Color fidelity and Color spaces

Dr Nicolas Holzschuch
University of Cape Town
© 96 N. Holzschuch \& UCT

What is a color?

- physical description: wavelengths
- psychological perception: stimulus
- computer description:
- different sets of basis and coordinates
- dithering/halftoning
- color correction:
- ensure that percepted colors are correct

Map of the lecture

- Physical and biological description of colors:
- wavelength, CIE color space..
- Computer description of colors:
- color spaces: RGB CMYK HSV...
- color fidelity
- gamma correction
- halftoning and dithering

Physical and Biological

- wavelengths/spectrum
- Gues, tints, shades, saturation, brightness
- cones on the retina, perception
- display independant description:
- Commission Internationale de l'Eclairage
© 96 N. Holzschuch \& UCT

Computer description

- Display based color-spaces: -RGB CMYK YIQ, YCbCr.
- Perception based color-spaces: HSV
- Color correction:
- gamma correction
- Conversion between these color descriptions
© 96 N. Holzschuch \& UCT

Spectral Distribution

- One color = one spectral distribution

© 96 N. Holzschuch \& UCT

"Pure" colors, shades and hues

- Initially: artist perception

Colors, shades and hues (2)

- Physical definition:
- Hue= dominant wavelength
- Saturation= excitation purity
- Luminance, brightness: amount of light
- Pure color: one single wavelength

Hue, Saturation and Brightness

© 96 N. Holzschuch \& UCT

Retina Response

- Three types of cones on the retina:

Light absorbed $L(\lambda)$

Retina Luminous Efficiency

© 96 N. Holzschuch \& UCT

Color Definition

- Define a color by its spectral distribution: - memory requirements...
- non unicity (see next slide)
- Need for simpler bases:
- describing all colors
- with a unique set of coordinates
© 96 N. Holzschuch \& UCT

Non Unicity

Energy
Same orange-like color
$P(\lambda)$

400 nm
Violet

760 nm
Red
© 96 N. Holzschuch \& UCT

Using Primary Colors

- Use the three primary colors:
- Red, Green and Blue
- Describe all colors as a linear combination of red, green and blue - three coordinates by color
- Simple model, but...
© 96 N. Holzschuch \& UCT

Using Primary Colors (2)

© 96 N. Holzschuch \& UCT

Commission Internationale de l'Éclairage

- CIÉ: 1931
- Three standard primary functions:
-X, Y, Z
- defines all visible colors
- with only positive coefficients
- $\mathrm{Y}=$ retina luminance perception
- x and $y=$ chromaticity
© 96 N. Holzschuch \& UCT

CIÉ Base Functions

© 96 N. Holzschuch \& UCT

CIÉ Chromaticity Diagram

© 96 N. Holzschuch \& UCT

CIÉ Chromaticity Diagram (2)

CIÉ Chromaticity Diagram (3)

© 96 N. Holzschuch \& UCT

CIÉ Chromaticity Diagram (4)

© 96 N. Holzschuch \& UCT

Beyond CIÉ 1931...

- Distance in chromaticity diagram:
- not linked to perceptual distance
- CIÉ 1976: perceptually uniform
- LUV:
- L for lightness
- U and V for chromaticity
- L*a*b: perceptually uniform and orthogonal

Colors in computer graphics

- How to specify a color?
- set of coordinates in a color space
- Several "Color spaces"
- Color fidelity?
- why is my orange blue?
- Relation to the task/ perception
- blue for hot water
© 96 N. Holzschuch \& UCT

Color spaces

- Device based color spaces:
- color spaces based on the internal of the device: $\mathrm{RGB}, \mathrm{CMYK} \mathrm{YCbCr}$
- Perception based color spaces:
-color spaces made for interaction: HSV
- Conversion between them?
- Conversion to device independant?
© 96 N. Holzschuch \& UCT

Red-Green-Blue

- Most commonly known color space
- used (internally) in every monitor
- additive

