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Abstract 
In this paper we propose to use local variation of 

spatiotemporal texture vectors for motion detection. The 
local variation is defined as the largest eigenvalue 
component of spatiotemporal (sp) texture vectors in 
certain time window at each location in a video plane.  

Sp texture vectors are computed using a dimensionality 
reduction technique applied to spatiotemporal (3D) 
blocks. They provide a compact vector representation of 
texture and motion patterns for each block. The fact that 
we go away from the standard input of pixel values and 
instead base the motion detection on sp texture of 3D 
blocks, significantly improves the quality of motion 
detection. This is particularly relevant for infrared videos, 
where pixel values have smaller range than in daylight 
color or gray level videos. 
 
Keywords. Video analysis, video mining, surveillance 
videos, distribution learning, motion detection. 
 
1. Introduction 

Let us focus on a fixed position in a video image and 
observe the sequence of visual vectors (e.g., gray level, 
infrared, color, or texture vectors) at this location in a 
video plane over time. We assume a stationary camera. If 
we observe a part of the scene background at this location, 
then clearly we will have only very small variation of 
visual vectors over time at this location due to slight 
illumination changes and errors of the video capture 
device. On the other hand, if a moving object is passing 
through this location, then due to this motion we will see 
different parts of the object, which are very likely to have 
different texture. Therefore, the texture at a given location 
is very likely to highly vary.  

If at the observed position in the video plane the values 
of only a single pixel are considered, then the variation 
alone might not be sufficient for proper identification of 
movement. For example, consider a white object moving 
through an observed pixel location. At the edge of this 
object, the variation will be high, but it may be low in the 
interior of the object. Thus, by detecting high variation we 
will identify the edge but not the inner parts of a moving 
object. The solution to this problem proposed by Stauffer 
and Grimson [14] was to, in addition to covariance matrix, 
also consider the mean of the color values vector, which 
leads to the Gaussian mixture model.  

In this paper, instead of color or infrared values at pixel 
locations, we consider the values of all pixels in 
spatiotemporal regions represented as 3D blocks. To 
compactly represent these values and to reduce the 
influence of noise, we introduce a spatiotemporal texture 
representation of the 3D blocks. This texture 
representation is the input to the proposed motion 
detection technique based on local variation. Thus, we go 
away from the standard input of pixel values for motion 
detection that are known to be noisy and the main cause of 
instability of video analysis algorithms.  

We decompose a given video into 3D spatiotemporal 
(sp) blocks (e.g., 8x8x3 blocks) and apply a dimensionality 
reduction technique to obtain a compact representation of 
color, infrared, or gray level values at each block (as 
vector of just a few components). The obtained sp texture 
vectors provide a joint representation of texture and 
motion patterns in videos and are used as primary input 
elements to video analysis algorithms.  

The power of dimensionality reduction techniques to 
compactly represent 3D blocks has already been 
recognized in video compression. There, 3D discrete 
cosine and 3D wavelet transforms are employed to reduce 
the color or gray level values of a large number of pixels in 
a given block to a few quantized vector components, e.g., 
[15]. However, these techniques are not particularly 
suitable for detecting moving objects, since the obtained 
components do not necessarily provide good means to 
differentiate the texture of the blocks. Namely, these 
transformations are context free and intrinsic in that their 
output depends only on a given input 3D block. In 
contrast, we propose to use a technique that allows us to 
obtain an optimal differentiation for a given set of 3D 
blocks. To reach this goal, we need an extrinsic and 
context sensitive transformation such that a representation 
of the given block depends on its context—the set of other 
3D blocks in a given video. The applied Principal 
Component Analysis (PCA) [8] satisfies these 
requirements. Namely, for a given set of 3D blocks PCA 
assigns to each block a vector of the components that 
maximize the differences among the blocks. Consequently, 
PCA components are very suitable to detect changes in 3D 
blocks.  

In our previous paper [11] we have shown that the use 
of sp texture vectors of spatiotemporal blocks in the 
framework of Stauffer and Grimson [14] can improve the 
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detection of moving objects while potentially cutting back 
the processing time due to the reduction of the number of 
input vectors per frame. In this paper, we propose a novel 
motion detection technique that can lead to further 
performance improvements.  

