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Figure 1: The process to by analysed by the Kalman filter

1 Introduction

In his 1960 famous publicatioi’A new approach to linear filtering and prediction problemsTrans.

ASME J. Basic Engineering., vol 82, March 1960, pp 34-45), Rudolf Kalman based the construction of the

state estimation filter on probability theory, and more specifically, on the properties of conditional Gaussian

random variables. The criterion he proposed to minimize is the state vector covariance norm, yielding to

the classical recursion: the new state estimate is deduced from the previous estimation by addition of a
correction term proportional to the prediction error (or the innovation of the measured signal).

If one tries to explain this remarkable and elegant construction to students having not a sufficient back-
ground in probability theory, there is an inherent difficulty (it is perhaps preferable to speak of a quite
paradoxal aspect): its understanding requires a good knowledge of conditional gaussian random variables,
while in the simple and efficient final formulation, the corresponding intermediate steps are not visible.
In this presentation, | give a first construction based on probability theory in simple cases where Kalman
approach is quite easy to follow: assuming the linearity of the predictor and avoiding the construction in
the case of gaussian variables (this formulation based on linearity is mentionnend in Kalman’s paper, but
not developped, probably because considered as obvious by him). Then | propose a construction that is
completely deterministic, (but as a consequence rather unnatural and inelegant ...) Perhaps some readers
will be interested by this alternative construction?

In this deterministic construction, we consider two cases: in the first case, we start from a criterion
based on the minimization of the prediction error; we see in the final expressions that this formulation
yields to the Kalman filter in the case where there is an observation noise but no control noise. In the second
case, we modify the criterion by adding a penalty term in order to obtain a formula taking into account the
control noise as well as the measurement noise ; however this second construction is quite artificial.

2 The Kalman filter

The state evolution is given by (cf. fig. 1)
X(t+1)=A@®)X () +b(t) + w(t), 1)

whereX is the state vector we intend to estimaté¢) is the known square transition matrix of the process.
The controlb(t) is given and there is a zero mean process neige¢ with known covariance(¢t). The
measured vectay(t) is given by the measurement equation:

y(t) = H(X (1) +v(0). )

H(t) is the rectangular measurement matrif¢,) is the zero mean measurement noise, of known covariance
r?(t). The dimension ofu(t) is the dimension of(t) ; the dimension of(¢) is the dimension of(¢). The
covariance of the state vectdr(t) is

P(t) = B[(X(t) - EX(®)]) (X" (t) - BXT (1)) ], ©)
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where X7 is the transpose (possibly conjugate)’df The purpose of the Kalman filter is to deduce from
y(t) the vectorX (t) whose covariance matrix has the lowest norm (its trace). The steps of the estimation
are the following:

e Prediction of the stat& () :
Xt+1/t = A(t)X(t) + b(t); 4)

e Intermediate update of the state covariance matrix that takes into account the evolution given by the
process transition :

e Computation of the optimal gain:

Kt+1 = Pt+1/tHT(t + 1)(H(t + 1)Pt+1/tHT(t + 1) + T,U(t + 1))_17 (6)

this optimal gain depends on the statistical characteristics of the measurement noise, but it does not take
the measures into account: it may be compuateudiori.

e Update of the state covariance matrix :
P(t+1)= Py ()
~ Py HT (b 4+ 1) (H(t + 1) Py HT (£ 1) 470 (E 1)) H(E+1) Py,
or, expressed as a function &%, |
Pit+1) = [I— K 1H(tA+1)]Pgays 8
e Computation of the new estimate of the state :

X(t+1) = Xeprye + Kea[y(t +1) = H(t 4+ 1) Xgp1/4). )

2.1 Asimple case: estimation of a scalar

We consider the following problem: In order to estimate a congtanwe do several measurements on it;
let y be one of these measurementss a random variable with average and fluctuation® :

y=m—+v. (10)

The zero mean noisehas variance2. We will perform a recursive estimation of : we suppose that we
have a first biasless estimationsafin the form of a random variable, :

To = m + w. (11)

