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Comparison of Automatic Shot Boundary Detection Algorithms

Rainer Lienhart1

Microcomputer Research Labs, Intel Corporation, Santa Clara, CA 95052-8819
Rainer.Lienhart@intel.com

ABSTRACT
Various methods of automatic shot boundary detection have been proposed and claimed to perform reliably. A
the detection of edits is fundamental to any kind of video analysis since it segments a video into its basic com
the shots, only few comparative investigations on early shot boundary detection algorithms have been pu
These investigations mainly concentrate on measuring the edit detection performance, however, do not con
algorithms’ ability to classify the types and to locate the boundaries of the edits correctly. This paper extend
comparative investigations. More recent algorithms designed explicitly to detect specific complex editing ope
such as fades and dissolves are taken into account, and their ability to classify the types and locate the boun
such edits are examined. The algorithms’ performance is measured in terms of hit rate, number of false hits, a
rate for hard cuts, fades, and dissolves over a large and diverse set of video sequences. The experiments 
while hard cuts and fades can be detected reliably, dissolves are still an open research issue. The false hit rat
solves is usually unacceptably high, ranging from 50% up to over 400%. Moreover, all algorithms seem to fai
roughly the same conditions.

Keywords: video content analysis, shot boundary detection, hard cut detection, fade detection, dissolve detec

1  Introduction
The detection of edits is fundamental to any kind of video analysis and video application since it enables seg
tion of a video into its basic components: the shots. Various automatic shot boundary detection algorithms ha
proposed (see [2,7,11,12,13,14,15,16] and the references therein). Usually, their performance was measured
(very) small and limited set of test videos which commonly suggested that the proposed algorithms perform r
Despite the importance of reliable shot boundary detection few comparative investigations have been publish
They assess the performance of early shot boundary detection algorithms with respect to edit detection in gen
not with respect to their ability to classify correctly the type of edit and its temporal extent.

OUR CONTRIBUTION. This paper extends these comparative investigations in two different respects: On the on
newer algorithms designed explicitly to detect more complex editing operations such as fades and dissolves 
into account; on the other hand, besides the algorithms’ ability to detect edits as such, also their ability to clas
types of edits and locate their boundaries are examined. Both aspects distinguish this research from existing
tions [3,5,6].

2  Segmentation Methods
The number of possible edits is quite large. Well-known video editing programs such as Adobe Premiere o
MediaStudio provide more than 100 different and parameterized types of edits. In practice, however, 99% of 
fall into one of the following three categories: 

• hard cuts, 
• fades, or 
• dissolves. 

Therefore, in the following, we concentrate on these three types of edits. They capture more than 99.9% of al
our video test set. 

Four shot boundary detection algorithms will be investigated: the best and most balanced “older” algorithm b
color histogram differences [3], the recently proposed algorithm based on the edge change ratio [15], and tw
rithms specialized on fades [9] and dissolves [8] exclusively. The matrix in Table 1 summarizes which type of
detected by what algorithm.

1. This research was mainly performed while the author was at University of Mannheim, Praktische Informatik IV, 68131 Mannheim, Ger-
many
1
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2.1 Color Histogram Differences
The color histogram-based shot boundary detection algorithm is one of the most reliable variants of histogram
detection algorithms. Its basic idea is that the color content does not change rapidly within but across shot
hard cuts and other short-lasting transitions can be detected as single peaks in the time series of the di
between color histograms of contiguous frames or of frames a certain distance k apart.

Let  be the number of pixels of color (r,g,b) in frame Ii of N pixels. Each color component is discretized 
2B different values, resulting in . Usually B is set to 2 or 3 in order to reduce sensitivity to noise a
slight light, object as well as view changes. Then, the color histogram difference  between two color fraIi-1
and Ii is given by

(1.1)

A hard cut is detected if within a local environment of radius  of frame Ii only  exceeds a certain threshold
henceforth called . Note that instead of using a global threshold, one may also use a local threshold as pre
[13]. This option, however, was not considered our work. In order to cope with a very particular type of ha
which consists of one transitional frame, in a pre-processing stage double peaks (i.e. groups of  con

 exceeding ) were modified into single peaks at the higher .