As we mentioned above, texture at a given location in 
video plane is very likely to highly vary when a moving 
object is passing through this location. Therefore, we 
propose to base motion detection on local variation of sp 
texture vectors. The question arises how to robustly 
measure this variation. We definitely need to measure it in 
a limited and as short as possible window of time, since at 
a given position a moving object can quickly appear or 
disappear. We propose to define the local variation as the 
largest eigenvalue of sp texture vectors in a small time 
window. It is computed by applying PCA to the covariance 
matrix of the sp texture vectors within a small temporal 
window. Thus, in the proposed approach we use PCA 
twice, first time to compute the sp texture vectors, and the 
second time to compute the variation of a set of texture 
vectors in a given time window. The decision whether a 
moving object or a stationary background is identified at a 
given spatiotemporal location is then made by dynamic 
thresholding of the obtained eigenvalues. 

 
2. Related work 

A good overview of the existing approaches to motion 
detection can be found in the collection of papers edited by 
Remagnino et al. [13] and in the special section on video 
surveillance in IEEE PAMI edited by Collins et al. [2]. A 
common feature of the existing approaches for moving 
objects detection is the fact that they are pixel based. Some 
of the approaches rely on comparison of color or 
intensities of pixels in the incoming video frame to a 
reference image. Jain et al. [7] use simple intensity 
comparison to reference images so that the values above a 
given threshold identify the pixels of moving objects. A 
large class of approaches is based on appropriate statistics 
of color or gray values over time at each pixel location. 
(e.g., the segmentation by background subtraction in W4 
[6], eigenbackground subtraction [10], etc). Wren et al. 
[16] were the first who used a statistical model of the 
background instead of a reference image. 

One of the most successful approaches for motion 
detection was introduced by Stauffer and Grimson [14]. It 
is based on adaptive Gaussian mixture model of the color 
values distribution over time at each pixel location. Each 
Gaussian function in the mixture is defined by its prior 
probability, mean and a covariance matrix. In this paper 
we show that the proposed local variation is not only a 
much simpler but also a more adequate model for motion 
detection for infrared videos. It can significantly reduce 
the processing time in comparison to the Gaussian mixture 
model, due to smaller complexity of the local variation 

computation, thus making the real time processing of high-
resolution videos as well as efficient analysis of large-scale 
video data viable. Moreover, the local-variation based 
algorithm remains stable with higher dimensions of input 
data, which is not necessarily the case for an EM type 
algorithm (used for Gaussian model estimation). This 
makes the proposed technique potentially appealing for 
moving detection in higher dimensional domains, such as 
multispectral remote sensing imagery. 

As argued in [9], the application of region level 
techniques can lead to increased stability when detecting 
objects in adverse conditions. However, [9] and related 
approaches (e.g., [1]) aimed to improving the Stauffer-
Grimson algorithm [14] still perform motion detection on 
pixel level (i.e., only the postprocessing of pixel-based 
motion detection results is region based). In contrast, the 
motion detection in the proposed approach is solely 
region-based. 

 
3. Proposed methodology 
3.1. Video representation with spatiotemporal (sp) 
texture vectors 

We represent videos as three-dimensional (3D) arrays 
of gray level or monochromatic infrared pixel values gi,j,t at 
a time instant t and a pixel location i, j. A video is 
characterized by temporal dimension Z corresponding to 
the number of frames, and by two spatial dimensions, 
characterizing number of vectors in horizontal and vertical 
direction of each frame. We divide each image in a video 
sequence into disjoint NBLOCK× NBLOCK squares (e.g., 8x8 
squares) that cover the whole image. Spatiotemporal (3D) 
blocks are obtained by combining squares in consecutive 
frames at the same video plane location. In our 
experiments, we used 8x8x3 blocks that are disjoint in 
space but overlap in time, i.e., two blocks at the same 
spatial location at times t and t+1 have one square in 
common. The fact that the 3D blocks overlap in time 
allows us to perform successful motion detection in videos 
with very low time frequency, e.g., in our experimental 
results  [12] videos with 1 fps (frame per second) are 
included. The obtained 3D blocks are represented as 192 
dimensional vectors of gray level or monochromatic 
infrared pixel values. We then zero mean these vectors and 
project them to 3 dimensions using PCA. The obtained 3 
dimensional vectors form a compact spatiotemporal texture 
representation for each block. The PCA projection 
matrices are computed separately for all video plane 
locations (a set of disjoint 8x8 squares in our experiments). 

