
Visible Surface Determination

Dr Nicolas Holzschuch

University of Cape Town

mailto:holzschu@cs.uct.ac.za


Map of the lecture: 
basic algorithms

• Image space vs. object space

• Height fields
– floating horizon

– contouring

• Backface removal

• Depth-sort algorithms

• BSP-trees



Map of the lecture: 
advanced algorithms

• Area-subdivision

• Scan-line algorithm

• Z-buffer

• Relative costs and best choice



Visible Surface Determination

•  Or is it hidden surface removal?

• Complexity: at best equal to sorting 
– O(n log n)

• Solving can be done in image space or in 
object space
– image space: limited precision, O(np)

(p = number of pixels, 10  )

– object space: infinite precision, O(n )2
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Solving in Object space

• May be required, but has a worst case:

n  objects
n   after
visibility
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Solving in Image Space

• Allows for using coherence:
– object visible at one pixel is likely to be also 

visible at neighbouring pixels

• faster computation on the average

• worst case still O(np)



Floating Horizon

• For single valued functions of two 
variables (height fields)
– h = f(x,y)

sinc(sqrt(x*x+y*y))
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Floating Horizon (2)

• Do the v-lines one at a time
– For each value of u on the v-line

– Keep track of highest and lowest h-value 
(= horizons)

– clip the curve segment against the two 
horizons

• Image-space: use an array

• Object-space: use a list



Contouring

• Another way of showing height fields:
-x*x-2*y*y-2*x*y
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Visible Surfaces

• Some simple ideas:
– Back-face elimination

– Depth-Sort algorithms (painter)

• Some more complex ideas:
– BSP-trees

– Area subdivision

– Scanline

– Z-buffer



Back Face Culling

• Eliminate all polygons facing away 
from the eye:



Back Face Culling Algorithm

• If the eye isn’t in front of the polygon, 
don’t display it.

• Dot product:
– (Vertex-ViewPoint)*normal

– > 0 : keep it

– > 0 : eliminate it



Back Face Culling: summary

• On the average, 50 % speedup

• Small cost

• Preliminary step for all other algorithms

• Back Face Culling is sufficient if there is 
one convex object (cube, pyramid)



Depth sort algorithms

• Draw polygons that are far away first, 
then polygons closer to the eye

• Closer polygons will hide far away 
polygons

• Like a painter drawing the horizon first, 
then the paysage, then the front scene



Depth Sort: basic algorithm

• Need to sort polygons according to 
distance to the eye

• The order is incomplete

• There may be problems:



Depth Sort: complete algorithm

• Sort all polygons according to their farthest 
z coordinate

• If two polygons have overlapping z-range:
– test if their extents are separate: no problem

– test if one is fully behind the other

– test if their projections are separate

– if all fails, we have to split one of the polygon



Depth sort: discussion

• Most intuitive algorithm

• Memory cost:
– uses only screen space for display: O(p)

– sorting necessary: O(nlogn)

• Time cost:
– you have to draw the entire scene

– only valid for simple scenes



BSP-Trees: description

• Build a 3D BSP-Tree for the whole scene
– splitting polygons if cut by the node plane

• Display the polygons according to their 
position in the tree:
– first, polygons behind current node

– then, current node

– then, polygons in front of current node



Building a BSP-Tree (1)



Building a BSP-Tree (2)
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Building a BSP-Tree (3)
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Building a BSP-Tree (4)
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Building a BSP-Tree (5)
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Building a BSP-Tree (6)
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Building a BSP-Tree (7)
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Using a BSP-Tree for visibility
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BSP Tree vs standard depth-sort

• BSP-Tree will induce more polygon cuts

• But there is no “special case” for display

• BSP-Tree:
– bigger pre-treatment

– small time per request: move the viewpoint

• Painter:
– no pre-treatment

– bigger time per request



BSP-tree: discussion

• Useful as a pre-treatment for object 
space solving

• Memory cost:
– lots of additional polygons

• Time costs:
– building the BSP-tree

– you still have to display the entire scene

• Front-to-Back BSP trees: Doom



Area Subdivision (aka Warnock)

• Uses spatial coherence

• Divides the screen in small areas

• For each area, considers only polygons 
intersecting with the area

• If visibility is not clear, subdivide

• Stop subdivision when you reach pixel 
size



Polygons/area of interest

Surrounding Contained



Polygons/area of interest

Intersecting Disjoint



When is visibility clear?

• All polygons are disjoint from the area

• Only one intersecting or contained 
polygon in the area

• One surrounding polygon in front of all 
the others



Warnock algorithm: example (1)



Warnock Algorithm: example (2)



Warnock Algorithm: example (3)



Warnock Algorithm: example (4)



Warnock Algorithm: example (5)



Warnock Algorithm: example (6)



Warnock algorithm: discussion

• Uses spatial coherence

• Useful with many large polygons

• Memory costs can be large

• Easy implementation: recursive calls to 
function



Scan Line algorithm

• Operate scan line by scan line

• For each scan line, find polygons in 
front

• Display the scan line



Scan Line Algorithm

• Sort all polygon edges:
– into buckets, by smaller y coordinate

– in each bucket, by slope

• Walk along the scan line:
– if edge is encountered, polygon is in.

– if only one polygon in at a time: no 
problem.



Scan Line Algorithm



Scan Line Algorithm

• If two polygons are in at a time:
– when encountering the starting edge of the 

second polygon, find which is in front.

– display only the polygon in front.



Scan Line Algorithm



Scan line: discussion

• Low memory cost

• Uses scan-line coherence
– but not vertical coherence

• Has several side advantages:
– filling the polygons

– reflections

– texture mapping

• Renderman (Toy Story) = only scan line



Z-Buffer

• Have one array, the size of the screen;

• Store maximal z value at this pixel

• Initially, all points at minus infinity

• Update the points that fall inside the 
projection of each polygon



Z-buffer algorithm

• For each polygon:
– For each pixel in polygon’s projection

•compute z-value at this pixel

•if z-value is in front of current max 
z-value

– change maximal z-value

– write pixel on the screen using polygon 
color



Z-buffer algorithm
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Z-buffer algorithm
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Z-buffer algorithm
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Z-Buffer: discussion

• Pros:
– simple to implement

– operates at image precision
• faster

• Cons:
– memory cost

– operates at image precision
• aliasing

• artefacts



Z-Buffer

• How many bits of information?
– limited by memory costs

• 8 bits, 1024x1280: 1.25 Mb

• 16 bits, 1024x1280: 2.5 Mb

– needed for separation of objects that are 
close to each other:

• 8 bits, minimal distance is 0.4 % (4mm at 1m)

• 16 bits, minimal distance is 0.001 % (1mm at 
1km)

• what happens below this distance?



Relative time costs
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Which algorithm?

• Depends on expected scene complexity

• Z-Buffer for complex scene:
– hardware implementation

– no pre-sorting required

– but memory?

• Scan-line is low cost choice:
– lowest memory costs

– can be done during display
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