CIS 601, Test 2, November 1, 2004
Hemant Anugonda

1. Describe 8-connected component labeling algorithm

All pixels in a connected component share similar pixel intensity values and are in some way connected with each other. Once all groups are determined, each pixel is labeled with a greylevel or a colour (colour labeling) according to the component it was assigned to.
	
	
	
	
	

	
	s
	r
	v
	

	
	t
	P
	
	

	
	
	
	
	

Points t, r, s and v are four neighbors of p.We assume t, r, s and v have been visited and labeled.

Now we visit p:

IF p=0: THEN NO ACTION IS GOING TO BE TAKEN

IF p=1: THEN CHECK THE VALUES OF T,S,R,V
· If all four neighbors are 0, assign a new label to p, else
· if only one neighbor has Value={1}, assign its label to p, else

· if one or more of the neighbors have Value={1}, assign one of the labels to p and make a note of the equivalences.

After completing the scan, the equivalent label pairs are sorted into equivalence classes and a unique label is assigned to each class. As a final step, a second scan is made through the image, during which each label is replaced by the label assigned to its equivalence classes

2. Describe the split and merge algorithm. Construct the quadtree representation obtained by this algorithm for the following image.
	1
	1
	1
	5

	1
	1
	9
	9

	1
	1
	9
	9

	1
	1
	9
	5

A) Pure merging methods are, however, computationally expensive because they start from such small initial regions (individual points). We can make this more efficient by recursively splitting the image into smaller and smaller regions until all individual regions are coherent, then recursively merging these to produce larger coherent regions.

First, we must split the image. Start by considering the entire image as one region.

1. If the entire region is coherent (i.e., if all pixels in the region have sufficient similarity), leave it unmodified.

2. If the region is not sufficiently coherent, split it into four quadrants and recursively apply these steps to each new region.The “splitting” phase basically builds a quadtree like Notice that each of the regions (squares) so produced is now coherent. However, several adjacent squares of varying sizes might have similar characteristics. We can thus merge these squares into larger regions from the bottom up, much as we merged regions earlier. Since we are starting with regions (hopefully) larger than single pixels, this method is more efficient.

	1
	1
	1
	5

	1
	1
	9
	9

	1
	1
	9
	9

	1
	1
	9
	5

	1
	1
	1
	5

	1
	1
	9
	9

	1
	1
	9
	9

	1
	1
	9
	5

Original Image

 First Split
	1
	1
	1
	5

	1
	1
	9
	9

	1
	1
	9
	9

	1
	1
	9
	5

	1
	1
	1
	5

	1
	1
	9
	9

	1
	1
	9
	9

	1
	1
	9
	5

 Second Split

Merge
Quad Tree Implementation is done below.
	1
	1

	1
	1

Original Image

	1
	5

	9
	9

	9
	9

	9
	5

[image: image1]
5

1�
1�
�
1�
1�
�

 xccxcxcxc

9

1

9

9

9

5

9