Table 2 summarizes the parameters of the hard cut detection algorithm based on color histogram differences

2.2 Edge Change Ratio
The edge change ratio (ECR) is defined as follows. Let  be the number of edge pixels in frame n,  and  the
number of entering and exiting edge pixels in frames n and n-1, respectively. Then 

, (1.2)

gives the edge change ratio  between frames n-1 and n. It ranges from 0 to 1. The edges are calculated by 
Canny edge detector [4]. In order to make the measure robust against small object motions, edge pixels in on
which have edge pixels nearby in the other image (e.g. within 6 pixels’ distance) are not regarded as entering
ing edge pixels. Moreover, before calculation of the ECR a global motion compensation based on the Hausdorff d
tance is performed [15]. 

According to Zabih et. al. hard cuts, fades, dissolves and wipes exhibit a characteristic pattern in the ECR time series.
Hard cuts are recognized as isolated peaks; during fade-ins/fade-outs the number of incoming/outgoing ed
dominates [15]; and during a dissolve, initially the outgoing edges of the first shot protrude before the inc
edges of the second shot start to dominate the second half of a dissolve (see Figure 1).

In the following, many details of the detection algorithm are mentioned which were omitted in the original work
They were extracted by a thorough analysis of the freely available implementation.

In a pre-processing step the ECR time series was smoothed by means of a gliding mean value of radius r, which, how-
ever, was computed only for those points in the ECR time series which exceeded the threshold . All oth
points were set to zero. Moreover, an  was assigned to the first and last frames in a monochrom

Feature \ Type of Edit Hard Cuts Fades Dissolve

Color Histogram Differences x

Edge Change Ratio x x x

Standard Deviation of Pixel Intensities x

Contrast x

Table 1: Matrix showing which type of edit is detected by what algorithm

Parameter Description

Threshold for cut detection

Maximal sequence length of contiguous  values exceeding  which are transformed int
single peak to enable hard cut detection

Table 2: Parameters of the hard cut detection algorithm based on color histogram differences
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sequence. This new ECR time series is called . Next, the local maxima were determined for this new 
series. They were defined as the largest value within a radius s. These local maxima were taken as the centers of e
and expanded in each direction until the ECR dropped below threshold  or the maximal duration  
edits was reached. Each edit was classified by the following rules:

• Isolated maxima are classified as hard cuts. Isolation is tested by means of the quotient
 for which it is required to exceed threshold . 

• Start and Stop points of fades are identifies by local maxima of . By evaluation of  and
 a fade-in is distinguished from a fade-out.

• All other maxima are automatically recognized as dissolves or wipes. Both edits are distinguished from
each other by looking at the spatial distribution of the ECR. If the change of edges is initially concen-
trated in one frame half and moves than on to the other frame half, a wipe is detected.

The parameters of this edit detection algorithm are summarized in Table 3.

We have since recognized some drawbacks to the original implementation which are listed in the following. W
present how they can be overcome:

• Abruptly entering and exiting lines of text are clearly visible within the ECR time series. Though these
peaks are not as high as those of hard cuts, they may result in false hits. These false hits can be elim
nated by looking at both  and  instead of only at ECR. For hard cuts both values should
exhibit the peak, while for entering and existing lines of text this should only be the case for either

 or . Exceptions to this are hard cuts from and to monochrome frames. 
Therefore, the classification of hard cuts must be extended by the following rule: Either  and

 exhibit an isolated maximum or if only one of them does then /  should be 0 and
the subsequent/preceding frame monochrome. 

• In principle all fades are recognized. Unfortunately, all hard cuts from monochrome frames are also
classified as such. This misclassification is caused by marking the border frames of monochrome frame
sequences as . The contiguous ECR value is always 1, independently of whether a fade or a
hard cut follows. From an edge-free frame to a frame with edges the ratio of in entering edges is always
1. Thus, the quotient  of the local maximum is about 0.5, for both hard cuts and fades.
Depending on , all these cases are consequently classified as hard cuts or fades.
This misclassification can be resolved by not marking the borders to/from monochrome frame
sequences as  but by applying a special processing to them: In the direction of the potential
fade, it is checked whether several frames have an ECR above . If this is the case, a fade is detecte
otherwise, a hard cut.