The zero mean noise has variance2

w*

We intend to compute a new estimatgwith the following form:
x1 = x0 + k(y — x0)- (12)

The specific chararacteristics of this correction are

e The new estimate is a linear function of the previous estimate and of the measurement;

e The previous and the new estimators have no bias, or equivalently: if the measuperfectly
predicted by the previous estimatg, this implies that it not necessary to correct this estimate as shows eq.
(12); We note that the average of the new estimate isin replacingz, andy by their values:

xr=m+w+k(m+v—m-—w), (13)
1 =m+w+ k(v —w), (14)
E(z1) =m. (15)

We compute the variance of the new estimator assuming that the mdgsmdependant ofy; so the
variance ofr; is
0? = E(x; —m)? = Elw+ k(v — w)]?, (16)
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Figure 2: Two biasless estimators with variane@sandcs?; we look for a linear combination of these
estimators giving a new estimator with lowest variance
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Figure 3: Variance of the new estimator as a functiok of
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ot = (1 = k)*E[w]’ + k*E[]?, 17
o? = (1—k)?0% + ko2 (18)

Itis reasonable to look for the estimatewith lower variance and to compute the correspondingor
this purpose we write

ot = (1 -2k + k%ol + k%02, (19)

0?2 =02 —2ko? + k*(02 + 0?), (20)

where we exhibit a constant term and a quadratic functidn of

szai—ﬂer(ﬁfk\/avarUg)Q, (21)

O—% = 0121) - 25k 0'3) + 012) + k2(0121; + 012)) (22)
Consequently,
0_2
f =, (23)
Vo2 + o2
4 2
2 2 Ow Ow
o] =05 — + — ko2 +02 ] . 24
1 w 0_3) _"_0_12} (\/m w v ( )
The minimum ofs? is obtained for
2
Ull}
R 25
02 + o2 (25)
The value of this minimum is .
2 _ 2 0
01 =0y — 0,12‘} _1:0_12)7 (26)
2 2
2 Uwav
_ 27
01 0_120 + 0_3 ) ( )
1 1 1
o7 oy Oy

We note that when the varianeg, of the previous estimate is very large, the new estimate reduces to the
new measure, and its variancesi$: so, when initializing the Kalman filter, it is reasonable to start from
an uncertain initial state with large covariance if there iemiori knowledge on the initial variance of the
estimator ofm. (fig. 4).

This simple case, which is quite easy to follow, gives the basic idea of the Kalman filter: the genera-
lisation to the vectorial case and the introduction of the transition matrénd of the control signal and
noises are straightforwards.

2.2 State variance minimization in the case of vectorial data

In probabilistic terms, the problem considered by Kalman is the following : we have a biasless estimator of
a vectorX, we know its covariance ; we perform a new meastieearly dependant ok ; this measure

has no bias and a given covariance ; how can we use this new measure in order toXdyeatlinear

term so that the new estimate is also biasless and has minimal variance?

The fact that the vectak can be interpreted as a state is important in applications in automatic control
and filtering. However, this interpretation is not used in the computation of the optimal estimator. If we
admit that the form of the Kalman filter is pertinent: that is the new vector state estimate is a biasless linear
combination of the previous state estimate and of the the prediction error; then the identification of the
minimum covariance solution is similar to the formula given above in the scalar case.

The state estimate ig) (xo is a vector):

To=m-—+n, (29)

m is the true value of the state (no bias) ani$ the zero mean estimation noise .
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Figure 4: Evolution der? en fonction der? for different values ob2 in the scalar case.
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The prediction of the measuge(y is also a vectorH is a rectangular matrix, since in general there are
less measures than state components, then the dimengjas leks than the dimension 0§ :
y=Hm+wv (30)

v is a noise independant of and ofn
We write the new state estimation in the form:

ry =z + K(y1 — Hxo) (31)

We look for a linear biasless estimator; or equivalently: if we assume that the state estimate must not be
correctedr; = x if the prediction errofy; — Hz) vanishes, then it is always possible to writein such
aform: the mean af is equal tom as the mean af, :

