
Visible Surface Determination

Dr Nicolas Holzschuch

University of Cape Town

mailto:holzschu@cs.uct.ac.za

Map of the lecture:
basic algorithms

• Image space vs. object space

• Height fields
– floating horizon

– contouring

• Backface removal

• Depth-sort algorithms

• BSP-trees

Map of the lecture:
advanced algorithms

• Area-subdivision

• Scan-line algorithm

• Z-buffer

• Relative costs and best choice

Visible Surface Determination

• Or is it hidden surface removal?

• Complexity: at best equal to sorting
– O(n log n)

• Solving can be done in image space or in
object space
– image space: limited precision, O(np)

(p = number of pixels, 10)

– object space: infinite precision, O(n)2

6

Solving in Object space

• May be required, but has a worst case:

n objects
n after
visibility

2

Solving in Image Space

• Allows for using coherence:
– object visible at one pixel is likely to be also

visible at neighbouring pixels

• faster computation on the average

• worst case still O(np)

Floating Horizon

• For single valued functions of two
variables (height fields)
– h = f(x,y)

sinc(sqrt(x*x+y*y))

-10

-5

0

5

10 -10
-5

0
5

10

-0.5

0

0.5

1

Floating Horizon (2)

• Do the v-lines one at a time
– For each value of u on the v-line

– Keep track of highest and lowest h-value
(= horizons)

– clip the curve segment against the two
horizons

• Image-space: use an array

• Object-space: use a list

Contouring

• Another way of showing height fields:
-x*x-2*y*y-2*x*y

 -25
 -50
 -75
 -100
 -125
 -150
 -175
 -200
 -225
 -250
 -275
 -300
 -325
 -350

-10
-5

0
5

10 -10

-5

0

5

10

-500
-450
-400
-350
-300
-250
-200
-150
-100
-50

0

-x*x-2*y*y-2*x*y
 -25
 -50
 -75
 -100
 -125
 -150
 -175
 -200
 -225
 -250
 -275
 -300
 -325
 -350

-10 -5 0 5 10-10

-5

0

5

10

Visible Surfaces

• Some simple ideas:
– Back-face elimination

– Depth-Sort algorithms (painter)

• Some more complex ideas:
– BSP-trees

– Area subdivision

– Scanline

– Z-buffer

Back Face Culling

• Eliminate all polygons facing away
from the eye:

Back Face Culling Algorithm

• If the eye isn’t in front of the polygon,
don’t display it.

• Dot product:
– (Vertex-ViewPoint)*normal

– > 0 : keep it

– > 0 : eliminate it

Back Face Culling: summary

• On the average, 50 % speedup

• Small cost

• Preliminary step for all other algorithms

• Back Face Culling is sufficient if there is
one convex object (cube, pyramid)

Depth sort algorithms

• Draw polygons that are far away first,
then polygons closer to the eye

• Closer polygons will hide far away
polygons

• Like a painter drawing the horizon first,
then the paysage, then the front scene

Depth Sort: basic algorithm

• Need to sort polygons according to
distance to the eye

• The order is incomplete

• There may be problems:

Depth Sort: complete algorithm

• Sort all polygons according to their farthest
z coordinate

• If two polygons have overlapping z-range:
– test if their extents are separate: no problem

– test if one is fully behind the other

– test if their projections are separate

– if all fails, we have to split one of the polygon

Depth sort: discussion

• Most intuitive algorithm

• Memory cost:
– uses only screen space for display: O(p)

– sorting necessary: O(nlogn)

• Time cost:
– you have to draw the entire scene

– only valid for simple scenes

BSP-Trees: description

• Build a 3D BSP-Tree for the whole scene
– splitting polygons if cut by the node plane

• Display the polygons according to their
position in the tree:
– first, polygons behind current node

– then, current node

– then, polygons in front of current node

Building a BSP-Tree (1)

Building a BSP-Tree (2)
a a

Building a BSP-Tree (3)

a a

b

b

split

Building a BSP-Tree (4)

a a

b

b

split

c

c

Building a BSP-Tree (5)

a a

b

b

c

c
d

d

Building a BSP-Tree (6)

a a

b

b

c

c
d

d

e
e

Building a BSP-Tree (7)

a a

b

b

c

c
d

d

e
e

f f

Using a BSP-Tree for visibility

3

12

4

5
6

a

b

c

BSP Tree vs standard depth-sort

• BSP-Tree will induce more polygon cuts

• But there is no “special case” for display

• BSP-Tree:
– bigger pre-treatment

– small time per request: move the viewpoint

• Painter:
– no pre-treatment

– bigger time per request

BSP-tree: discussion

• Useful as a pre-treatment for object
space solving

• Memory cost:
– lots of additional polygons

• Time costs:
– building the BSP-tree

– you still have to display the entire scene

• Front-to-Back BSP trees: Doom

Area Subdivision (aka Warnock)

• Uses spatial coherence

• Divides the screen in small areas

• For each area, considers only polygons
intersecting with the area

• If visibility is not clear, subdivide

• Stop subdivision when you reach pixel
size

Polygons/area of interest

Surrounding Contained

Polygons/area of interest

Intersecting Disjoint

When is visibility clear?