© 96 N. Holzschuch \& UCT

Cyan-Magenta-Yellow

- Used internally in color printers
- Substractive
- Complementary to RGB:
- C=1-R
- $M=1-G$
- $Y=1-B$
- Also CMYK (blacK)
- mostly for printer use

© 96 N. Holzschuch \& UCT

CMYK

- K is for blacK
- Save on color inks, by using black ink preferably
- $\mathrm{K}=\min (\mathrm{C}, \mathrm{M}, \mathrm{Y})$
- $\mathrm{C}=\mathrm{C}-\mathrm{K}$
- $\mathrm{M}=\mathrm{M}-\mathrm{K}$
- $\mathrm{Y}=\mathrm{Y}-\mathrm{K}$

The RGB / CMY cube

© 96 N. Holzschuch \& UCT

The RGB / CMY cube

© 96 N. Holzschuch \& UCT

"Class Y" Color space

- YIQ, YUV, YcbCr...
- Used in television sets and videos
-Y is luminance
- I and Q is chromaticity
- BW television sets display only Y
- Color TV sets convert to RGB
- $\mathrm{YUV}=\mathrm{PAL}, \mathrm{YIQ}=\mathrm{NTSC}$

YCbCr Color Spaces

- Y must be equal to luminance:

$$
\mathrm{Y}=\text { LumaRed*}^{*} \mathrm{R}+\text { LumaGreen }^{*} \mathrm{G}+\text { LumaBlue* }^{\text {B }}
$$

- Cb is blue chromaticity:

$$
\mathrm{Cb}=(\mathrm{B}-\mathrm{Y}) /\left(2-2^{*} \text { LumaBlue }\right)
$$

- Cr is red chromaticity:

$$
\mathrm{Cr}=(\mathrm{R}-\mathrm{Y}) /\left(2-2^{*} \text { LumaRed }\right)
$$

- LumaRed, LumaGreen, LumaBlue values given by measurements
© 96 N. Holzschuch \& UCT

Class Y values

- Values depend on standard:
- CCIR 601: Lr=0.299, Lg=0.587, Lb=0.114
- CCIR 709: Lr=0.2125, Lg=0?7154, Lb=0.0721
- YIQ color space:

$$
\left[\begin{array}{l}
Y \\
I \\
Q
\end{array}\right]=\left[\begin{array}{ccc}
0.299 & 0.587 & 0.114 \\
0.596 & -0.275 & -0.321 \\
0.212 & -0.528 & 0.311
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

Interests of "Class Y"

- Sometimes you have to use it
- video input/output
- Makes sense in image compression:
- better compression ratio if changing class Y before compression
- High bandwidth for Y
- Small bandwidth for chromaticity
- Lab is fine for that too
© 96 N. Holzschuch \& UCT

Hue-Saturation-Value

- Nice for user interface:

© 96 N. Holzschuch \& UCT

Hue-Saturation-Value

- $\mathrm{V}=\max (\mathrm{r}, \mathrm{g}, \mathrm{b})$
- $S=($ max $-\min) / \max$
- $\mathrm{H}=\ldots$
- Excellent for interpolations
- Color effects for visualization:
- change saturation, at constant hue
- change hue, at constant saturation (maps)

The HSV cone

© 96 N. Holzschuch \& UCT

The HSV cone

Color Fidelity

- Problem: ensure that colors look the same when changing device
- Sample the RGB phosphors
- Convert to XYZ:

$$
\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{ccc}
X r & X g & X b \\
Y r & Y g & Y b \\
Z r & Z g & Z b
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

© 96 N. Holzschuch \& UCT

Color Fidelity (2)

- Device description available from manufacturers
- Extract $X r, X g, X b, \ldots$
- For other devices: multi-dimensional lookup-tables
- Convert to and from device independant
© 96 N. Holzschuch \& UCT

