Rasterizing primitives: know where to draw the line

Dr Nicolas Holzschuch
University of Cape Town
e-mail: holzschu@cs.uct.ac.za
Rasterization of Primitives

• How to draw primitives?
 – Convert from geometric definition to pixels
 – *rasterization* = selecting the pixels

• Will be done frequently
 – must be fast:
 • use integer arithmetics
 • use addition instead of multiplication
Rasterization Algorithms

• Algorithmics:
 – Line-drawing: Bresenham, 1965
 – Polygons: uses line-drawing
 – Circles: Bresenham, 1977

• Currently implemented in all graphics libraries
 – You’ll probably never have to implement them yourself
Why should I know them?

- Excellent example of efficiency:
 - no superfluous computations
- Possible extensions:
 - efficient drawing of parabolas, hyperbolas
- Applications to similar areas:
 - robot movement, volume rendering
- The CG equivalent of Euler’s algorithm
Map of the lecture

- **Line-drawing algorithm**
 - naïve algorithm
 - Bresenham algorithm

- **Circle-drawing algorithm**
 - naïve algorithm
 - Bresenham algorithm
Naïve algorithm for lines

• Line definition: \(ax + by + c = 0 \)

• Also expressed as: \(y = mx + d \)

 \(- m = \text{slope} \)

 \(- d = \text{distance} \)

For \(x = \text{xmin to xmax} \)

 compute \(y = m*x + d \)

 light pixel \((x, y)\)
Extension by symmetry

- Only works with $-1 \leq m \leq 1$:

 \[m = \frac{1}{3} \]

 \[m = 3 \]

Extend by symmetry for $m > 1$
Problems

• 2 floating-point operations per pixel
• Improvements:

 compute \(y = m \times x_0 + d \)

 For \(x = x_{\text{min}} \) to \(x_{\text{max}} \)

 \(y += m \)

 light pixel \((x,y)\)
• Still 1 floating-point operation per pixel
• Compute in floats, pixels in integers
Bresenham algorithm: core idea

• At each step, choice between 2 pixels ($0 \leq m \leq 1$)

Line drawn so far

Either I lit this pixel…

...or that one
Bresenham algorithm

- I need a criterion to pick between them
- Distance between line and center of pixel:
 - the error associated with this pixel

![Diagram showing error pixels 1 and 2]
Bresenham Algorithm (2)

• The sum of the 2 errors is 1
 – Pick the pixel with error $< 1/2$
• If error of current pixel $< 1/2$,
 – draw this pixel
• Else:
 – draw the other pixel.

 Error of current pixel $= 1 - \text{error}$
How to compute the error?

- Line defined as: $ax + by + c = 0$
- Distance from pixel (x_0,y_0) to line:
 $$d = ax_0 + by_0 + c$$
- Draw this pixel iff:
 $$ax_0 + by_0 + c < 1/2$$
- Update for next pixel:
 $$x += 1, \ d += a$$
We’re still in floating point!

• Yes, but now we can get back to integer:
 \[e = 2ax_0 + 2by_0 + 2c - 1 < 0 \]

• If \(e < 0 \), stay horizontal, if \(e > 0 \), move up.

• Update for next pixel:
 – If I stay horizontal: \(e += 2a \)
 – If I move up: \(e += 2a + 2b \)
Bresenham algorithm: summary

• Several good ideas:
 – use of symmetry to reduce complexity
 – choice limited to two pixels
 – error function for choice criterion
 – stay in integer arithmetics

• Very straightforward:
 – good for hardware implementation
 – good for assembly language
Circle: naïve algorithm

• Circle equation: \(x^2 + y^2 - r^2 = 0 \)
• Simple algorithm:

 for \(x = \text{xmin} \) to \(\text{xmax} \)

 \(y = \sqrt{r^2 - x^2} \)

 draw pixel(x, y)

• Work by octants and use symmetry
Circle: Bresenham algorithm

• Choice between two pixels:

Circle drawn so far

Either I lit this pixel...

...or that one
Bresenham for circles

• Mid-point algorithm:

If the midpoint between pixels is inside the circle, E is closer.
If the midpoint is outside, SE is closer.
Bresenham for circles (2)

- Error function: \(d = x^2 + y^2 - r^2 \)
- Compute \(d \) at the midpoint:
 - last pixel drawn: \((x,y)\)
 - \(d = (x+1)^2 + (y - 1/2)^2 - r^2 \)
 - \(d < 0 \): draw SE
 - \(d \geq 0 \): draw E
Updating the error

• If I increment x:
 • $d += 2x + 3$

• If I decrement y:
 • $d += -2y + 2$

• Two mult, two add per pixel

• Can you do better?
Doing even better

- The error is not linear
- However, what I add to the error is
- Keep Δx and Δy:
 - At each step:
 - $\Delta x += 2$, $\Delta y -= 2$
 - $d += \Delta x$
 - If I decrement y, $d += \Delta y$
- 4 additions per pixel
Midpoint algorithm: summary

- Extension of line drawing algorithm
- Test based on midpoint position
- Position checked using function:
 - sign of \((x^2+y^2-r^2)\)
- With two steps, uses only additions
Extension to other functions

• Midpoint algorithm easy to extend to any curve defined by: \(f(x,y) = 0 \)

• If the curve is polynomial, can be reduced to only additions using n-order differences
Conclusion

• The basics of Computer Graphics:
 – drawing lines and circles
• Simple algorithms, easy to implement with low-level languages
• So far, a one-task world:
 – our primitives extend indefinitely
 – Windows = boundaries = clipping