
Filling Polygons

Dr Nicolas Holzschuch

University of Cape Town

e-mail: holzschu@cs.uct.ac.za

Map of the lecture

• Filling rectangles
– algorithm

– problems and solutions

• Filling polygons:
– algorithm

– problems and solutions

– algorithm details: active-edge table

Filling rectangles

• Rectangle defined by: (xmin,xmax)x(ymin,ymax)

• Fill it using scan-line algorithm:
for y = ymin to ymax

for x = xmin to xmax

LightPixel(x,y)

end_for

end_for

Problems and solutions

• Two rectangles sharing an edge:
– the edge will be drawn twice

• Solution: revised algorithm
for y = ymin to ymax-1

for x = xmin to xmax-1

LightPixel(x,y)

end_for

end_for

• Only draw if it’s below or on the left

Filling Polygons

• Main algorithm:
for y = 0 to height_screen

find intersection polygon/scanline

fill the intersection

end_for

• Intersection polygon-scanline:
– the algorithm in a moment

– the specifications now

Filling Polygons: example

Current
scanline

Polygon
drawn so far

Filling Polygons: example (2)

 Extremities, computed using Bresenham-like alg.

• What happens with two neighbouring
polygons?

Possible
sources of
problems

Filling Polygons: example (3)

Integer intersections: do as we did with rectangles

 Keep the extremities inside

Filling Polygons: inside/outside

• Even/odd:
– for each scanline, count number of edges

encountered so far:
• even: outside

• odd: inside

• Edge orientation:
– the edge is oriented, so is the scanline

– scanline entering: add one to the counter

– scaline leaving: remove one

Inside/outside: example

Even/Odd

Edge orientation (1) Edge orientation (2)

Computing the extremities

• Scanline-edge intersection:
– not exactly Bresenham algorithm

– requirements are more relaxed

• Active-edge table:
– list of edges

– ordered for maximum efficiency

We don’t need Bresenham

• Something simpler may suffice:

Bresenham

Polygon edge

Scanline-edge intersection

• Moving from one scanline to the next:
x += 1/m

– with m, the slope of the edge:

m = (ymax-ymin)/(xmax-xmin)

– therefore, x can always be expressed as:

x = a + b/(ymax-ymin)

(a and b are integers)

Scanline-edge intersection (2)

• Keep x as two integers (a,b)

• moving to the next scanline:
writePixel(a,y)

b += (xmax-xmin)

while (b >= (ymax-ymin)) {

 b -= ymax-ymin

 a ++

}

Scanline-edge intersection (3)

• Rounding-up:
– avoid lighting exterior pixels

– draw pixel (a,y) if it is a right-edge

– draw pixel (a+1,y) if it is a left-edge

Edge Table

• Keep bucket list of all edges
– one bucket per scanline

• Edges inserted at bucket of their ymin

• Within a bucket:
– sorted by order of x coordinate at ymin

• Entries contain:
– ymax, x value at ymin, and 1/m

Edge Table: example
y=hy=0

3
9

3/2

ymax

xmin

1/m

3

7

9

1/4 4

9/21/2

19

11 13
11

6

Active Edge Table

• Keep list of edges that are intersected
by the scanline

• Use Edge Table

• Update at each scanline

• Start with y at smallest non-empty
bucket

• Initialize AET to be empty

Active Edge Table (2)

• For each y value:
– move bucket y content from ET to AET

– sort AET on x values

– fill in desired pixels on the scanline using AET

– remove from AET edges with ymax=y

– for each edge in the AET, update x for the next
scanline

Active Edge Table: example

• Sample AET:

• Draw from 3 to 7, then 11 to 17

*AET
3 7 11 177 1/2 9 4 111/4 3 2

Drawing polygons: summary

• A simple algorithm — in theory

• Difficult to implement, in practice

• Everything is in the data structure
– ET

– AET

• Cornerstone for other algorithms:
– visible-surface determination

– shading (Gouraud shading, Phong shading)

Special case: triangles

• In a triangle, there are only two edges
on a given scanline

• Simpler to draw:
– no need for ET/AET

• Some softwares prefer to cut into
triangles, then fill those triangles:
– easier for hardware and assembly

– efficiency linked to number of triangles