Parameter Description

r Radius of the gliding mean value for smoothing

Threshold for ECR values, in order to be smoothed and not set to 0

s Radius for determination of local maximum

Threshold for ECR values, which are considered to be part of an edit

Half of the maximal allowed duration of edits

Threshold for hard cut detection 

Table 3: Parameters of the edit detection algorithm based on the edge change ratio
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Figure 1: Typical ECR patterns for hard cuts, fades and dissolves

(a) Hard cuts (c) Dissolves(b) Fades
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• If strong motion immediately before or after a hard cut cannot be compensated by the global motion
compensation, the strength of the local maximum is usually not sufficient to be judged as a hard cut.
Instead, the edit is classified as a dissolve. We have no solution to that problem.

2.3 Standard Deviation of Pixel Intensities
During video production fades are produced by a monotone 
usually linear scaling of the pixel intensities over time. This inte
sity scaling is clearly visible in the time series of the standard de
ation of pixel intensities as depicted in Figure 2. Its precise patt
can be theoretically derived as follows: 

Recall that a fade out  of length  from shot  startin
at time  can be modeled by [7]

, (1.3)

Substituting the right side of equation (1.3) by  and denoting 
expectation value operator of the pixel intensities of a frame by
the following conversions can be performed:

(1.4)

After back-substituting  by the right side of (1.3), it follows

(1.5)

(1.6)

(1.7)

Under the reasonable assumption that the average frame intensity does not change significantly from frame
within shots, the second multiplicand in (1.7) can be regarded as roughly constant over a short period of time
the intensity scaling is directly displayed in the standard deviation of the pixel intensities. The scaling functio
during video production (here ) and the standard deviation of the pixel intensities are identical excep
constant factor.

Based on this characteristic pattern of fades in the standard deviation of pixel intensities a simple fade detec
can be constructed as follows: 

1. Search for all monochrome frame sequences  in the video. A sequence  of monoc
frames is identified by a sequence of frames whose standard deviation of pixel intensities is below 

2. For each range  of monochrome frames do
2.1. // Search for fade in

2.1.1. Set  and calculate the line of regression over 
2.1.2. Increment n and re-compute the line of regression. 
2.1.3. If the correlation decreases by more than 3% or the slope is more than halved 

then if the minimum fade length  is not reached go to 2.2, else go to 2.1.2
else add further points if they vary not more than 25% around the line of regression

2.1.4. The sequence  is finally classified as a fade-in if the line of regres
has at least a correlation of  and a slope .

2.2. // Search for fade out
2.2.1. Set  and calculate the line of regression over 
2.2.2. Increment n and re-compute the line of regression. 
2.2.3. If the correlation decreases by more than 3% or the slope is more than halved 

then if the minimum fade length  is not reached go to 2, else go to 2.2.2
else add further points if they vary by not more than 25% around the line of regress

2.2.4. The sequence  is finally classified as a fade-out if the line of reg
sion has at least a correlation of  and a slope .
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Figure 2: Characteristic pattern of the stan-
dard deviation of pixel intensities
during a fade-in and fade-out.
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This algorithm detects also a very special type of fade which 
observed during TV spots in our experiments: Instead of the s
ing factor is having been adjusted for every frame, it had be
altered only every second frame. This resulted in a staircase-
pattern such as shown in Figure 3.

To reduce possible false hits, the actual algorithm calculates
standard deviation individually for each of the three RGB co
channel. The same characteristic pattern holds for each of t
since the intensity can be viewed as a linear combination of 
RGB pixel values ( ). Note,
however, that unlike all other requirements, the slope requirem
should only be applied to the color channel with the steep
slope.

The parameters of the fade detection algorithm are summarize
Table 4.

2.4 Edge-based Contrast
Dissolves are produced by fading out the outgoing
and fading in the incoming shot. Two types of dis-
solves are common: the cross-dissolve and the addi-
tive dissolve [1]. Their respective scaling functions
for incoming and outgoing shots are shown in Figure
4. Independent of the type of scaling function a spec-
tator observes a loss of contrast and sharpness of the
images during a dissolve that generally reaches its
maximum in the middle of the dissolve. Hence, the
basic idea of the subsequently defined edge-based
contrast feature is to capture and emphasize the loss in
contrast and/or sharpness to enable dissolve detection.

The edge-based contrast feature captures and ampli-
fies the relation between stronger and weaker edges.
Given the edge map  of frame  (we use the
Canny edge detector [4]) and a lower threshold value  for weak and a higher threshold value  for strong
the strengths of strong and weak edge points are summed up by

 and  (1.8)

with 

 and . (1.9)

Then, the following formula defines the edge-based contrast (EC)

, (1.10)

It possesses the following features:

Parameter Description 

minimum length of main linear segment

minimum correlation

minimum slope of the steepest linear segment

maximum standard deviation at the end of a fade-out or at the beginning of fade-in.