• All polygons are disjoint from the area

• Only one intersecting or contained
polygon in the area

• One surrounding polygon in front of all
the others

Warnock algorithm: example (1)

Warnock Algorithm: example (2)

Warnock Algorithm: example (3)

Warnock Algorithm: example (4)

Warnock Algorithm: example (5)

Warnock Algorithm: example (6)

Warnock algorithm: discussion

• Uses spatial coherence

• Useful with many large polygons

• Memory costs can be large

• Easy implementation: recursive calls to
function

Scan Line algorithm

• Operate scan line by scan line

• For each scan line, find polygons in
front

• Display the scan line

Scan Line Algorithm

• Sort all polygon edges:
– into buckets, by smaller y coordinate

– in each bucket, by slope

• Walk along the scan line:
– if edge is encountered, polygon is in.

– if only one polygon in at a time: no
problem.

Scan Line Algorithm

Scan Line Algorithm

• If two polygons are in at a time:
– when encountering the starting edge of the

second polygon, find which is in front.

– display only the polygon in front.

Scan Line Algorithm

Scan line: discussion

• Low memory cost

• Uses scan-line coherence
– but not vertical coherence

• Has several side advantages:
– filling the polygons

– reflections

– texture mapping

• Renderman (Toy Story) = only scan line

Z-Buffer

• Have one array, the size of the screen;

• Store maximal z value at this pixel

• Initially, all points at minus infinity

• Update the points that fall inside the
projection of each polygon

Z-buffer algorithm

• For each polygon:
– For each pixel in polygon’s projection

•compute z-value at this pixel

•if z-value is in front of current max
z-value

– change maximal z-value

– write pixel on the screen using polygon
color

Z-buffer algorithm

-H -H -H -H -H -H -H -H -H -H

-H -H -H -H -H -H -H -H -H -H

-H -H -H -H -H -H -H -H -H -H

-H -H -H -H -H -H -H -H -H -H

-H -H -H -H -H -H -H -H -H -H

-H -H -H -H -H -H -H -H -H -H

-H -H -H -H -H -H -H -H -H -H

2

Z-buffer algorithm

-H 1 -H -H -H -H -H -H -H -H

-H 1 1 1 -H -H -H -H -H -H

-H 2 2 2 2 -H -H -H -H

-H 2 2 2 2 2 2 -H -H -H

-H 3 3 3 3 3 -H -H -H -H

-H 3 3 -H -H -H -H -H -H -H

-H -H -H -H -H -H -H -H -H -H

2

Z-buffer algorithm

-H 1 -H -H -H -H -H -H -H -H

-H 1 1 1

-H 2 2 2 2

-H 2 2 2 2 2 2

-H 3 3

-H 3 3 -H -H -H -H -H -H -H

-H -H -H -H -H -H -H -H -H -H

2 2 2 2 2 2

2222

2 2 2

2222333

Z-Buffer: discussion

• Pros:
– simple to implement

– operates at image precision
• faster

• Cons:
– memory cost

– operates at image precision
• aliasing

• artefacts

Z-Buffer

• How many bits of information?
– limited by memory costs

• 8 bits, 1024x1280: 1.25 Mb

• 16 bits, 1024x1280: 2.5 Mb

– needed for separation of objects that are
close to each other:

• 8 bits, minimal distance is 0.4 % (4mm at 1m)

• 16 bits, minimal distance is 0.001 % (1mm at
1km)

• what happens below this distance?

Relative time costs

100 2500 60000
0

100

200

300

400

500

600

100 2500 60000

Depth Sort
Warnock
Scan Line
Z-Buffer

Which algorithm?

• Depends on expected scene complexity

• Z-Buffer for complex scene:
– hardware implementation

– no pre-sorting required

– but memory?

• Scan-line is low cost choice:
– lowest memory costs

– can be done during display

	Visible Surface Determination
	Map of the lecture:
	basic algorithms
	advanced algorithms

	Visible Surface Determination
	Solving in Object space
	Solving in Image Space

	Floating Horizon
	Algorithm
	Contouring

	Visible Surfaces Algorihtms
	Back Face Culling
	Algorithm
	Summary

	Depth sort algorithms
	Basic algorithm
	Complete algorithm
	Discussion

	BSP-Trees: description
	Building a BSP-Tree
	Using a BSP-Tree for visibility
	BSP Tree vs standard depth-sort
	Discussion

	Area Subdivision
	Polygons/area of interest
	When is visibility clear?
	Warnock algorithm: example
	Discussion

	Scan Line
	Algorithm
	Simple Example
	Algorithm (2)
	Second example
	Discussion

	Z-Buffer
	Algorithm
	Example
	Discussion
	Information

	Relative time costs
	Which algorithm?

