Rasterizing primitives: know where to draw the line

Dr Nicolas Holzschuch University of Cape Town
e-mail:holzschu@cs.uct.ac.za

Rasterization of Primitives

- How to draw primitives?
- Convert from geometric definition to pixels
- rasterization = selecting the pixels
- Will be done frequently
- must be fast:
- use integer arithmetics
- use addition instead of multiplication

Rasterization Algorithms

- Algorithmics:
- Line-drawing: Bresenham, 1965
- Polygons: uses line-drawing
- Circles: Bresenham, 1977
- Currently implemented in all graphics libraries
- You'll probably never have to implement them yourself

Why should I know them?

- Excellent example of efficiency:
- no superfluous computations
- Possible extensions:
- efficient drawing of parabolas, hyperbolas
- Applications to similar areas:
- robot movement, volume rendering
- The CG equivalent of Euler's algorithm

Map of the lecture

- Line-drawing algorithm
- naïve algorithm
-Bresenham algorithm
- Circle-drawing algorithm
- naïve algorithm
- Bresenham algorithm

Naïve algorithm for lines

- Line definition: $a x+b y+c=0$
- Also expressed as: $y=m x+d$
- m = slope
$-d=$ distance
For $x=x m i n$ to xmax
compute $y=m * x+d$
light pixel (x,y)

Extension by symmetry

- Only works with $-1 \leq m \leq 1$:

$$
m=3
$$

Extend by symmetry for $m>1$

Problems

- 2 floating-point operations per pixel
- Improvements:
compute $y=m * x 0+d$
For $x=x m i n$ to $x m a x$

$$
y+=m
$$

light pixel (x,y)

- Still 1 floating-point operation per pixel
- Compute in floats, pixels in integers

Bresenham algorithm: core idea

- At each step, choice between 2 pixels ($0 \leq \mathrm{m} \leq 1$)

...or that one

Line drawn so far
Either I lit this pixel...

Bresenham algorithm

- I need a criterion to pick between them
- Distance between line and center of pixel:
- the error associated with this pixel

Bresenham Algorithm (2)

- The sum of the 2 errors is 1
- Pick the pixel with error $<1 / 2$
- If error of current pixel < 1/2,
- draw this pixel
- Else:
- draw the other pixel. Error of current pixel = 1 - error

How to compute the error?

- Line defined as: $a x+b y+c=0$
- Distance from pixel $(x 0, y 0)$ to line:

$$
d=a x 0+b y 0+c
$$

- Draw this pixel iff:

$$
a x 0+b y 0+c<1 / 2
$$

- Update for next pixel:

$$
x+=1, d+=a
$$

We're still in floating point!

- Yes, but now we can get back to integer: $e=2 a x 0+2 b y 0+2 c-1<0$
- If $e<0$, stay horizontal, if $e>0$, move up.
- Update for next pixel:
- If I stay horizontal: $e+=2 a$
- If I move up:
$e+=2 a+2 b$

Bresenham algorithm: summary

- Several good ideas:
- use of symmetry to reduce complexity
- choice limited to two pixels
- error function for choice criterion
- stay in integer arithmetics
- Very straightforward:
- good for hardware implementation
- good for assembly language

Circle: naïve algorithm

- Circle equation: $x^{2}+y^{2}-r^{2}=0$
- Simple algorithm:

$$
\begin{gathered}
\text { for } x=\text { xmin to } x m a x \\
y=\operatorname{sqrt}\left(r^{*} r-x^{\star} x\right) \\
\text { draw pixel }(x, y)
\end{gathered}
$$

- Work by octants and use symmetry

Circle: Bresenham algorithm

- Choice between two pixels:

Either I lit this pixel...

Bresenham for circles

- Mid-point algorithm:

If the midpoint between pixels is inside the circle, E is closer If the midpoint is outside, SE is closer.

Bresenham for circles (2)

- Error function: $d=x^{2}+y^{2}-r^{2}$
- Compute d at the midpoint:
- last pixel drawn: (x, y)
- $d=(x+1)^{2}+(y-1 / 2)^{2}-r^{2}$
- $d<0$: draw SE
- $d \geq 0$: draw E

Updating the error

- If I increment x :
- $d+=2 x+3$
- If I decrement y :
- $d+=-2 y+2$
- Two mult, two add per pixel
- Can you do better?

Doing even better

- The error is not linear
- However, what I add to the error is
- Keep Δx and Δy :
- At each step:
$-\Delta x+=2, \Delta y-=2$
$-d+=\Delta x$
- If I decrement $y, \mathrm{~d}+=\Delta y$
- 4 additions per pixel

Midpoint algorithm: summary

- Extension of line drawing algorithm
- Test based on midpoint position
- Position checked using function:
- sign of ($\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{r}^{2}$)
- With two steps, uses only additions

Extension to other functions

- Midpoint algorithm easy to extend to any curve defined by: $f(x, y)=0$
- If the curve is polynomial, can be reduced to only additions using n-order differences

Conclusion

- The basics of Computer Graphics: - drawing lines and circles
- Simple algorithms, easy to implement with low-level languages
- So far, a one-task world:
- our primitives extend indefinitely
- Windows $=$ boundaries $=$ clipping

