Solutions by Archana Gupta

Question 1 (Chapter 3: 10)

An 8-bit byte with binary value 10101111 is to be encoded using an even-parity Hamming code. What is the binary value after encoding?

Answer

Check bits are inserted at positions that are powers of 2 i.e. 1,2,4,8,16,32,e.t.c. Data bits are at positions 3,5,6,7,9,10,11,12 e.t.c. So after inserting check bits our data should look like this:

? ? 1 ? 0 1 0 ? 1 1 1 1 positions 1 2 3 4 5 6 7 8 9 10 11 12 3 = 1+2 5 = 1+4 6 = 2+4 7 = 1+2+4 9 = 1+8 10 = 2+8 11 = 1+2+812 = 4+8

Hence for the check bit 1 we look at bits 3,5,7,9,11 and get value 1. For check bit 2 we look at bits 3,6,7,10,11 and get value 0. For check bit at position 4 we look at bits 5,6,7,12 and get value 0. For check bit at position 8 we look at bits 9,10,11,12 and get value 0.

Hence the binary value after encoding is $1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1$.

Question 2 (Chapter 3: 15)

A bit stream 10011101 is transmitted using the standard CRC method. The generator polynomial is $x^3 + 1$. Show the actual bit string transmitted. Suppose the third bit from the left is inverted during transmission. Show that this error is detected at the receivers end.

Answer

Our generator $G(x) = x^3 + 1$ encoded as 1001. Because the generator polynomial is of the degree three we append three zeros to the lower end of the frame to be transmitted. Hence after appending the 3 zeros the bit stream is **10011101000**. On dividing the message by generator after appending three zeros to the frame we get a remainder of 100. We do modulo 2 subtraction thereafter of the remainder from the bit stream with the three zeros appended. **The actual frame transmitted is 10011101100**. See below.

				1	0	0	0	1	1	0	0
1001	1 1	0 0		1	1	1	0	1	0	0	0
				0 0							
				0 0							
				0 0	1 0	1 0					
			-		1 1		0 0				
						1 1	0 0	0 0			
									1 0		
						-		0 0		0 0	
									1	0	0 (remainder)

Actual frame transmitted : 10011101000 – 100 = 10011101100 (modulo 2 subtraction)

Now suppose the third bit from the left is garbled and the frame is received as 10111101100. Hence on dividing this by the polynomial generator we get a remainder of 100 which shows that an error has occurred. Had the received frame been error free we would have got a remainder of zero. See below.

1				1	0	1	0	1	0	0	0
1001	1 1	0 0	1 0	1 1	1	1	0	1	0	0	0
		0 0	1 0	0 0							
			1 1	0 0	1 0						
					1 0						
			_		1		0 0				
					_	0	0	0			
						0	0		$\frac{0}{1}$	0	
						-	0		0		_
									1 0		

1 0 0 (remainder indicating error)