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Abstract

The recognition of repetitive movements character-
wstic of walking people, galloping horses, or flying birds
1s a routine function of the human visual system. It
has been demonstrated that humans can recognize such
actwity solely on the basis of motion information. We
demonstrate a general computational method for recog-
nizing such movements wn real image sequences using
what 1s essentially template matching tn a motion fea-
ture space coupled with a technique for detecting and
normalizing periodic actwities. This contrasts with
earlier model-based approaches for recognizing such ac-
tivities.

1 Introduction

The motion recognition ability of the human visual
system is remarkable. People are able to distinguish
both highly structured motion, such as those produced
by walking, running, swimming or flying animals and
birds, and more statistical patterns such as those due
to blowing snow, flowing water or fluttering leaves.
The classic demonstration of pure motion recognition
by humans is provided by Moving Light Display exper-
iments [Johansson, 1973), where human subjects were
able to distinguish activities such as walking, running
or stair climbing, from lights attached to the joints
of an actor. This biological use of motion probably
reflects the fact that for certain tasks, visual motion
provides more effective cues than other modes of vi-
sual perception. Motion is a particularly useful cue for
certain types of recognition due to the fact that it is
relatively easy to extract the motion field independent
of illumination and shading of the image.

Motion recognition in general, has received little
attention in the literature compared to the volume
of work on static object recognition. Most compu-
tational motion work in motion in fact, has been
concerned with various aspects of the structure-from-
motion problem. A specialized area that has seen
some attention is the interpretation of moving light
displays [Goddard, 1989], [Rashid, 1980]. This work
emphasizes rather high-level symbolic models of tem-
poral sequences, an approach made possible by a dis-
crete representation. The results are highly dependent
on the ability to solve the correspondence problem and
accurately track joint and limb positions.

A few studies have considered highly specific as-

pects of motion recognition computationally. Ander-
son et al. [Anderson et al., 1985] describe a method
of change detection for surveillance applications based
on the spectral energy in a temporal difference image.
Finally, there is a body of work based on the analysis
of trajectories [Gould and Shah, 1989], [Allmen and
Dyer, 1990] and [Tsai et al., 1993). All these require
robust computation of the trajectories or spatiotem-
poral curves from image sequences before attempting
recognition.

We define activities to be the motion patterns which
are temporally periodic and possess compact spatial
structure as opposed to temporal textures [Polana and
Nelson, 1992] which exhibit statistical regularity but
have indeterminate spatial and temporal extent. In
this paper, we describe a robust method for recogniz-
ing activities, including ones, such as walking, that
involve simultaneous translation of the actor. An ear-
lier paper [Polana and Nelson, 1994], described an al-
gorithm to detect periodic activities in an image se-
quence.

Motion recognition algorithms, both for temporal
texture and activity, have potential applications in
several areas. One area is automated surveillance.
Motion detection via image differencing can be used
for intruder detection; however such systems are sub-
ject to false alarms, especially in outdoor environ-
ments, since the system is triggered by anything that
moves, whether it is a person, a dog, or a tree blown
by the wind. Motion recognition techniques can be
used disambiguate such situations. Another applica-
tion is in industrial monitoring. Many manufacturing
operations involve a long sequence of simple opera-
tions each performed repeatedly and at high speed by
a specialized mechanism at a particular location. It
should be possible to set up one or more fixed cam-
eras that cover the area of interest, and to characterize
the allowed motions in each region of the image(s).

2 Detecting Activities

The first step in recognizing an activity is to de-
termine that an activity exists, and localize it in
the scene. In an earlier paper we have described a
technique for accomplishing this [Polana and Nelson,
1994]. The present work will utilize the information
computed in the detection stage for recognition and
classification of specific activities.



Activities involve a regularly repeating sequence of
motion events. If we consider an image sequence as a
spatiotemporal solid with two spatial dimensions x, y
and one time dimension ¢, then repeated activity tends
to give rise to periodic or semi-periodic gray level sig-
nals along smooth curves in the image solid. We refer
to these curves as reference curves. If these curves
can be identified and samples extracted along them
over several cycles, then frequency domain techniques
can be used in order to judge the degree of period-
icity. We assume the object does not undergo any
major rotation and the viewing angle does not change
appreciably. A complete discussion of the periodicity
detection process and the assumptions made can be
found in the previously cited paper.

