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Principal Component Analysis
(PCA)
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• What does a set of equiprobable points look like
for a 2D Gaussian?

The Gaussian in D dimensions

• In 2D, it’s an ellipse.
• In D dimensions, it’s an ellipsoid.
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Equiprobable contours of a Gaussian

• If a Gaussian random vector has covariance
matrix that is diagonal (all of the variables are
uncorrelated)
– Then the axes of the ellipsoid are parallel to the

coordinate axes.
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Equiprobable contours of a Gaussian

• If a Gaussian random vector has covariance
matrix that is not diagonal (some of the variables
are correlated)
– Then the axes of the ellipsoid are perpendicular to

each other, but are not parallel to the coordinate axes.
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Principle Component Analysis

• Principle component analysis (PCA) finds the
directions of the axes of the ellipsoid.

• There are two ways to think about what PCA
does next:
– Projects every point perpendicularly onto the axes of

the ellipsoid.
– Rotates the ellipsoid so its axes are parallel to the

coordinate axes, and translates the ellipsoid so its
center is at the origin.
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• Transforms

– Projects every point
perpendicularly onto the
axes of the ellipsoid.

– Rotates space so that the
ellipsoid lines up with
the coordinate axes, and
translates space so the
ellipsoid’s center is at the
origin.
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   Two views of
what PCA does
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Transformation matrix for PCA

• Let V be the matrix whose columns are the
eigenvectors of the covariance matrix, Σ.
– The eigenvectors vi are all normalized to have length 1

• The rotation transformation is given by V T
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Transformation matrix for PCA
– PCA transforms the point x (original coordinates)

into the point c (new coordinates).
• by subtracting the mean:   z = x – m
• and multiplying

the result by V T

• Can think of as rotation because V T is an orthonormal matrix
• Can think of as projection of z onto PC axes, because v1 • z is

projection of z onto PC1 axis, v2 • z is projection onto PC2 axis, etc.
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Point is a weighted sum of eigenvectors

• To both sides of the equation, multiply on the left by V:
VV Tz = Vc.       Because V is orthonormal, VV T = I :
      Iz = Vc

• PCA expresses the mean-subtracted point, z = x – m, as a weighted
sum of the eigenvectors vi :
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Eigenvalues and variance
– The eigenvectors v1, v2, …, vn of the covariance matrix

have corresponding eigenvalues λ1, λ1, …, λn .
• It turns out that λ1 is the variance of the distribution in the v1

direction, λ2 is the variance of the distribution in the v2
direction, and so on.

– The largest eigenvalue corresponds to the principal component in the
direction of greatest variance, the next largest eigenvalue corresponds
to the principal component in the perpendicular direction of next
greatest variance, etc.

– Which eigenvector
(green or red) corresponds
to the smaller eigenvalue?
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– What if you wanted to transmit someone’s height and
weight, but you could only give a single number?
• Could give only height, x

— = (uncertainty when height is known)

• Could give only weight, y
— = (uncertainty when weight is known)

• Could give only c1,
the value of first PC
— = (uncertainty when first PC is known)

– Giving the first PC minimizes
the squared error of the result.

– To compress D-dimensional data into k dimensions, order
the principal components in order of largest-to-smallest
eigenvalue, and only save the first k components.

PCA for data compression
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PCA for data compression
• Equivalent view: To compress D-dimensional data into k

dimensions, order the eigenvectors in order of largest-to-smallest
eigenvalue, and only use the first k eigenvectors.

• PCA approximates the mean-subtracted point, z = x – m, as a
weighted sum of the first k eigenvectors:
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Face space

• 120 × 100 pixel grayscale 2D images of faces
– Each image is considered to be

a single point in face space (a
single sample from a random vector):

• How many dimensions is the vector x ?
D = 120 • 100 = 12000

– Each dimension (each pixel) can take real values
between 0 and 255.

– You can visualize in 12000 dimensions!
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PCA on face images
– Let x1, x2, …, xn  be the n sample images.

• Find the mean image, m, and subtract it from each image:
zi =  xi – m

• Let A be the matrix whose columns are the
mean-subtracted sample images.

• Estimate the covariance matrix:
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The transpose trick
• The eigenvectors of Σ are the principal component

directions
•  Σ is a 12000 × 12000 matrix
• Too big for us to find its eigenvectors numerically
• The first n eigenvalues are useful; the rest will all be zero.

– Use a trick.
• Eigenvectors of Σ are eigenvectors of AAT ; still 12000 × 12000
• Instead of eigenvectors of AAT, we find eigenvectors of ATA

• What are the dimensions of ATA ?
• n × n  matrix is easy to find eigenvectors of, since

n (the number of sample images) is relatively small.

T1)Cov( AAA n==Σ
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The transpose trick
• We want the eigenvectors of AAT, but instead we

calculated the eigenvectors of ATA. Now what?
– Let vi be an eigenvector of ATA, whose eigenvalue is λi

(ATA)vi = ?λivi

A (ATAvi) = A(λivi)
 AAT (Avi) = λi (Avi)

– Thus if vi is an eigenvector of  ATA ,
 Avi  is an eigenvector of  AAT , with the same eigenvalue.

 Av1 , Av2 , … , Avn  are the eigenvectors of Σ.
 u1 = Av1 , u2 = Av2 , …, un = Avn  are called eigenfaces.
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The original images (12 out of 97)
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The mean face
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Eigenfaces

• Eigenfaces (the principal components of face
space) provide a low-dimensional representation
of any face, which can be used for:
– Face recognition
– Facial expression recognition
– Image reconstruction
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The first 8 eigenfaces



– –

– –11

Tim Marks,  Cognitive Science Department

PCA for face representation
• To approximate a face using k dimensions, order the eigenfaces in

order of largest-to-smallest eigenvalue, and only use the first k
eigenfaces.

• PCA approximates a mean-subtracted face, z = x – m, as a weighted
sum of the first k eigenfaces:
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Approximating a face using the
first 10 eigenfaces
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Approximating a face using the
first 20 eigenfaces
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Approximating a face using the
first 40 eigenfaces
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Approximating a face using all
97 eigenfaces

Since the image was in the original training set, the reconstruction
using all 97 eigenfaces is exact. For a new face image, however, its
projection into face space will only approximately match the original.
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What regularities does
each eigenface capture?

• <Matlab movie>
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Eigenfaces in 3D

• Blanz and Vetter (SIGGRAPH ’99)
– <mpeg video>
– The video can be found at:

http://graphics.informatik.uni-freiburg.de/Sigg99.html