Intensity Perception

- Human perception is logarithmic
- Cause for Mach-Banding
- perceptual "just noticeable differences"

$$
\mathrm{I}(\mathrm{j}) \alpha \mathrm{r}^{\mathrm{j}}
$$

© 96 N. Holzschuch \& UCT

Gamma Correction

- Human perception is logarithmic:

$$
\mathrm{I}(\mathrm{j}) \alpha \mathrm{r}^{\mathrm{j}}
$$

- CRT intensity related to voltage:

$$
\mathrm{I} \alpha \mathrm{~V}^{\gamma}
$$

- Need correction for both: $\mathrm{V}=\left(\mathrm{kr}^{\mathrm{j}}\right)^{1 / \gamma}$
© 96 N. Holzschuch \& UCT

Gamma Correction

- Hardware in Graphics Workstations:
- Silicon Graphics, HP, some monitors
- graphics accelerators
- Extremely useful if well used
- Can lead to strange effects if forgotten
- tranfer of a picture between monitors with different gamma values = oups!
© 96 N. Holzschuch \& UCT

Displaying colors

- Color ability of the display
- measured in bits:
- 1 bit=2 levels, 8 bits= 256 levels
- bits per color primitive:
- 24 bits=256 levels for each of R,G,B
- Depends on the medium:

TV Screen: 30 dpi, 8bits color
Computer Screen: 70-100 dpi, 24 bits color
Laser Printer: 300-2400 dpi, 3 bits color (8 colors)
Photo: 800 dpi, 36 bits color
© 96 N. Holzschuch \& UCT

Gaining color resolution

- Sometimes, this color resolution is not enough
- How to display more colors?
- Basic idea: sacrifice some of the spatial resolution
- halftoning and dithering
© 96 N. Holzschuch \& UCT

Gaining color resolution

- For top-quality printers:
- discs of size varying inversely with I
- pattern angle (called screen angle)
- halftone resolution (different from spatial resolution)
- 60-80 dpi for newspapers, 120-200 for books
- Called "Halftoning"
© 96 N. Holzschuch \& UCT

Simulating halftoning

- If you don't have halftoning
- wrong printer, or computer screen
- Use dither patterns
- groups of $n * n$ pixels $=n^{*} n+1$ intensity levels
© 96 N. Holzschuch \& UCT

Simulating Halftoning (2)

- Example for 2×2 :

0

1

2

3

4

- Matrix notation:

$$
\left[\begin{array}{ll}
0 & 2 \\
3 & 1
\end{array}\right]
$$

© 96 N. Holzschuch \& UCT

Matrix notation

- For level i, display pixels with $v<i$
- Requirement on matrix depend on device:
- dispersed dots for CRT
- clustered dots for printers

$$
1 \quad 0 \quad 3
$$

$$
\left[\begin{array}{lll}
5 & 2 & 7
\end{array}\right]
$$

$$
\begin{aligned}
& \text { ers }\left[\begin{array}{cccc}
0 & 8 & 2 & 10 \\
12 & 4 & 14 & 6 \\
3 & 11 & 1 & 9 \\
15 & 7 & 13 & 5
\end{array}\right] \\
& \text { © } 96 \text { N. Holzschuch \& UCT }
\end{aligned}
$$

Halftoning: the next step

- One image pixel=4 or 9 printer pixels
- What if I want one image pixel=one printer pixel?
- Use modulo:
- $\mathrm{i}=\mathrm{x}$ modulo n
- $\mathrm{j}=\mathrm{y}$ modulo n
- Lit the pixel if point (i, j) in dithering matrix is smaller than $\mathrm{I}(\mathrm{x}, \mathrm{y})$
© 96 N. Holzschuch \& UCT

Halftoning, the next step (2)

- There is an error at each pixel
- Dithering pattern is sometimes visible
- Floyd-Steinberg: spread the error to neighbouring pixels

Conclusion

- Several ways to represent colors
- Each one fitted for a special task
- Easy conversion between them
- Conversion is often required:
- for color fidelity:
- convert to CIE, and back to device-space
- for showing the image

