Solutions by Archana Gupta

Question 1 (Chapter 3: 10)

An 8-bit byte with binary value 10101111 is to be encoded using an even-parity Hamming code. What is the binary value after encoding?

Answer

Check bits are inserted at positions that are powers of 2 i.e. $1,2,4,8,16,32$,e.t.c. Data bits are at positions $3,5,6,7,9,10,11,12$ e.t.c. So after inserting check bits our data should look like this:
$\begin{array}{llllllllllllcc} & \boldsymbol{?} & \boldsymbol{?} & 1 & \boldsymbol{?} & 0 & 1 & 0 & \boldsymbol{?} & 1 & 1 & 1 & 1 \\ \text { positions } & \mathbf{1} & \mathbf{2} & 3 & \mathbf{4} & 5 & 6 & 7 & \mathbf{8} & 9 & 10 & 1 & 1 & 12\end{array}$
$3=1+2$
$5=1+4$
$6=2+4$
$7=1+2+4$
$9=1+8$
$10=2+8$
$11=1+2+8$
$12=4+8$
Hence for the check bit 1 we look at bits $3,5,7,9,11$ and get value 1 .
For check bit 2 we look at bits $3,6,7,10,11$ and get value 0 .
For check bit at position 4 we look at bits 5,6,7,12 and get value 0 .
For check bit at position 8 we look at bits $9,10,11,12$ and get value 0 .
Hence the binary value after encoding is $\mathbf{1}$

Question 2 (Chapter 3: 15)

A bit stream 10011101 is transmitted using the standard CRC method. The generator polynomial is $x^{3}+1$. Show the actual bit string transmitted. Suppose the third bit from the left is inverted during transmission. Show that this error is detected at the receivers end.

Answer

Our generator $\mathrm{G}(\mathrm{x})=\mathrm{x}^{3}+1$ encoded as 1001. Because the generator polynomial is of the degree three we append three zeros to the lower end of the frame to be transmitted. Hence after appending the 3 zeros the bit stream is $\mathbf{1 0 0 1 1 1 0 1 0 0 0}$. On dividing the message by generator after appending three zeros to the frame we get a remainder of 100 . We do modulo 2 subtraction thereafter of the remainder from the bit stream with the three zeros appended. The actual frame transmitted is $\mathbf{1 0 0 1 1 1 0 1 1 0 0}$. See below.

1001	$\begin{array}{lllllllllllll}1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & & & & & \\ \end{array}$
	$\begin{array}{lllll}0 & 0 & 0 & 1\end{array}$
	0000
	$\begin{array}{lllll}0 & 0 & 1\end{array}$
	0000
	0110
	0000
	1101
	1001
	1000
	1001
	00110
	0000
	0100
	0000
	100

Actual frame transmitted : 10011101000 $\mathbf{- 1 0 0}=10011101100$ (modulo 2 subtraction)

Now suppose the third bit from the left is garbled and the frame is received as 10111101100. Hence on dividing this by the polynomial generator we get a remainder of 100 which shows that an error has occurred. Had the received frame been error free we would have got a remainder of zero. See below.

```
            10110140
```



```
    0 1 0 1
    0 0 0 0
    1 0 1 1
    1001
    0 1 0 0
    0 0 0 0
            1001
            10 0 1
            0 0 0 1
            0 0 0 0
                0 0 1 0
                0 0 0 0
                    0 1 0 0
                    0 0 0 0
                    100 (remainder indicating error)
```

