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A large number of shot boundary detection, or equivalently, transition detection techniques have been
developed in recent years. They all can be classified based on a few core concepts underlying the different
detection schemes. This survey emphasizes those different core concepts underlying the different detection
schemes for the three most widely used video transition effects: hard cuts, fades and dissolves.
Representative of each concept one or a few very sound and thoroughly tested approaches are present in
detail, while others are just listed. Whenever reliable performance numbers could be found in the literature,
they are mentioned. Guidelines for practitioners in video processing are also given.
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1. Introduction

In recent years the research on automatic shot boundary detection techniques has exploded,
and one may wonder why solving the problem of automatic shot boundary detection is that
important. There are various reasons why reliable transition detection is needed: Firstly,
shots are generally considered as the elementary units constituting a video. Detecting shot
boundaries thus means recovering those elementary video units, which in turn provide the
ground for nearly all existing video abstraction and high-level video segmentation
algorithms15,17,26. Secondly, during video production each transition type is chosen
carefully in order to support the content and context of the video sequences. Automatically
recovering all their positions and types, therefore, may help the computer to deduce high-
level semantics. For instance, in feature films dissolves are often used to convey a passage
of time4. Also dissolves occur much more often in features films, documentaries,
biographical and scenic video material than in newscasts, sports, comedy and shows. The
opposite is true for wipes. Therefore, automatic detection of transitions and their type can
be used for automatic recognition of the video genre9. Shot detection is also useful to color
black-and-white movies. For each shot a different gray-to-color look-up table is chosen.

This survey tries to present the few core concepts underlying research work on automatic
transition detection. It emphasizes algorithms specialized in detecting specific types of
transitions. Representative of each concept only one or a few very sound and thoroughly
tested approaches are present in detail, while others are just listed. This survey does not try
to give an exhaustive listing of all relevant work, but to help practitioners and engineers
new in the field to get a thorough overview of the current state of the art in automatic shot



boundary detection.

Often shot boundary detection algorithms are strictly classified by whether the originally
proposed detection algorithm was designed to operate on uncompressed or compressed
videos streams. In this survey, we do not make this artificial distinction, since practically
all proposed detection algorithms can be applied to the compressed as well as to the
uncompressed domain. There may be slight differences in how certain features such as
color histograms, edge maps, and motion information are derived, but the core concept of
the classification algorithm and the kind of feature(s) that is exploited remains basically
unaffected by that choice. This is especially true since compressed processing often only
stands for working on so-called DC images, i.e., images which are sub-sampled by a factor
of 8 after applying an 8x8 block filter25.

Shot transitions can be classified into four classes based on the 2D image transformations
applied during transition production13:

(i) Identity class: Neither of the two shots involved are modified, and no additional edit
frames are added. Only hard cuts qualify for this class.

(ii) Spatial Class: Some spatial transformations are applied to the two shots involved.
Examples are wipe, page turn, slide, and iris effects.

(iii) Chromatic Class: Some color space transformations are applied to the two shots
involved. Examples are fade and dissolve effects.

(iv) Spatio-Chromatic Class: Some spatial as well as some color space transformations are
applied to the two shots involved. All morphing effects fall into this category. Note
that in practice often all effects in the spatial class in principle fall into the spatio-chro-
matic class since some chromatic transformations are always applied at the boundary
between the pixels of the first and second shot such as anti-aliasing, smoothing or
shading operations.

An alternative shot transition classification scheme more directed towards transition
detection classifies the different transition effects based on whether the two shots involved
are spatially and/or temporally well separated (see Table 1)16. For instance, for hard cuts
and fades the two sequences involved are temporally and spatially well-separated. Their
detection comes down to identifying that the video signal is abruptly governed by a new
statistical process, as in the case of hard cuts, or that the video signal has been scaled by
some mathematically simple and well-defined function, as in the case of fades. For wipes
the two video sequences involved in the transition are spatially well-separated at any time.
This is not the case for dissolves. At any time two video sequences are temporally as well
as spatially intermingled, requiring dissolve detection algorithms to deal with a two source



problem (see Table 1).