3 Recognizing Activities

Once an activity has been detected and tracked in
a scene, the next step is to recognize it. The track-
ing and periodicity detection algorithms provide spa-
tial and temporal normalization that can be used to
simplify the recognition procedure. In particular, the
periodicity detection procedure provides a periodicity
measure for each active pixel in a tracked object. By
backprojecting this measure, we can locate the pixels
in each frame that display periodicity at the dominant
frequency. We use this backprojection to refine our ini-
tial segmentation, which was based solely on aggregate
motion. By fitting a frame to this refined segmenta-
tion we compensate for variation in spatial scale and
position. Similarly, the fundamental frequency allows
us to frame the activity in time, and compensate for
variation in temporal scale (i.e. frequency).

The end result of the normalization procedure is a
spatio-temporal solid containing the activity of inter-
est in a form that is invariant to spatial scale, spatial
translation, and temporal scale. The next step is to
compute a descriptor for this solid that can be used to
classify the activity it represents. It turns out that a
three dimensional template match, with the appropri-
ate motion features in the slots of the template, works
well. Essentially, we capitalize on the fact that a pe-
riodic activity is characterized by regularly repeating
motion events that have fixed spatial and temporal re-
lationships to each other. Specifically, we divide one
cycle of the spatio-temporal solid representing the ac-
tivity into XxY xT' cells by partitioning the two spa-
tial dimensions into X,Y divisions respectively and
the temporal dimension into 7" divisions. We then se-
lect a local motion statistic and compute the statistic
in each cell of the spatiotemporal grid. The feature
vector in this case is composed of X YT elements each
of which is the value of the statistic in a particular
cell.

The normalized spatio-temporal solid, while cor-
rected for temporal scale (frequency) is not corrected
for temporal translation (phase). Since the pattern
matching phase of the algorithm currently represents
only a small fraction of the total computational effort,
and the temporal resolution of the pattern is typically
small (i.e., less than 10 samples per cycle), we simply
try a match at each possible phase and pick the best.

4 Experiments

Figure 1: Sample images from periodic activities:
walk, run, swing, jump, ski, exercise and toy frog

We ran experiments on seven different activities,
namely, walking on a treadmill viewed from side
walk), running on a treadmill viewed from side
run), swinging viewed from side (swing), skiing on
a skiing machine viewed from side (ski) exercising on
a machine - front view (exercise), performing j Jump-
ing jacks - front view (Jump), and a toy frog simu-
lating swimming activity viewed from above (frog).
The image sequences were first recorded on video and
then digitized later with suitable temporal sampling so
that at least four cycles of the activity were captured
in 128 frames. All samples were digitized at a spa-
tial resolution of 128x128 pixels, except those for walk
and run which were digitized at a resolution of 64x128
pixels. Pixels were 8 bit gray levels. The swing and
exercise activities were shot outdoors and contained
background motion. Sample images of these activities
are shown in figure 1.

We first digitized eight samples of each activity by
the same actor under the same conditions with re-
spect to scene illumination, background, and camera
position. We created the reference database taking
half (four) of the samples belonging to each activ-
ity. The remaining four samples of each activity are
used to create the test database. In addition, we digi-
tized four samples of walking by a different person and
eight samples of the frog under different lighting con-
ditions and different background and foreground gra-
dients. These samples also differed from the reference
database in frequency, speed of motion, and spatial
scale. These samples were added to the test database.
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Figure 2: Sample total motion magnitude feature vector for a sample of walk (top) and a sample of run (bottom),
one cycle of activity is divided into six time divisions shown horizontally, each frame shows spatial distribution
of motion in adx4 spatial grid (size of each square is proportional to the amount of motion in the neighborhood).

The samples in the test database were classified by
a nearest centroid classification technique using the
samples in the reference database as training set.

We experimented with several different local statis-
tics. In each case the feature vector consisted of the
local statistic computed over each of a set of cells con-
stituting a partition of the spatio-temporal solid. We
divided each spatial dimension into four divisions and
the temporal dimension into six divisions, so that we
get a feature vector of length 96. The simplest statis-
tic we experimented with, 1s the summed normal flow
magnitude in each cell. The normal flow direction in-
formation is ignored in this case. Sample feature vec-
tors are illustrated in figure 2 using the total motion
magnitude statistic for a walk and a run sequence.
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Figure 3: Confusion matrix for the feature vector us-
ing total motion magnitude

Somewhat to our surprise, the simplest statistic of
total motion magnitude gave better results than the
statistics involving direction of motion. The reason
for this turned out to be related to the resolution of
our images. In order to digitize enough frames to test
the technique, we had subsampled the images to 128
x 128 pixels. After filtering for periodicity, significant
motion, and direction, it was often the case that few
pixels with all these properties were left in any one cell,
which made for a large amount of stochastic noise in
the signal. Simply put, we didn’t have high enough
resolution data to appropriately utilize the more spe-
cific statistics.