A more detailed explanation follows now. The blocks 
are represented by N-dimensional vectors bI,J,t, specified 
by spatial indexes (I,J) and time instant t. Vectors bI,J,t 
contain all values gi,j,t of pixels in the corresponding 3D 
block. Thus, for a given block location specified by spatial 
indexes (I,J) and time instant t, the corresponding block 
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vector bI,J,t contains pixel values gi,j,t from spatial locations 
with coordinates  
(NBLOCK-1)×(I-1)+1, …, NBLOCK×I;  
(NBLOCK-1)×(J-1)+1, …, NBLOCK×J  
and from frames t-T,…, t+T. 
Observe that the length N of the block vector bI,J,t is equal 
to NBLOCK× NBLOCK× (2T+1)..  

To reduce dimensionality of bI,J,t while preserving 
information to the maximal possible extent, we compute a 
projection of the normalized block vector to a vector of 
significantly lower length K<<N using a PCA projection 
matrix PK

I,J computed for all bI,J,t at video plane location 
(I,J). The resulting sp texture vectors *

,, tJIb = PK
I,J * bI,J,t 

provide a joint representation of texture and motion 
patterns in videos and are used as input of algorithms for 
detection of moving objects. 

To compute PK
I,J we employ the principal values 

decomposition following [4,5]. A matrix of all normalized 
block vectors bI,J,t at video plane location (I,J) is used to 
compute the N×N dimensional covariance matrix SI,J. The 
PCA projection matrix PI,J for spatial location (I,J) is 
computed from the SI,J covariance matrix. The projection 
matrix PI,J of size N×N represents N principal components. 
By taking only the principal components that corresponds 
to the K largest eigenvalues, we obtain PK

I,J.   
 
3.2. Moving objects detection based on local variation 

The assumption of the proposed technique is that the 
variation of location vectors—corresponding to the same 
location within a small number of consecutive frames— 
will increase if the vectors correspond to a moving object. 
In practice, for each location (x,y), we consider vectors 

tyxWtyxWtyx ,,1,,,, ,,, vvv K+−− Wtyx +,,,, vK  corresponding 

to a symmetric window of size 2W+1 around the temporal 
instant t, where *

,,,, tJItJI bv =  are the sp texture vectors. 

For these vectors, we compute the covariance matrix 
tyx ,,C . We assign to a given spatiotemporal video position 

a local variance measure, which we will also refer to as 
motion measure, 

mm(x,y,t) = Λx,y,t  
where Λx,y,t is the largest eigenvalue of tyx ,,C . The larger 

the variance measure mm(x,y,t), the more likely is the 
presence of a moving object at position (x,y,t).  

Finally, we label each video position as moving or 
stationary (background) depending whether the motion 
measure is larger or smaller than a suitably defined 
threshold. We use a dynamic thresholding algorithm to 
determine the threshold value at position (x,y,t) based on 
the history of mm(x,y,s) values over time (s=1, …, t-1). 
Since mm(x,y,t) is a 1D function of t for fixed (x,y) (see 
Fig. 1), the tasks reduces to simple analysis of the graph of 

this function. First we compute mean meanl and standard 
deviation stdl (using a running average) of all previous 
mm(x,y,s) for s=1, …, t-1 that were labeled as stationary. A 
moving object is detected if  

meanrw – meanl > C1*stdl, where C1 is a constant and  
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Once motion is detected, we switch to a stationary state if  

meanrw – meanl < C2*stdl,  

where C2 < C1 is a second constant. 
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Figure 1. The graph of local variance mm over time. 

4. Performance evaluation with motion orbits 
The most common method to evaluate the performance 

of motion detection is simply to view the videos with 
moving objects marked by the applied algorithm as we 
discuss in Section 5. However, in our framework a more 
objective method of performance evaluation is also 
possible. In this section we introduce and use such a 
method to compare the proposed local-variation technique 
to the improved version of the incremental EM algorithm 
in [11]. Both compared techniques are based on the same 
spatiotemporal blocks that represent texture and motion 
patterns.  