1 —m=uz9—m+ K(y1 — Hm — H(xg —m)), (32)
x1—m=z9—m+ K(v— Hn), (33)
E(z1) = E(zg) = m. (34)

We assume that the measurement noigeindependant of the estimation errofv does not appear in
the computation of).
Its covariance is
P =E|[(n— KHn+ Kv)(n— KHn+ Kkv)"| (35)

P=(I—-KH)Py(I-KHT+KVKT. (36)
In order to minimize the norm (the trace) of the positive covariafget is useful to write it in the form

P, =Py— KHPy— P,h"KT + K(HP,HT + V)KT (37)
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and exhibit a sum of squares, so that only one of these squares will depend on théewailook for (this
is one of the essential points of the original proof of R. Kalman, that was also present in the optimal filtering
of N. Wiener.)

Pi=P —ad” + (a - K(HP,H" + V)/?)(a — K(HPHT + V)3T (38)
where we assume that we can factotZ&,HT + V in
HPH" +V = (HP,HT + V)Y2(HPH" + Q)"/? (39)
These factors may be triangular, but any other factorization could be used. The valigtbhén
a(HP,HT +V)T2KT = ppHT K™ (40)
o= PHY(HP,HT +Vv)~1/? (41)

We chooseK yielding the minimum ofP; : it is obtained when the third term in eq. (38) vanishes,
since it is the only one depending &f and definite non negative. So,

K =a(HP,HT +V)~1/2, (42)
K = PpHT(HPyHT + V) T2(HPHT +V)~1/2, (43)
K =P,HT(HP,HT + V)~ (44)

and the covariance with minimal norm is

P, =Py— PPHY (HP,HT + V) 'HP, (45)
If instead of
r1=m+n, (46)
the new state writes
x1 = Am + An’ +w, 47)

wherew is a control noise independant of the estimation errgrthen in the previous equatiod, is
replaced by AP, AT + R) and the Kalman filter equations become

K = (ARAT + R)HT[H(AP, AT + R)HT + V]! (48)

P, = (APyAT + R) — (AP AT + R)YHT [H(AP, AT + RYHT + V] 'H(AP,AT + R) (49)

In the case where the transition equation contains a nonlinear transformatipimetead ofAx,, one
has to replace the factod Py A” + R) by a term taking into account the nonlinearity.

A remark on nonlinear extensions: S. J. Julier et J. K. UhImanmA(New Extension of the Kalman
Filter to Nonlinear Systems. In Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing,
Simulation and Controls., 1997/have proposed to analyse the effects of the nonlinearity on several points
surrounding the estimated vectoin order to estimate the covariance of the nonlinearity output (fig. 5)

3 A deterministic construction of the Kalman filter

It is not always obvious (at least for me...) to see the link between the rather abstract probabilistic formula-
tion of the previous section and prediction error minimization that is more familiar when dealing with actual
engineering problems. Here | propose another approach to the construction of the Kalman filter where no
probability theory is necessary.

In a first step, we suppose that there is only a measurement noise, and that the covariance of the control
noisew(t) is zero. The control noise will be added in a second step.
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Figure 5: Transformation of a probability density by a nonlinearity ; in Julier’s and Uhlman approach, the
necessary information is a sufficient description of the probability density of the state so that its covariance
can be estimated after the application of the nonlinearity .

3.1 The quadratic criterion to be minimized in the absence of process control noise
and the corresponding solution

First, we note that in the case where the control noise is zero, there is no fundamental difference in estima-
ting the state at time 0, at tinteat timeT" or at timeT" + 1:

One changes from one of the estimates to another through a deterministic reversible formula: the state
estimated at time + 1 can be deduced from the state that would have been estimated at tiynthe
transition equation :

2 (t+1) = A(t)z'(t) + b(t). (50)

whent increases; it decreases, we have the corresponding computation by eq. (52) below.
At time ¢, the “prediction” error, that is the error between the meag(teand its prediction from the
state estimate/-(¢) is

e(t) = y(t) — H' ()27 (b), (51)
with the recursive computation of;-(¢) given by

p(t) = A7 (¢ +1) = b(#)],. (52)

starting from
2 (T) = z(T).. (53)

We look fora/. that minimizes

T
> e®)TC(t)e(t) + (T +1)"C(T + 1)e(T + 1). (54)
t=0
where
e(T+1)=y(T+1)— H(T + 1) [A(T)x} + b(T)] (55)

C(t) is a definite positive weighting matrix that will not appear explicitely in the sequel of the compu-
tations (fort < T); C(T + 1) is the weight of the new measurement error that will appear explicitely.