Table 4: Parameters of the fade detection algorithm based on the standard deviation of pixel intensities.
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Figure 3: Staircase-like pattern of the stan-
dard deviation of pixel intensities
during fades in TV spots.

fade infade out

Y 0 2125R 0 7154G 0 0721B,+,+,=

lmin

ρmin

γmin

σmax

Cross-Dissolve Additive Dissolve

intensity scaling function of the outgoing shot

intensity scaling function of the incoming shot
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• If an image lacks strong edges, the EC is 0. Examples are night scenes of little contrast and monochrome fram
• If the number of weak edges clearly exceeds the number of strong edges, the EC lies between 0 and 1.
• If the number of weak edges is roughly equivalent to the number of strong edges, the EC is about 1.
• If the number of strong edges clearly exceeds the number of weak edges, the EC lies between 1 and 2.
• If the image contains only strong edges, the EC approaches 2.

Note, that the EC is only little affected by slow local or global motion. However, rapid motion may influence it 
manner similarly to that of a dissolve, since edges get blurred.

Figure 5 depicts some examples of how dissolves temporally influence the EC. It can easily be recognized that a dis
solve coincidences with places of distinct local minima, surrounded by steep flanks. The boundaries of a d
occur in company with the abrupt end of the steep flanks. This characteristic EC pattern of dissolves can be qualita

tively explained for cross-dissolves as follows: Commonly the content within a shot changes only graduall
frame to frame, as does the EC. Consequently, the graph forms a plateau or an easy rise/descent. During a dis
however, the outgoing shot loses its contrast, leading to a reduction of the sum of the strength of strong edge
of the sum of the strength of weak edges. As a result, the EC decreases rapidly, reaching its minimum in the middle
a dissolve, where the strong edges of the outgoing shot are basically gone and the edges of the incoming sh
weak. From that point on, the incoming shot gains in contrast. The sum of the strength of strong edges increa
disadvantage of the sum of the strength of weak edges. Consequently, the EC increases rapidly.

The characteristic dissolve patterns in the graph of the EC can be identified as follows:

1. Remove all small fluctuations by means of a median filter of size m. Fluctuations may be caused by sligh
local and/or global motion. In order to preserve the local minima (i.e. the center of a dissolve) and s
rims (i.e. the borders of a dissolve) apply the median filter only to those  values in the graph 
none of the following conditions are true:

 or .

2. Calculate the relative change  from  to , i. e. .
3. Find all local minima. Local minima are identified as points in the EC time series of the properties

 and . 
4. For each local minimum at frame i do:

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

8000 8050 8100 8150 8200 8250 8300 8350 8400 8450

E
C

(i)

frame number i

dissolves

Figure 5: Some examples of how dissolves temporally influence the EC
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4.1. // Determine left boundary:
4.1.1. Start at the local minimum, i.e. set 

4.1.2. While ( ) l--

4.1.3. While ( ) l--
4.1.4. Calculate the line of regression through . If ( ) the

discard the candidate dissolve and continue loop, i.e. select next local minimum a
to 4.1, otherwise decrement l until  deviates more than  from the line o
regression or the correlation decreases.

4.2. Determine right boundary correspondingly. Let the right boundary be at frame 
4.3. If  and  and if the frame

sequence  contains no fade, then the frame sequence  repres
candidate dissolve.

4.4. Experiments show, that for some, especially long lasting dissolves several nearby candida
solves may be found. Therefore, all candidate dissolves whose local distance is within a 
of  are integrated into one solution by choosing the longest candidate dissolve
the highest correlation.

Table 5 summarized the parameters of the dissolve detection algorithm.

Note that in some video genres such as commercials or music clips of love songs dissolves may occur in rapi
sion. It therefore may happen that their determined boundaries overlap slightly.

3  Quality of Detection

3.1 Comparison Procedure
Given the total number of edits, their locations and types, the performance of the different algorithms are m
by three basic numbers:

• hit rate  h which is the ratio of correctly detected shot boundaries to its actual number
• miss rate m which is the ratio of missed shot boundaries to the actual number of shot boundaries, i.e.