The paper is structured as follows. A section is devoted to each of the three most common
transition types. Section 2 discusses the various principles behind hard cut detection and
Section 3 those behind fade detection, before Section 4 focuses on dissolves. For each
transition type, a diverse set of representative approaches is presented. Whenever possible,
performance numbers and pointers to comparative surveys are mentioned. Section 5
summarizes and concludes the paper.

2. Hard Cut Detection

Hard cuts are by far the most common transition effect between shots. A hard cut is defined
as the direct concatenation of two shots and . No transitional frames are
involved. Thus the resulting sequenceS(x,y,t)is formally given by

(eq. 1)

wherethardcutdenotes the time stamp of the first frame after the hard cut andu-1(t) the unit
step function (1 for , 0 else).

A hard cut produces a temporal visual discontinuity in the video stream. Existing hard cut
detection algorithms differ in the feature(s) used to measure that discontinuity and in the
classification technique used to detect that discontinuity. However they almost all define
hard cuts as isolated peaks in the feature’s time series.

2.1. Features to measure visual discontinuity

2.1.1. Intensity/color histograms

Almost all possible variations in calculating intensity or color histogram differences
between two contiguous frames have been proposed for hard cut detection such as using
bin-wise differences (with or without the exploitation of a color similarity matrix), chi-
square tests, or histogram intersections combined with different color spaces such as RGB,
HSV, YIQ, Lab, Luv, Munsell and opponent colors. Instead of listing all those
combinations, we only like to mention that in practice the simple bin-wise difference
between frame-based RGB or YUV color histograms with 4x4x4 or 8x8x8 bins has proven

Table 1: Transition classification scheme for transition detection

type of
transition

The two involved sequences are

spatially separated temporally separated

hard cut yes yes

fade yes yes

wipe, door, slide yes no

dissolve no no

S1 x y t, ,( ) S2 x y t, ,( )

S x y t, ,( ) 1 u 1– t thardcut–( )–( ) S1 x y t, ,( )⋅ u 1– t thardcut–( ) S2 x y t, ,( )⋅+=

t 0≥



to be a simple, yet effective method for detecting hard cuts11,14,20,24. For a detailed
performance characterization of the various histogram-based hard cut detection flavours
the reader should consult5,7,11,18. Note that in general the performance improvement that can
be attained by the right choice of the discontinuity classification algorithm exceeds by far
the one that can be attained by fine-tuning the color space and the histogram difference
function.

2.1.2. Edges/contours

Temporal visual discontinuity usually comes along with structural discontinuity, i.e., the
edges of objects in the last frame before the hard cut usually cannot be found in the first
frame after the hard cut, and the edges of objects in the first frame after the hard cut in turn
usually cannot be found in the last frame before the hard cut. The so-called edge change
ratio proposed by Zahib et al. exactly exploits this fact28,29.

The edge change ratio (ECR) is defined as follows. Let be the number of edge pixels in
framen, and and the number of entering and exiting edge pixels in framesn and
n-1, respectively. Then

, (1.1)

defines the edge change ratio between framesn-1 andn. It ranges from 0 to 1. In28,
the edges are calculated by the Canny edge detector6. In order to make the measure robust
against object motion, edge pixels in one image which have edge pixels nearby in the other
image (e.g. within 6 pixels’ distance) are not regarded as entering or exiting edge pixels.
Moreover, a global motion compensation based on the Hausdorff distance was performed
before the calculation of theECR. Figure 1 visualizes the calculation of theECR.

A comparison of ECR-based hard cut detection algorithms against histogram and motion-
based algorithms can be found in7,18,16. For hard cut detection usually the ECR-based
algorithms do not outperform the above simple color histogram-based methods, but are
computationally much more expensive. The strength of theECRfeature is that it can also
be used for fade, dissolve and wipe detection28,29.

2.1.3. Motion

Hard cuts are also accompanied by motion discontinuity. The simplest measure of motion
is the pixel-wise frame difference. At hard cut locations the pixel-wise difference is usually
large7,30,18. Unfortunately, this simple motion measure is very susceptible to object and
global camera motion. Even if global camera motion is compensated, object motion still
poses a significant challenge to this feature.

