

Tracking of Objects using Particle Filter

Aim: Analyzing the Particle Filter as a means of state transition to achieve object tracking.

Abstract: Visual tracking of moving objects from a moving camera in the presence of background clutter is now an active area of research in computer vision. Recently particle filters have shown to be very suitable to perform real-time tracking in cluttered environments. Our project emphasizes the use of such filters to track objects in video.

Particle Filter: Particle Filters use multiple discrete “particles” (samples) to represent the distribution over the location of a tracked target. Every object is tracked using multiple particles. Particles have a set of parameters that are used to define the state of our moving target in a noisy background.

Given N particles (samples) at a time t-1, approximately distributed according to the posterior distribution, particle filters enable us to compute N particles at time t.

The basic particle filter algorithm has two steps:

Sequential Sampling Step: Based on the prior state transition values for a particular target, we calculate the current transition. Once each particle has been sampled, we evaluate their weights.

Selection Step: The particles are selected according to their weights. This operation results in the same number of particles, but very likely particles are duplicated while unlikely ones are dropped. This selection step is what allows us to track moving targets distribution efficiently.

Implementation: The algorithm will be implemented using Matlab.

The following is an overview of the source code, which we have implemented.

Particle Filter Iteration

Steps:

· Initialize xt for first frame

· Generate a particle set of N particles {xmt}m=1..N

· Prediction for each particle using second order auto-regressive dynamics.

· Compute histogram distance

· Weigh each particle based on histogram distance

· Select the location of target as a particle with minimum histogram distance.

· Sampling the particles for next iteration.
A detailed look at our code, to explain each step :

· Initialization of state space for the first frame and calculating the reference histogram:

· reference = imread('reference.jpg');

· [ref_count,ref_bin] = imhist(reference);

· x1= 45; y1= 45;

· Describing the N particles within a specified window:

· for i = 1:N

· x(1,i,1) = x1 + 50 * rand(1) - 50 *rand(1);

· x(2,i,1) = y1 + 50 * rand(1) - 50 *rand(1);

· end

· For each particle, we apply the second order dynamics equation to predict new states:

· if (j==2) x(:,i,j) = A * x(:,i,j-1);

· else x(:,i,j)=rand(n_x)*x(:,i,j-1)+rand(n_x)*x(:,i,j-2);

· The color window is defined and the histogram is calculated:

· rect = [(x(1,i,j)-15),(x(2,i,j)-15),30,30];

· [count,binnumber] = imhist(imcrop(I(:,:,:,j),rect));
· Calculate the histogram distance:

· for k = 1:255

· d(I , j) = d(i, j) + (double (count (k)) - double(ref_count(k))) ^ 2;

· end

· Calculating the normalized weight for each particle:

· w(:,j) = w(:,j)./sum(w(:,j));

· w(:,j) = one(:,1) - w(:,j);
· Re-sampling step, where the new particle set is chosen:

· for i = 1:N

· x(1,i,j) = state(1,j) + 50 * rand(1) - 50 *rand(1);

· x(2,i,j) = state(2,j) + 50 * rand(1) - 50 *rand(1);

· end
The program is run in Matlab. It requires the input avi video and the reference jpeg image to be within the same workspace in which the source file is being run from.
Conclusion: The project was proposed to be completed and submitted on Dec 8,2003. We implemented it successfully by this time and also presented the final project to Dr.Latecki and the class of CIS:601 on the same day.