1.0 - h
• false hits f which is the ratio of falsely detected shot boundaries to the actual number of shot bound-

aries

The assignment of detected hard cuts to one of these three cases is simple, since a hard cut does not have a
and thus occurs at an unambiguous time. However, this is not true of fades and dissolves. They also have a
Since the main concern of any shot detection algorithm is to detect either edits in general or a certain type of
decided to count each detected edit as a hit if it temporally overlapped with an actual edit of that type. Multiple
tions of the same edit were counted only once. 

The hit and false hit rate of each algorithm is influenced by the setting of its parameters. Therefore, we will sh
the performance will change with the parameters and what good values are. For each algorithm we will a
qualitatively how well the extent of the edits was determined.

3.2 Video Test Set
The shot boundary detection algorithms were applied to four videos with diverse features (see Table 6). The
were digitized at 25 fps in M-JPEG at a resolution of 360x270 and a compression of 1:15. A human observe
mined for each video the precise locations and duration of the edits. 

The first video, named “Dissolves”, was selected especially for the measurement of the dissolve detection

Parameter Description

m Size of median filter.

k, , Thresholds for determination of dissolve boundaries

Required minimal correlation for left-hand and right-hand flank around the dissolve center

Required minimal EC difference between the left/right borders and the center of a dissolve.

Required minimal length of a dissolve

Table 5: Parameters of the dissolve detection algorithm based on the edge-based contrast feature.
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mance. It therefore consists of 276 dissolves lasting from only 0.16 sec. (4 frames) up to over 5 sec. (>100 
The first third was digitized from a live concert called “Night of the Proms ‘97” showing artists on stage, light
headlights. This sequence is somewhat tricky given its dark background and the rapid lighting changes. The 
thirds of that sequence were captured from TV commercials. In contrast to it, “Groundhog Day” is a very ca
ture film. Its average duration of shots is much longer, and it exhibits some distinct camera operations. “Heute
resentative of a typical newscast. Anchor person and reports are shown in turn. Within this video sample the
some spatially restricted edits. They were not classified as edits in our work. The final video sample contains o
sode of “Baywatch”. It was recorded together with its commercials.

3.3 Experimental Results

3.3.1 Color Histogram Differences

This hard cut detection algorithm is controlled by 3 parameters. The most important one is . Its effects on h
hit and miss rates at  and  are shown in Figure 6 for the four video sequences. False hits and m
mainly caused by action scenes and a several artistic edits. Figure 6 also shows a common problem. There 
bal threshold that gives best results for all types of videos. A local threshold such as that proposed in [13] may
that problem.

3.3.2 Edge Change Ratio

Many parameters of this algorithm have to be chosen properly. In general, the following statements are true:

• The hit rate and the number of false hits decreases for hard cuts and increases for dissolves with increasinr.
• A high value of  lowers the hit and false hit rates since it reduces the number of maxima found, 

number of possible edit locations.
• A larger radius s for isolated local peaks reduces the hit and false hit rates.
• A higher threshold  also reduces the hit and false hit rates since some dissolves will fall short of the r

minimum length.
• An increase in  results in a shift from hard cuts to dissolves. 
• The parameter  helps to suppress long-lasting and thus difficult-to-detect edits. The higher its

the lower the false hit rate.

The following parameter setting yields the best experimental results (see Table 7)

Video Dissolves Groundhog Day Heute (Newscast) Baywatch

duration (hh:mm) 00:17 01:34 00:11 00:51 02:53

# of cuts 140 773 78 976 1896

# of fades 12 7 1 19 39

# of dissolves 276 6 2 101 385

total # of shots 429 787 82 1097 2395

Ø shot duration 2.36 7.19 7.56 2.77

Table 6: The test video set.

Parameter r s

Value 4 0.05 10 0.01 20 0.4

Video
Hard Cuts Fades Dissolves

hit rate false hits hit rate false hits hit rate false hits

Dissolves 90.00% 17.86% 0.00% 27.27% 71.74% 48.91%

Groundhog Day 97.41% 13.71% 100.00% 657.14% 66.67% 37100.00%

Heute 91.03% 12.82% 0.00% 100.00% 0.00% 5500.00%

Baywatch 69.36% 9.32% 47.37% 526.32% 66.34% 707.92%

Table 7: Performance of the edge change ratio in detecting various edit types.

