Principal Component Analysis
(PCA)
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The Gaussian in D dimensions

» What does a set of equiprobable points ook like
for a2D Gaussian?

. In2D, it sanellipse.
* InD dimensions, it'san ellipsoid.

% UCSD Tim Marks, Cognitive Science Department




Equiprobable contours of a Gaussian

» |f a Gaussian random vector has covariance
matrix that is diagonal (all of the variables are
uncorrel ated)

— Then the axes of the éllipsoid are parallel to the
coordinate axes.

o
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Equiprobable contours of a Gaussian

» |f a Gaussian random vector has covariance
matrix that is not diagonal (some of the variables
are correlated)

— Then the axes of the ellipsoid are perpendicular to
each other, but are not parallel to the coordinate axes.
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Principle Component Analysis

 Principle component analysis (PCA) finds the
directions of the axes of the ellipsoid.
* There are two ways to think about what PCA
does next:
— Projects every point perpendicularly onto the axes of
the dlipsoid.

— Rotates the ellipsoid so its axes are parall€l to the
coordinate axes, and trandates the ellipsoid so its
center isat the origin.
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Two views of
what PCA does
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X — Projects every point
P perpendicularly onto the

axes of the ellipsoid.

— Rotates space so that the
ellipsoid lines up with
the coordinate axes, and
trandates space so the

MR : origin.

ellipsoid’ s center is at the




Transformation matrix for PCA

» Let V bethe matrix whose columns are the
eigenvectors of the covariance matrix, S.
— The eigenvectors v; are all normalized to have length 1
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 The rotation transformation isgiven by V 7
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Transformation matrix for PCA

— PCA transforms the point x (original coordinates)
into the point ¢ (new coordinates).
* by subtracting themean: z=x-m

» and multiplying VT 7 c
theresultby VT ) . , .
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 Can think of as rotation because VT is an orthonormal matrix

* Can think of as projection of z onto PC axes, becausev, ¢ zis
projection of z onto PC1 axis, v, * z is projection onto PC2 axis, etc
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Point is a weighted sum of elgenvectors
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* To both sides of the equation, multiply on the left by V:

W Tz=Vc. Because V is orthonormal, W T =1 :

lz=Vc

» PCA expresses the mean-subtracted point, z = x —m, as aweighted
sum of the eigenvectorsy; :
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Eigenvalues and variance

— The eigenvectors vy, v,, ..., V,, of the covariance matrix
have corresponding eigenvalues| ,, | ,, ..., | .
e Itturnsout that | ; isthe variance of the distribution in the v;

direction, | , isthe variance of the distribution in thev,
direction, and so on.

— The largest eigenval ue corresponds to the principal component in the
direction of greatest variance, the next largest eigenval ue corresponds
to the principal component in the perpendicular direction of next
greatest variance, etc.

— Which elgenvector

(green or red) corresponds
to the smaller eigenvalue?
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PCA for data compression

— What if you wanted to transmit someone’ s height and
weight, but you could only give a single number?

» Could give only height, x .

weight

« Could give only weight, y y Y e

 Could giveonly c;,
the value of first PC

— =(uncertainty when first PC isknown)
— Giving the first PC minimizes ' i
the squared error of the result. X height
— To compress D-dimensional data into k dimensions, order
the principal componentsin order of largest-to-smallest
eigenvalue, and only save thefirst k components.

'ﬂ' UCSD Tim Marks, Cognitive Science Department

PCA for data compression

» Equivalent view: To compress D-dimensional datainto k
dimensions, order the eigenvectorsin order of largest-to-smallest
eigenvalue, and only use the first k eigenvectors.
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» PCA approximates the mean-subtracted point, z=x —m, asa
weighted sum of the first k eigenvectors:
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Face space

e 120" 100 pixel grayscale 2D images of faces
— Each image is considered to be
asingle point in face space (a
single sample from a random vector):
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* How many dimensions is the vector x ?
D =120+ 100 = 12000

— Each dimension (each pixel) can take real values
between 0 and 255.

—You can visudizein 12000 dimensions!
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PCA on face images

— Let X4, X, ..., X, bethen sampleimages.
* Find the mean image, m, and subtract it from each image:
z,= X—m
* Let A be the matrix whose columns are the
mean-subtracted sample images.
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* Estimate the covariance matrix: S= Coy(A) = i AAT
n

What are the dimensions of S ?
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The transpose trick

» The eigenvectors of S are the principal component
directions

* Sisal12000 x 12000 matrix
» Too big for usto find its eigenvectors numerically
» Thefirst n eigenvalues are useful; the rest will all be zero.

—Useatrick. s=Cov(A)=1AA
« Eigenvectors of S are eigenvectors of AAT ; still 12000 x 12000
« Instead of eigenvectors of AAT, we find eigenvectors of ATA

e What are the dimensions of ATA ?

* N xn matrix is easy to find eigenvectors of, since
n (the number of sample images) isrelatively small.
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The transpose trick

« We want the eigenvectors of AAT, but instead we
calculated the eigenvectors of ATA. Now what?

— Let v; be an eigenvector of ATA, whose eigenvalueis|
(ATA; = 1
A (ATAV) = Al v))
AAT (Av) =1 (Av)
— Thusif v, isan eigenvector of ATA,
Av; isan eigenvector of AAT , with the same eigenvalue,

Avy, Av,, ..., Ay, aretheeigenvectorsof S.
U = AVqy, U, = AV,, ..., Uu,= Av, arecalled eigenfaces.
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Theoriginal |

mages (12 out of 97)
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The mean face
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Eigenfaces

 Eigenfaces (the principal components of face
space) provide alow-dimensional representation
of any face, which can be used for:
— Face recognition
— Facial expression recognition
— Image reconstruction
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Thefirst 8 eigenfaces
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PCA for face representation

 To approximate a face using k dimensions, order the eigenfaces in
order of largest-to-smallest eigenvalue, and only use the first k
eigenfaces.
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» PCA approximates a mean-subtracted face, z = x —m, as aweighted
sum of thefirst k eigenfaces
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Approximating aface using the
first 10 elgenfaces

Crigral Mapaentrtnd
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Approximating aface using the
first 20 eigenfaces
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Approximating aface using the
first 40 elgenfaces

Qrignl Macoewiriod
i st eirreat
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Approximating aface using all
97 eigenfaces

Crigral

Since the image was in the original training set, the reconstruction
using all 97 eigenfacesis exact. For a new face image, however, its

projection into face space will only approximately match the original.
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What regularities does
each eigenface capture?

e <Matlab movie>
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Eigenfacesin 3D

» Blanz and Vetter (SIGGRAPH ’99)
— <mpeg video>
— The video can be found at:
http://graphics.informatik.uni-freiburg.de/Sigg99.html
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