In a first step we intend to update-, which yieldsz7., , from which we shall deducer ; by (50).

We look for an iterative solution in assuming that we know the solutipithat minimizes

> e Ct)e(), (56)

t=0
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that is
ZT;H’T(t)TC(t)H’T(t) x(T) = XT: Hy ()T C(t)y'(1). (57)
In eq. (57),H/: () is givert;by a
HL(t) = HH)AH(t) x ... x A~(T). (58)
In eq. (57) they/,(¢) would given by
yr(t) = y(t) — H(t)br(t) (59)
Theb!,(t) are computed recursively
Vi (t) = b(t) — A~ H )bl (t + 1), (60)
by(T) = b(T). (61)

Since we look for a recursive solution, these terms will not need to be computed explicitely.
We shall denote the matrices of eq. (57) in the form

Pfl,’ET = QT. (62)

As we assume that we know this solution, we do not need to compute explicitely thestejrosH’ (¢).
The solution that minimizes (54) can be written

(Pt + AT(T)H™(T + 1)O(T + 1)H(T + V)A(T)] 2y = (63)
Qr +AT(TYH" (T + 1)C(T + 1) [y(T + 1) — H(T + 1)b(T)],
that we shall rewrite in using the same notations as in eq. (62):
P__il_lx/T.H = QT+1a (64)

with
Pyl =Pt + AT(T)H™ (T + 1)C(T + 1)H(T + 1) A(T). (65)

In the sequel, in order to lighten the expressions, we shall rewrite (63)

[P~' + ATHTCHA] 2,y = Q+ ATHTC [y — HY) (66)

3.2 lterative expression of the solution
3.2.1 Recursion on the matrixP

According to the matrix inversion lemma applied to eq. (6%),.; can be written
Pryy = [P+ ATHTCHA] ' = P— PATHT [C~' + HAPATH"] ' HAP, (67)
that we rewrite
Pr.1=P—PATHTGHAP, (68)

where we name
G=(C'+HAPATHT)™". (69)

One can left multiply (67) by4 and right multiply byA®', which yields a result that we shall use subse-
guently in the Kalman filter recursion :

]APTHAT — APAT — APATHTGHAPAT. (70)
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3.2.2 Modification of the expression of the solution
According to (63), the solution we look for is
tp = [P—PATH"GHAP] [Q+ A"H"C [y — HY| (71)
or, in developping:
vy, = [PQ— PATH"GHAPQ) (72)
+< [P— PATH"GHAP)| ATH"C [y — Hb] )
In makingxz appear, according to (62)
2y, = [2r — PATH"GHAz7] (73)
+< [P— PATH"GHAP| A"H"C [y — HY] )

We develop the factor dfy — Hb] that we nameS
S=[P—-PA"TH"GHAP|ATH"C (74)
in the second term of the sum (73). We can simplify the expressiéh of
S =PATHTC - PATHTGHAPATH™C. (75)
We introduce artificially) = C(T' + 1)~ — C(T + 1)~ !:

S=PATHTC - <PATHTG (HAPATH" +Cc™' —C™) O> (76)
and we recognizé& !
S=PATHT"C - PA"H'G(G'-Cc™")C (77)
S=PA"H"C - PATH" (I-GC™")C (78)
S=PATH"C — (PA"H"C — PATHTGC'0) (79)
S =PATHTG (80)

3.3 Final expression of the solution

So, the solution of (63) writes

tlhy =ap — PATHTGHAzr + PATHTG [y — Hb]. (81)
v, =ap — PATH'G(HAzr — y + Hb) (82)
vy = o7 + PATHTG(y — H(Azy +1)). (83)