Σ

θc
lc 5= sc 2=

sumregreg

θn

θc
transradmax

sumregmin θn transradmax θc
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Some results are striking. Firstly, hard cut detection based on the edge change ratio does not outperform that
the color histogram differences, although the computational burden is much greater. For “Baywatch” it is even
icantly lower. Also, the fade detection performs much worse than fade detection based on the standard dev
pixel intensities. Cuts from or to black frames were often misclassified as fades. Even more disappointing
results for dissolves. The false hit rate was so high that the algorithm can only be classified as “not useful” 
task. Many dissolves did not show the characteristic behavior described by Zabih et.al. in the ECR time series. This is
especially true for long dissolves in which the ECR change is so slight that it is hidden by noise. Despite the glo
motion compensation it was nonetheless very sensitive to motion.

The algorithm cannot be used to determine the boundaries of fades and dissolves. At the borders of disso
ECR virtually fails to respond at all. The same is true for the left and right borders of a fade-out and fade-in, 
tively.

3.3.3 Standard Deviation of Pixel Intensities

The performance of the fade detector was always very high. On average, the parameter combination ,
,  and lmin = 10 yielded the best balanced performance (see Table 8). The hit rate varied be

83.3% and 100%, while there were 0 false hits for “Dissolves” and “Heute”. The false hit rates of 85% for “Gr
hog Day” and 68.42% for “Baywatch” seem to suggest that the detector has difficulties with feature films and
series, but this is not true. Instead, the false hit rate documents that various artistic edits have been used whic
fades in the strict sense, though they have the same effect. An example is shown in Figure 7, where the came
in rapidly to an open, but dark mouth. In another example, the camera was part of a fight between two people
video swiveled from the clothing to the monochrome sand of the beach.

In most cases the fade detector was also able to determine the boundaries of a fade to within about  frame

0

20

40

60

80

100

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

hi
t r

at
e/

fa
ls

e 
hi

t r
at

e 
in

 %

threshold

hit rate
false hits
miss rate

0

20

40

60

80

100

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

hi
t r

at
e/

fa
ls

e 
hi

t r
at

e 
in

 %

threshold

hit rate
false hits
miss rate

0

20

40

60

80

100

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

hi
t r

at
e/

fa
ls

e 
hi

t r
at

e 
in

 %

threshold

hit rate
false hits
miss rate

0

20

40

60

80

100

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

hi
t r

at
e 

/ f
al

se
 h

it 
ra

te
 in

 %

threshold

hit rate
false hits
miss rate

Figure 6: Performance of hard cut detection with color histogram differences in dependence of threshold 
at  and 

θc
lc 5= sc 2=

(a) Groundhog Day (b) Heute

(c) Baywatch (d) Dissolves

ρmin 0.9=
γmin 0.5= σmax 10=

1±
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the fade’s monochrome frames and to within  frames towards the fade’s other boundary.

3.3.4 Contrast Change

There is great diversity in the duration of dissolves. Some last only a fraction of a second, others last up to 5 
The required minimum duration of dissolves  therefore orients itself to the shortest dissolves occur
our test videos in order not to lower the hit rate from the outset. It was set to 4 frames at 25 fps. The required
tion  of a dissolve’s flanks was determined experimentally to be between 0.85 and 0.9.

The parameters k,  and  have the strongest influence on the number and width of found dissolves. Setti
 too low will result in a high false hit rate; setting them too high, in particular the irregular dissolves will be

Good results were achieved with k = 5 and .  determines the final extension of the dissolves. W
 in the experiments.

Parameter  has the deepest impact on the hit and false hit rates as shown in Figure 8. The false hits decre
cally with the increase of . 

The results of dissolve detection are shown in the second column of Table 9. The hit rate ranges from 73.3% 
for “Dissolves”, “Heute” and “Baywatch”. Only “Groundhog Day” shows a very low hit rate of 16.67%. Howe
the dissolves in “Groundhog Day” are not representative. For instance, the first dissolve blends from a clou
into another cloudy sky. Even the author did not recognize the dissolve the first time!

Not all dissolves exhibit such a characteristic pattern as in the illustration in Figure 5. There are numerous si

 /  /  / lmin 0,85 / 1,0 / 10 / 10 0.90 / 0,5 / 10 / 10 0,90 / 0,5 / 15 / 10

Video hits false hits hits false hits hits false hits

Dissolves 75.00% 8.33% 83.33% 0.00% 100.00% 0.00%

Groundhog Day 85.71% 57.14% 100.00% 85.71% 100.00% 242.86%

Heute 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

Baywatch 94.74% 36.84% 94.74% 68.42% 94.74% 231.58%

Table 8: Performance of the fade detector using the standard deviation of pixel intensities.