More sophisticated motion features calculate the optical flow and use the number and
distribution of motion vectors and the strength of the residual derived by block matching as
features1,18,22. However, as Gargi et al. mentioned in11, block-matching based methods do
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not do well compared to intensity/color histogram-based algorithms. Similar results are
reported in18 as well. The core problem with all motion features arises from the fact that
reliable motion estimation is far more difficult than detecting visual discontinuity, and thus
less reliable. A simple detection problem is basically replaced by a much more complicated
one.

Fig. 1. Calculation Graph of the Edge Change Ratio (ECR)
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2.2. Classification of discontinuity

2.2.1. Global threshold

The input to a global thesholding technique is a time series of feature values of a measure
of discontinuity, which in the ideal case is supposed to show a single large peak at hard cut
locations. A hard cut is declared each time the feature valuef(t) surpasses a globally fixed
threshold.

A common problem of global thresholding is that in practice it is impossible to find a single
global threshold that works with all kinds of video material14. Therefore, global thresholds
should be avoided.

2.2.2. Adaptive threshold

The input to an adaptive thesholding technique is a time series of feature values of a
measure of discontinuity, which in the ideal case is supposed to show a single large peak at
hard cut locations. A hard cut is detected based on the difference of the current feature
valuesf(t) from its local neighborhood. Usually a temporal sliding window of size 2w+1
centered around the current time instancet is chosen to represent the local neighborhood.
A hard cut is declared if all the following conditions are satisfied:

(i) f(t) takes on the maximum value inside of the window, i.e.,
25, 24.

(ii) The ratio between f(t) and the second largest value
( ) surpasses a second thresholdth2

25. Alternatively
Truong et al. propose to use the following criterion:

. (eq. 2)

If the ratio surpasses a given threshold, a hard cut is declared. The constant c is added
to the ratio calculation in order to deal with freeze frames, in which case the measure
of discontinuity would be almost zero, thus making the determination of a good adap-
tive threshold difficult. Note that this constant c could also be added to the first crite-
rion by requiring that the ratio between the largest valuef(t) and the maximum of the
second largest valuef(t2) and c surpassesth2.

Both adaptive thresholding techniques in combination with color histogram differences
between frames have been proven to lead to high performance25, 24, 11.

3. Fade Detection

A fade sequenceS(x,y,t)of durationT is defined as scaling the pixel intensities/colors of a
video sequence by a temporally monotone scaling functionf(t):

f t( ) f x( ) x t w– t w+,[ ]∈∀≥

f t2( )
f t2( ) f x( ) x t w– t w+,[ ]\{t}∈∀≥

ratio f t( ) c+( )
c f x( )'

x t w– t w+,[ ]\{t}∈
�+

-------------------------------------------------------=

S1 x y t, ,( )



, (eq. 3)

For a fade-in it is additionally required thatf(0)=0 and f(T)=1, while a fade-out requires
f(T)=0 andf(0)=1. Oftenf(t) is linear, i.e. for a fade-in and for a
fade-out. Also often a fade-out is directly followed by a fade-in. Such a sequence is called
a fade group and often considered as one transition.

3.1. Standard deviation of pixel intensities

During fades the pixels’ intensity/color
scaling is clearly visible in the time series
of its standard deviation as depicted in
Figure 214. Assuming thatS1 is (roughly)
an ergodic random process, the variance
of S1 becomes independent oft and it
follows14:

. (eq. 4)

For the pixels’ intensity/color standard
deviation we get

. (eq. 5)

Thus the scaling functionf(t) is directly revealed in the standard deviation of the pixels’
intensity/color distribution.

Lienhart14 proposes to first locate all monochrome frames in the video as potential start/end
points of fades. Monochrome frames are identified as frames with close to zero.
Fades are then detected by starting to search in both directions for a linear increase in the
pixels’ intensity/color standard deviation. Linear increase is detected by means of
evaluating the error introduced by approximating the curve through a straight line (linear
regression). Only if the absolute value of the correlation and the slope of the calculated best
fitting line surpasses certain thresholds, and only if the detected duration falls into the
typical range, is a fade declared. On a large and very difficult video test set, an average hit
rate of 87% has been reported at a small false alarm rate of 30%14.

An alternative approach also based on the variance of pixel intensities is proposed by
Alattar3. Fades are detected first by recording all negative spikes in the second order
difference of the pixel intensity variance time series, and then ensuring that the first order
difference of the mean curve is relatively constant next to the negative spike.