Recall that with the local-variation based technique we 
perform the detection of moving objects using the first 3 
PCA components of each spatiotemporal block vector. We 
define a motion orbit as path that the vector of the PCA 
components, corresponding to a particular location in the 
video plane, traverses over time. In other words, the 
motion orbit at video plane location (x,y) is a sequence of 
points in the 3D Euclidean space Tyxyxyx ,,2,,1,, ,,, vvv K , 

where *
,,,, tJItJI bv = and T is the total number of frames.  
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For instance, in Fig. 2a, we see the orbit for the block 
(24,28) of the Outdoor video (described in Section 5). 
Frames identified as moving using our local variation 
method are marked with blue-gray dots while stationary 
frames are marked with black dots. The distribution of 
black dots is multimodal globally. We observe two main 
modes that represent the background blocks (marked with 
black dots): one corresponding to the frames at the 
beginning, and another to the frames at the end of movie.  
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Figure 2. Orbits of block vectors with blue-gray dots 
corresponding to the frames where the block was 
identified as moving by the proposed method;  
a) Outdoor Video: block I=24, J=28;  
b) Indoor Video: block I=7, J=25. 

They are identified as two 3D blobs that correspond to two 
different background textures that appeared in the course 
of this video at block position (24,28). Around these blobs 
we see 1D orbits marked with blue-gray dots. Therefore, 
we can view the proposed local variance method as orbit 
classification algorithm. The reason is that the elongated 
1D orbits that identify motion have higher variation than 
the stationary background objects.  
 

 (a)  
 

 
(b) 

Figure 3. Orbits of block vectors marked with dots: 
black as background, blue and green as moving—using 
‘reset’ and ‘hold’ mechanisms, correspondingly, 
identified by the incremental EM algorithm [11];  
a) Outdoor Video block I=24, J=28;  
b) Indoor Video: block I=7, J=25. 
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We stress that the dot labeling as shown was computed by 
the proposed method. Observe that the blue-gray dots 
perfectly correspond to the 1D motion orbits that identify 
moving blocks. Thus, our algorithm correctly detected 
moving objects. In contrast, for the same Outdoor video 
the incremental EM method [11] failed to identify the 
motion orbit containing frames 633—663. In Fig. 3a this 
orbit is labeled with black dots that correspond to falsely 
identified stationary (background) blocks. For the rest of 
the orbits the incremental EM is generally able to identify 
the “distributional outliers” that correspond to the moving 
objects (marked with green and blue-gray dots depending 
on whether the reset or hold mechanisms applied [11]). 

In Fig. 2b we see the orbit for block location (7,25) in 
Indoor Video (described in Section 5). Here we observe 
only one category of background texture represented by a 
single cluster of black dots. Again the proposed method 
was more successful in identifying moving blocks that EM 
method. As can be seen in Fig. 3b, the EM-based 
technique had difficulties in correctly labeling moving 
blocks belonging to orbits close to the bulk of background 
distribution. 

In comparison to any pixel-based approach (e.g., [14]), 
motion detection based on 3D blocks performs better since 
it reduces noise in background and can extract information 
about temporal change of texture (since it is based on 
spatiotemporal texture representation of 3D blocks instead 
of pixels). This fact is particularly important for infrared 
videos, where the range of infrared values of pixels is 
much smaller than in a day light gray level or color videos. 
Therefore, the usage of spatiotemporal texture information 
is even more beneficial here.  

We demonstrate how noisy RGB color values of a 
single pixel can be in Fig. 4, where we plot an orbit over 
time of RGB color values that occur at the pixel (185,217) 
which is one of the pixels in the block (24,28) of Outdoor 
video. For better visualization, in Fig. 4 we show the 
linearly transformed space of PCA projections of the 
original RGB color values (the trajectory in the space of 
original RGB colors is similar). To allow us a proper 
comparison to the results in Fig. 2a (computed by our local 
variance technique), we carried over the dot labels from 
Fig. 2a (where blue-gray dots identify moving blocks). By 
comparison of Fig. 4 to Fig. 2a, one can conclude that in 
both representations there are two distribution components 
corresponding to the background. However, using the 
block-based approach, the background variance is much 
smaller, since using block vectors that contain texture 
information results in effective noise reduction in 
comparison to using “raw” pixels. Hence, any technique to 
detect moving objects as outliers will perform much better 
using spatiotemporal blocks than when using the raw 
pixels.  
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Figure 4. Standardized PCA components of RGB pixel 
values for Outdoor Video at pixel location (185,217) that 
is inside of block (24,28). To allow a direct comparison 
to Fig. 2a, we carried over the colors of dots; black is 
background and blue-gray is moving. 