ρmin γmin σmax

2±

Figure 7: Example of a fade-like edit, which was detected by the fade detector but counted as a false hit, since it
was not a fade in the strict sense.
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Figure 8: Dependence of the hit/false hit rates of dis-
solve detection from  (video=“Dissolves”,

, , k=5,  and
)

δ
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Figure 9: Text occurrences and their effects on the EC.
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which degrade the characteristic pattern, such as very long dissolves. Furthermore, there are also effects w
result in a similar EC pattern. One example is the superimposition of text (see Figure 9). Several steep flanks 
by the fading in and out of the actors’ names in the opening sequence of “Groundhog Day” are clearly visib
higher EC values belong to frames with text, the lower to text-free frames. At the transition the text is smoothly
in and out. If the fade-out of the previous actor’s name is followed immediately by the fade-in of the next 
name, the EC pattern is identical to that of a dissolve and can only be ruled out by the proper choice of 

Enhancements

The main problem encountered by any dissolve detection method is that there exist many other events that m
the same pattern in the feature graph. One way to reduce the false hits is to check for every candidate 
whether its boundary frames still qualify for a hard cut after removal of the candidate dissolve. Table 9 summ
the results for various . It demonstrates clearly that this scheme drastically reduces the false hits, while the
decreases only slightly. With  the false hits for “Groundhog Day” are reduced from 8500% to 400%,
for “Heute” from 1150% to 150%, those for “Baywatch” from 558% to 182% and those for “Dissolves” from 35
10%. Note that at  the contrast feature always with the exception of “Groundhog Day” shows a hig
rate at a much lower rate of false hits than does the ECR feature (see Table 9).

4  Conclusion and Future Research Direction
The performance of various existing shot detection algorithms was tested on a diverse set of video sequen
evaluation focused on the detection, localization and recognition of the three most important types of edits. It
out that the performance of the universal shot detection boundary algorithm based on the edge change rati
justify the great computational burden. Its performance was always inferior to that of the specialized shot bo
detectors based on color histogram differences, standard deviation of pixel intensities and edge-based contra

The recognition of hard cuts was very reliable in most cases. Hit rates of 95% at 5% false hits are attain
essence, the false hits are caused by dark or very dynamic scenes with strong object motion, blasts or fas
pans. Fade recognition not only worked extremely reliably but also very precisely. False hits were mostly ca
artistic, fade-like edits. The performance of the dissolve detectors is more or less dissatisfying. Hit rates of 8
false hit rate of 20% were achieved for the test video “Dissolves”, however, in real videos with only few diss
these percentages are not attainable. Normally, the number of false hits exceeds the number of actual dissolv

All detection algorithms are influenced negatively by global and local motion in the video. Therefore, 
approaches should concentrate particularly on identification of local and global motion. Several research grou
proposed use of the audio information to enhance shot boundary detection. In our experience, this will help
very specific domains such video conferences. Doubtless, a “perfect” shot boundary detection algorithm will 
feasible once the video contents are understood better by computers.

The code for running the various shot boundary detection algorithms can be downloaded via ftp from th
ftp.informatik.uni-mannheim.de or via WWW at http://www.informatik.uni-mannheim.de/~lienhart/MoCA/.

test video
ECR

hits false hits hits false hits hits false hits hits false hits

Dissolves %
#

81.5
255

34.8
96

77.90
215

20.3
56

56.2
155

10.2
28

71.7
198

48.9
135

Groundhog Day %
#

16.7
1

8500
255

16.67
1

3100
93

16.7
1

400
24

66.7
4

37100
1113

Heute %
#

100
2

1150
23

100
2

700
14

100.0
2

150
3

0.0
0

5500
110

Baywatch %
#

73.3
74

558.4
564

71.3
72

313.9
317

54.5
55

182.2
184

66.4
67

707.9
715

Table 9: Performance of dissolve detection at , , k = 5, , , .

δ

θc
θc 1.6=

θc 0.8=

θc 0= θc 0.8= θc 1.6=

disslenmin 4= ρmin 0.85= θk 0.015= θn 0.005= δ 0.1=
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