A combination of both approaches is presented by Truong et al.24. They report a very high
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Fig. 2. Characteristic pattern of the standard deviation of
pixel intensities during a fade-in and fade-out14.
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recall rate of 93.3% at a precision rate of 82.4% on their large video test set containing 111
fades. Their algorithm works as follows:

(i) Determine all monochrome frames

(ii) Keep all monochrome frames which are next to a large negative spike in the second
order difference curve of the intensity variance. Note that such a spike can be caused
by motion also.

(iii) Check whether the smoothed first order difference curve of the mean intensity remains
relatively constant and does not change its sign during a fade sequence. It is also
required that the absolute value of the slope of the smoothed first order difference
exceeds some large threshold, and that the intensity variance of the first and last frame
of a fade-out and fade-in, respectively, exceeds some threshold.

3.2. Edges/contours

During a fade-out object contours (i.e., object edges) gradually disappear, while during a
fade-in they gradually show up. One measure of the change of contours is the edge change
ratio (ECR) as proposed by Zabih et al.28 (see Section 2.1.2 for a definition ofECR). During
a fade-in/out the number of entering/exiting edges predominates28,29 the exiting/entering
edges. In other words, during a fade-in , and the reverse is
true during a fade-out. In addition, and unlike hard cuts which only lead to a single peak in
theECRtime series, fades and other gradual transitions lead to an interval where theECR
is elevated. Zabih et al. exploited these features directly in their shot detection approach28,29.
Two variations of this approach can be found in18 and27.

In practice, the contour-based approach again did not perform as well as the approaches
based on the intensity standard deviation14,18.

4. Dissolve Detection

A dissolve sequenceD(x,y,t)of durationT is defined as the mixture of two video sequences
and , where the first sequence is fading out while the second is fading in:

, (eq. 6)

Therefore, sometimes the term cross-fade is also used. The most common dissolve types
are cross-dissolves with

, (eq. 7)

They are much more common than the second most common dissolve type, which are
additive dissolves with

ECRin ECRout» ECRin ECRout«
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, , (eq. 8)

, , (eq. 9)

Their intensity scaling functions are depicted in Figure 3. Since cross-dissolves are so much
more common than additive dissolves, we will restrict the subsequent discussion to cross
dissolves. This is also in line with nearly all dissolve detection work. Only16 explicitly tries
to take additive dissolves into account as well.

Types of dissolves.Basically three different kinds of dissolves can be distinguished based
on the visual difference between the two shots involved:

(i) The two shots involved have different color distributions. Thus, they are different
enough so that a hard cut would be detected between them if the dissolve sequence
were removed.

(ii) The two shots involved have similar color distributions which a color histogram-based
hard cut detection algorithm would not detect, however, the structure between the
images is different enough to be detectable by an edge-based algorithm. An example is
a transition from one cloud scene to another.

(iii) The two shots involved have similar color distributions and similar spatial layout. This
type of dissolve represents a special type of morphing. One example of such a dissolve
can be found in the movie Aliens where Ripley’s sleeping face matches graphically
the curve of the earth4.

Usually dissolve detection approaches concentrate only on the first two types of dissolves,
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1 if t c1≤( )
T t–

T c1–
------------- else

�
�
�
�
�

= t 0 T,[ ]∈ c1 ]0 T, [=

f2 t( )
t

c2
----- if t c2≤( )

1 else�
�
�
�
�

= t 0 T,[ ]∈ c2 ]0 T, [=

Cross-Dissolve Additive Dissolve

intensity scaling functionf1 of the outgoing shot

intensity scaling functionf2 of the incoming shot

Fig. 3. Intensity scaling functions of two popular dissolve types14,16
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since they clearly mark transitions between semantically different shots. The morphing-like
dissolves are ignored since they only represent a transition from a technical point of view
and not from a semantic point of view.

4.1. Temporal change of the pixel intensities

Assuming a cross-dissolve without motion inS1 andS2 during the dissolve (i.e., the frames
of the two shots involved are basically frozen), the following holds true

, (eq. 10)

Thus, a dissolve with little motion can be detected by searching for temporal ranges in a
video where most of the pixels in the video change roughly linearly over time13.
Unfortunately, this feature is very noise and motion sensitive, so that dissolve detectors
based on this feature tend to miss some dissolves at a very large false alarm rate.

