+1 = AxT + b + APAT HT
(
C−1 + HAPAT HT

)−1(
y −H(AxT + b)

)
. (86)
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3.4 Summary of the computations

So, we see that we obtain the steps of the recursion of the Kalman filter in the absence of control noise
(rewriting of equations (70) and (86) that we write in using the classical decomposition with notations
taking time into account :

• Prediction of the state transition before the correction due to the new measures

xT+1/T = A(T )xT + b(T ); (87)

• Intermediate update of the covariance matrix (remember that we have supposed that the control noise
is zero)

PT+1/T = A(T )PT AT (T ); (88)

In the case where we suppose the presence of a control noise of covariancerw, we take this noise into
account by modifying this formula : The importance of the correction is modified in considering that the
prediction error is partly due to this control noise.

• Computation of the Kalman gain

KT+1 = PT+1/T HT (T + 1)
(
C−1 + H(T + 1)PT+1/T HT (T + 1)

)−1; (89)

• Update of the state covariance (equation (70))

P (T + 1) = PT+1/T (90)

−PT+1/T HT (T + 1)
(

C(T + 1)−1 + H(T + 1)PT+1/T HT (T + 1)
)−1

H(T + 1)PT
T+1/T ;

or

P (T + 1) =
(

I −KT+1H(T + 1)
)

PT
T+1/T ; (91)

• Update of the state estimate

x(T + 1) = xT+1/T + KT+1

[
y(T + 1)−H(T + 1)xT+1/T

]
. (92)

3.5 Introduction of the penalty term in the criterion

If a control noise with covariancerw is taken into account, the correction factor is modified : we assume
that the error is partly due to this control noise and the optimal solution would be

xT+1 = AT xT + bT (93)

+(APAT + R)HT
(
C−1 + H(APAT + R)HT

)−1
(yT+1 − (AxT + b)) ,

The new expression of the matrixP at stepT + 1 being

PT+1 = AT PT + RT (94)

−(APAT + R)HT
(
C−1 + H(APAT + R)HT

)−1
H(APAT + R).

We propose a modification of the criterion in order to obtain a solution of this form/
If we want to obtain a formula similar to that of the Kalman filter recursion where there is a control

noise, we must replace the termAPAT by a term of the formAPAT + R, or P−1 by a term of the form
P−1 + Z in the equation (63)

(
P−1 + Z + AT HT CHA

)
x′T+1 = QT + AT HT C(y −Hb). (95)

to be solved.Z is symmetric, and
(
P−1 + Z + AT HT CHA

)
must be definite positive

This introduction requires a modification of the criterion (54) that will be changed in
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T∑
t=0

ε(t)T C(t)ε(t) + ε(T + 1)T C(T + 1)ε(T + 1) + (x′T+1)
T Z(T + 1)x′T+1. (96)

The introduction of the penalty term(x′T+1)
T Z(T + 1)x′T+1 yields a solution of the form (95) and a

construction whereAT PA is replaced byAT PA + R. However we have to establish the relationship
between the expressions ofZ(T ) andR(T + 1).

It is possible to writeP−1 + Z(T ) in the form

P−1 + Z(T + 1) = (A−T RA−1 + P )−1, (97)

Z(T + 1) = (A−T RA−1 + P )−1 − P−1 (98)

Z(T + 1)(A−T RA−1 + P ) = I − P−1(A−T RA−1 + P ) (99)

Z(T + 1)(A−T RA−1 + P ) = −P−1A−T RA−1 (100)

Z(T + 1) = −P−1A−T RA−1(A−T RA−1 + P )−1 (101)

Z(T + 1) = −P−1A−T R(R + AT PA)−1AT (102)

The scalar case example may be useful to have an idea of the relationship betweenZ andR,

Z = − R

P (R + A2P )
, (103)

We note that whenR becomes very small or vanishes,Z is also very small or vanishes ; whenR is very
large,P−1 + Z becomes very small.

The choice of the weighting functionC and of the penalty termZ must be coherent with the formulation
of the Kalman filter.C is interpretated as the inverse of the measurement noise covariance ;Z as the inverse
of the control noise covariance.

This rather artificial construction