In the following iterations, the state to be memorized is no longer, but instead
w71 = A(T)alp 4 + b(2) (84)
In reintroducing the notations taking account of time, and in replaGify its expression (69)
G=(C'+HAPATHT)™". (85)

Tyl Writes

o141 = Avg + b+ APATHT (C™' + HAPATHT) ™' (y — H(Azr +1)). (86)
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3.4 Summary of the computations

So, we see that we obtain the steps of the recursion of the Kalman filter in the absence of control noise
(rewriting of equations (70) and (86) that we write in using the classical decomposition with notations
taking time into account:

e Prediction of the state transition before the correction due to the new measures

i1y = A(T)xr + b(T); (87)

¢ Intermediate update of the covariance matrix (remember that we have supposed that the control noise
is zero)
PT+1/T = A(T)PTAT(T)§ (88)

In the case where we suppose the presence of a control noise of covaftamee take this noise into
account by modifying this formula: The importance of the correction is modified in considering that the
prediction error is partly due to this control noise.

e Computation of the Kalman gain

Kpi1 = PryyypHY (T + 1) (C™ + H(T + 1) Ppyy o HN(T + 1)) (89)

e Update of the state covariance (equation (70))
P(T'+1) = Pryyr (90)
—PriyrHT (T +1) <C(T + 1)+ H(T + 1) Pryy o HY (T + 1)> _1H(T + 1Py 7
or

P(T+1) = <I — Kp  H(T + 1)> Py s (91)

¢ Update of the state estimate

a(T+1) = xp1yp + Kria [y(T +1) = HT + Daryyr] - (92)

3.5 Introduction of the penalty term in the criterion

If a control noise with covariance” is taken into account, the correction factor is modified: we assume
that the error is partly due to this control noise and the optimal solution would be

xpy1 = Apzp + br (93)
+(APAT + R)HT (C' + H(APAT + R)H") ™" (yr11 — (Azr +1b)),

The new expression of the matriXat stepl” + 1 being
Pry1=ApPr + Ry (94)
—(APAT + R)H” (C™" + H(APAT + R)HT) ™" H(APA” + R).

We propose a modification of the criterion in order to obtain a solution of this form/

If we want to obtain a formula similar to that of the Kalman filter recursion where there is a control
noise, we must replace the tetdP A7 by a term of the formdPAT + R, or P~! by a term of the form
P! + Z inthe equation (63)

(P'+Z+ATHT"CHA) 2y = Qr + ATHTC(y — Hb). (95)

to be solvedZ is symmetric, and P~! + Z + A" HT C H A) must be definite positive
This introduction requires a modification of the criterion (54) that will be changed in
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T
D e®)"Ct)e(t) +e(T + 1)TC(T + De(T + 1) + (2, )" Z(T + Dty . (96)
t=0

The introduction of the penalty terr(m’TH)TZ(T + 1)z7-,, yields a solution of the form (95) and a
construction whereA” PA is replaced byA” PA + R. However we have to establish the relationship
between the expressions B{T") andR(T + 1).

It is possible to writeP~* + Z(T') in the form

P14+ Z2(T+1)=(ATRA™ + P)7 1, (97)
Z(T+1)= (A TRA '+ P)7t — p! (98)
Z(T+1)(ATRA  + P)=1—- P YA TRA™' + P) (99)
Z(T+1)(ATRA + P)=-P 'ATRA™! (100)
Z(T+1)= P 'ATRA (A TRA 4 P)~! (101)
Z(T+1)=-P A TR(R+ ATPA) AT (102)

The scalar case example may be useful to have an idea of the relationship b&gtaeer,

R

2= "PR+ A2P)

(103)

We note that wheii becomes very small or vanishésjs also very small or vanishes; wheéhis very
large, P! + Z becomes very small.

The choice of the weighting functiafi and of the penalty terr@ must be coherent with the formulation
of the Kalman filterC' is interpretated as the inverse of the measurement noise covariznaethe inverse
of the control noise covariance.

This rather artificial construction