Gu et al.12present several techniques to make this approach more motion and noise tolerant.
They propose to substantially smooth the images in order to reduce the impact of noise and
motion. In fact, they use the DC values of the luminance blocks in the MPEG videos. Then
the percentage of blocks is calculated those temporal absolute DC differences fall into
ranges, which are typical for dissolves12. A dissolve is declared if the percentage
consistently exceeds a threshold over a duration which is typical for dissolves (10-60
frames at 29.95 fps).

It it obvious that the cross-dissolve detection approach can be extended to additive
dissolves. For an additive dissolve we have:

, , (eq. 11)

and

, , , (eq. 12)

respectively.

Another very interesting approach was proposed by Nam et al.21. They correctly observed
that the features derived from actual dissolve transitions behave in a far more complicated
manner due to motion and/or post-processing operations than what the analysis under the
simplified assumptions made above actually suggests. However, independent of what edit
function was used to generate the dissolve effect and how it was degraded, the artificial
character of the temporal development of the pixels should still be visible in the feature’s
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time series. Nam et al. propose to approximate the temporal development of each DC pixel
in the video by calculating the fitness of a B-spline approximation over a window of L=31
frames. During dissolves the standard deviation in the temporal development of the DC
pixels should be large; however, the error introduced by the B-spline approximation should
be small due to the artificial character of the transition. In contrast, for motion scenes and
other post-processing noise, the approximation error should be large. In detail, the inter-
frame variance is defined as

where (eq. 13)

Then, the error introduced by the B-spline approximation becomes

(eq. 14)

if denotes the B-spline approximation. During dissolves the fitting error should
be small due to the linear-like development, while the inter-frame variance is high. For
static scenes the variance as well as the fitting error are small, and sequences with camera
and/or object motion will have a high variance as well as a high fitting error. A formula to
set the thresholds adaptively based on the fitting error and variance is provided in21.

4.2. Temporal change of the frame-based intensity variance

Given the above dissolve definition and assumingS1 andS2 to be statistically independent
with intensity variances and , the intensity
variance is given by

. (eq. 15)

Assuming further thatS1 andS2 are (roughly) ergodic random processes2, the variance of
S1 andS2 become independent oft:

. (eq. 16)
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with (eq. 17)

From this it can be seen directly that the frame-based intensity variance curve of an ideal
dissolve has a parabolic shape. Thus, the first order derivative before and after a dissolve is
zero and a positive constant during a dissolve.

This insight was first published by Alattar2 and many other researchers have built on it
8,12,19,23,24. Alattar proposed to exploit this feature by approximating the second derivative
by means of the second-order difference. In this approximation, two large negative spikes
are introduced at the boundaries of the dissolves (discontinuities in the continuous case).
He used these large negative spikes to detect dissolve candidates as two large negative
spikes which are less apart than a given constant. In addition, Alattar required the average
value of the second order difference to be above a given positive constant within a dissolve.

In practice, however, the two large negative spikes at the beginning and end of a dissolve
are often not that pronounced due to noise and motion in the video. Therefore, Truong et
al. propose to exploit the facts that23,24

(i) the first derivative during a cross-dissolve should be monotonically increasing from a
negative value up to a positive value,

(ii) the intensity variances of the two shots involved should be larger than a minimal
thresholdTminVar (One of the variances and can be close to zero only in the
case of a fade), and

(iii) the actual dissolve duration usually falls between two well defined thresholdsTDmin /
TDmax.

Given the above thresholds it can be directly derived that the first derivative will change
linearly from

to . (eq. 18)

Truong et al. propose to trigger the detection of dissolve candidates by all zero crossing
sequences in the smoothed first order difference which comply with the above upper and
lower threshold bounds and which are almost monotonically increasing. In addition,
relaxations of the following conditions are checked too, and can be derived from an ideal
cross-dissolve:
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, (eq. 19)

, and (eq. 20)

(eq. 21)

The approach was tested thoroughly on two hours of video, and a recall of 82.2% at a
precision of 75.1% has been reported24.