Using the total motion magnitude statistic, the
classification resulted in correct classification of every
sample in the test database, including the samples us-

ing a different actor and different backgrounds, which
were not represented in the reference database. The
percentage of correct classification does not give a full
indication for the quality of classification. Hence, we
illustrate the results by the confusion matrix which
shows how closely test samples belonging to various
classes match the reference samples of the different
classes. The confusion matrix using the total motion
magnitude statistic is shown in figure 3. A large square
indicates a good match. As can be seen from this ta-
ble, some motions, for instance the swimming frog, do
not resemble anything else in the database, while oth-
ers, for instance running and skiing, are more likely to
be confused. The results seem to correspond more or
less to human intuition about how similar the motions
are.

5 Discussion

The following is a step-by-step description of the
periodic activity recognition algorithm:

Input: The input to the algorithm is a digitized
256-level gray-valued image sequence consisting of at
least four cycles of a periodic activity.

QOutput: A known class into which the activity is
classified by the algorithm.

Step 1. Compute normal flow magnitude at each
pixel between each successive pair of frames using a
differential method.

Step 2. Locate and track the activity in the im-
age sequence using periodicity detection algorithm de-
scribed in section 2.

Step 3. Normalize the activity using pixels exhibit-
ing periodic motion and compute a feature vector.

Step 4. Classify the activity using nearest centroid
algorithm.

The method we have described displays several de-
sirable invariances. It is robust to varying image illu-
mination and contrast because the method uses only
motion information which is invariant to these. It is
also invariant to spatial and temporal translation and
scale due to the normalization of the feature vectors,
and the multiple temporal matching. It i1s also fairly
robust with respect to small changes in viewing angle.
The swing and exercise sequences were taken outdoors
where there is a small amount of background motion.
This comprises not only moving trees and plants, but
also moving people and an occasional crossing of a car.
That the activities can be detected even in this case
demonstrates that the technique is somewhat tolerant



of background clutter and the occasional disturbance.

Added Clutter

Percentage

Total Test
Samples

Correctly
Classified

Successfully
Detected

25
50
75
100
150
200
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Table 1: Classification results with motion clutter
(samples are of walk)

To understand how much background clutter can
be tolerated by this technique, we have experimented
with the walk samples by adding motion clutter pro-
duced by blowing leaves This structured motion clut-
ter is added in a controlled fashion so that its mean
magnitude represents a varying percentage of the
mean magnitude of the signal, and the resulting sam-
ples are classified using the total motion magnitude
statistic. The results in table 1 show that the recog-
nition scheme can tolerate motion clutter whose mag-
nitude is equal to one half that of the activity, and
it displays degraded, but still useful performance for
even higher clutter magnitudes.

We have assumed that the actors giving rise to
the activity move with constant velocity along linear
paths. The case of nonlinearly moving objects can
be handled by tracking the object of interest given a
coarse estimate of its initial location and velocity, (e.g.
with a Kalman filter). This would generate reference
curves that are not straight lines. We have already
demonstrated the usefulness of the centroid of motion
for computing the velocity of linearly moving objects,
and providing a rough initial segmentation. It could
also be used for tracking the actors moving on more
complex trajectories.

The detection scheme also assumes that there is
only one activity in the scene except for some back-
ground clutter. If there are multiple activities in the
scene, this detection technique can still be applied pro-
vided the activities can be spatially isolated so that
they do not interfere with each other. In this case
they can be segmented using the motion information
and tracked separately. If a predictive tracker is used,
an occasional crossing of different activities can be tol-
erated as long as the regions can be separated again
later. In our experiments, the periodic activity sam-
ples consist of at least four cycles of the activity. Four
cycles were needed to reliably detect the fundamental
frequency given that there is a considerable amount of
non-repetitive structure from the background in the
case of translating actors.

The complexity of recognition is proportional to the
number of pixels involved in the activity. More than
half the work 1s computing the motion vectors at every
pixel and then computing the fast Fourier transforms
at each of moving pixels. The remaining time is spent
computing the feature vector, the time for which de-
pends on the local motion statistic computed. For a

128 image sequence, computation of the feature vec-
tor of motion magnitudes takes about 3 seconds. The
classification algorithm currently runs on an SGI ma-
chine using four processors and it takes maximum 20
seconds to process a 128 frame sequence of 128x128
images.

6 Conclusion

We have described a general technique for periodic
activity recognition. This technique uses a periodic-
ity measure to detect the activity and then a feature
vector based on motion information to classify the ac-
tivity into one of several known classes. We have il-
lustrated the technique using real-world examples of
activities, and shown that it robustly recognizes com-
plex periodic activities.
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