 
As it can be seen in Fig. 4, the method from [14] have 

difficulties in properly detecting frames 611, 695, 1477 
belonging to the second and fourth moving objects that 
appear at the observed pixel. There the blue-gray dots 
incorrectly become parts of two background components, 
which means that a pixel-based method would classify the 
corresponding blue-gray dots as background.  

The proposed local variation based technique can also 
provide satisfactory results on pixel level, thus providing a 
viable alternative to the much more complex approach 
[14]. However, due to problems with large uniform texture 
regions as well as noise inherent to pixel values (shown 
above), local variance method based on sp block texture is 
our preferred technique.  

 
5. Performance evaluation on test videos 

A set of several videos showing our motion detection 
results can be viewed on [12]. This set includes infrared 
videos, for which the same settings of parameters as for 
visual light videos were used. Here we focus on our results 
on two video sequences from the Performance Evaluation 
of Tracking and Surveillance (PETS) repository: a 
sequence from PETS20011 here referred to as the Outdoor 
Video sequence and a sequence from PETS20022 here 
referred to as the Indoor Video sequence.  

The parameter settings are described now. For the 
spatial-temporal blocks, we used T=1 and NBLOCK  = 8, 
such that the length of a block vectors bI,J,t was N = 192 = 

                                                 
1ftp://pets.rdg.ac.uk/PETS2001/DATASET1/TESTING/CAMERA1_JPE
GS/ 
2ftp://pets.rdg.ac.uk/PETS2002/PEOPLE/TESTING/DATASET2/ 
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8×8×3. When applying local variation-based technique, it 
is not necessary to precisely estimate the covariance matrix 

tyx ,,C , since the method is based primarily on the value of 

its largest eigenvalue Λx,y,t. Hence, we can employ the 
estimation window of a relatively small size. In this study, 
we set W=3 that led to the window size of 2W+1=7. We 
used the transformed block vectors *

,, tJIb  with K = 3 
components such that the performed PCA projection 
preserved more than 89% of the block vectors variance.  

To further justify that the proposed method based on 
the variation in a local window is not only a much simpler 
but at the same time more robust, let us consider Fig. 5. It 
shows moving blocks detected by the local variation 
method and by reset and hold mechanisms of the 
incremental EM algorithm [11] at the block position 
(24,28) of Outdoor video. As we can see, the ‘reset’ 
mechanism typically triggers the sequence of moving 
blocks being identified by ‘hold’ mechanism. Resets are 
relatively infrequent for slow-moving objects and the 
major mechanism to detect blocks corresponding to such 
moving objects is hold (e.g. frames 1477–1500). However, 
for fast moving objects (such is the car at frames 608—708 
and a van at frames 821—874) the reset mechanism 
frequently interweaves with the hold. When the moving 
objects consist of large uniform-textured areas, neither 
mechanism might be capable of identifying movement, 
which leads to false detection of background. In contrast, 
the local variance technique is more robust and in this case 
correctly identifies motion for the whole duration of the 
frame intervals 492—512, 608—708, and 821—874. 

1 492 512 608 708 821 874 1477 1507 2482
Frame

Reset
Hold
Local variance

 
Figure 5. Frames identified as moving at block I=24, 
J=28 of the Outdoor Video sequence using the proposed 
local variance technique in comparison to the reset and 
hold mechanisms of the incremental EM algorithm. 

 

 
6. Conclusions and work in progress  

In this paper we propose a local variation based method 
for motion detection. Our preliminary results on infrared 
videos and on PETS repository videos show that the 
proposed method applied to spatiotemporal blocks results 
in better detection of moving objects in comparison to 
standard pixel-based techniques and to the incremental EM 
algorithm technique. 

The proposed texture representation of spatiotemporal 
blocks can potentially be very useful in object tracking. 
While tracking an object, we can simultaneously learn the 
distribution of its blocks. Subsequently, while performing 
the proposed moving object detection, we can improve the 
tracking performance, since we perform unsupervised 
object segmentation. Observe that we would profit here 
from the fact that our underlying representation is based on 
texture of 3D blocks as compared to the existing 
approaches solely based on pixel values.  
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