4.3. Edges/contours

During dissolves object contours gradually disappear and new object contours gradually
show up. As a consequence, the perceived contrast decreases toward the center of a
dissolve.

One measure of contour changes is the edge change ratio (ECR), as already mentioned28.
During the first half of a dissolve the number of exiting edge pixels is large, while the
number of entering edge pixels is large during the second half. Zabih et al. exploit this
feature in their shot detection approach28,29.

Although good hit rates have been reported in practice for theECR-based approaches, the
false alarm rate was usually very large (>100%) due to the feature’s sensitivity to object
motion. Also, the method does not seem to be very suitable for finding the actual
boundaries of dissolves since the values of and return to normal values
much earlier than the boundaries are reached.

Lienhart14 tried to avoid the motion sensitivity by analyzing the change in the average edge
strength over time, which can be calculated on a per frame basis. The so-callededge-based
contrast (EC) captures and amplifies the relation between stronger and weaker edges.
Given the edge map of frame as well as a lower threshold value for
weak and a higher threshold value for strong edges, the following formula defines the
edge-based contrast:

, (1.2)
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, (eq. 22)
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Figure 4 depicts some examples of how dissolves temporally influence theEC. It can easily
be recognized that a dissolve coincides with distinct local minima, surrounded by steep
flanks. The boundaries of a dissolve occur in company with the abrupt end of the steep
flanks. Dissolve locations and their extent are thus detected by searching first for those

distinct local minima, and then extending the detection to both sides until the error
produced by linear approximation of each flank surpasses a threshold. If the resulting
detection duration falls inside the target dissolve duration range, a dissolve is recognized.

On a difficult video test set, this dissolve detection approach outperformed theECR-based
approach at a much lower false alarm rate. However, the reported average false alarm rate
of 59% is still too high for most practical cases14.

4.4. Multi-resolution pattern recognition

A novel, and conceptually somewhat different, approach from the ones presented so far has
been taken in16. It is less concerned about the actual feature used for dissolve detection (all
of the above mentioned can be used), but more with a general sound framework to
recognize transition and special effects in general. The proposed overall system consists of
two large components:

(1) A transition detector training system including a transition synthesizer and

(2) A fully multi-resolution transition detection system.

In principle, the transition synthesizer can create an infinite number of dissolve examples
from a given video database. It is used in their approach to create a large training and
validation set of dissolves with a fixed length and a fixed position of the dissolve center.
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‘Large’ means tens of thousands of examples. These sets are then used to train iteratively
with the so-called bootstrap method a heuristically optimal classifier. Trained artificial
neural networks as well as support vector machines serve as classifiers, and the sum of the
magnitude of the directional gradients is used as a simple contrast strength
measure:

. (eq. 23)

Dissolves of various durations are then detected by means of a multi-resolution search. In
a first step, the frame-based is derived (Figure 5(a)). They form a time series of
feature values, which is re-scaled to a full set of time series at different sampling rates,
creating a time series pyramid (Figure 5(b)). At each scale, a fixed-size sliding window runs
over the time series, serving as the input to a fixed-scale fixed-position dissolve detector
(Figure 5(c)). The fixed-scale fixed position dissolve detector outputs the probability that
the feature sequence in the window was produced by a dissolve. This results in a set of time
series of dissolve probabilities at the various scales (Figure 5(d)). For scale integration, all
probability times series are rescaled to the original time scale (Figure 5(e)), and then
integrated into a final answer about the probability of a dissolve transition at a certain
location and temporal extent (Figure 5(f)).

Lienhart16reports a detection rate of 75% at an acceptable false alarm rate of 16% on a test
video set for which, so far, the best reported detection and false alarm rate had been 66%
and 59%, respectively, using theedge change ratio29 or the edge contrast14.

5. Summary and Conclusion

Automatic shot boundary detection algorithms, or equivalently, transition detection
algorithms have reached a high level of maturity. In this survey we focused on the three
most widely used video transition effects: hard cuts, fades and dissolves. The different core
concepts underlying the different detection schemes were presented together with
guidelines for practitioners in video processing. Future research will focus on the less
frequently used transition effects such as wipes, doors, and iris effects and the recovering
of their underlying transformation parameters.
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