3D transformations and hierarchical modelling

Dr Nicolas Holzschuch University of Cape Town e-mail: holzschu@cs.uct.ac.za

Map of the lecture

- Homogeneous coordinates in 3D
- Geometric transformations in 3D

 translations, rotations, scaling,...
- Hierarchical modelling:
 - the need for hierarchical modelling
 - how to do it?

Homogeneous coordinates in 3D

 In order to model all transformations as matrices:

Z

- introduce a fourth coordinate, *w*
- two vectors are equal if: x/w = x'/w', y/w = y'/w' and z/w=z'/w'
- All transformations are 4x4 matrices

Translations in 3D

Scaling in 3D

Rotations in 3D

- One rotation: one axis and one angle
- Matrix depends on both axis and angle
 - direct expression possible, from axis and angle, using cross-products
- Rotations about axis have simple expression
 - other rotations express as composition of these rotations

Rotation around *x*-axis

$$R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

x-axis is unmodified

Sanity check: a rotation of $\pi/2$ should change *y* in *z*, and *z* in *-y*

$$R_{x}(\frac{\pi}{2}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation around *y*-axis

$$R_{y}(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

y-axis is unmodified

Sanity check: a rotation of $\pi/2$ should change *z* in *x*, and *x* in *-z*

$$R_{y}(\frac{\pi}{2}) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation about *z*-axis

$$R_{z}(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

z-axis is unmodified

Sanity check: a rotation of $\pi/2$ should change *x* in *y*, and *y* in *-x*

$$R_{z}(\frac{\pi}{2}) = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Any transformation in 3D

- All transformations in 3D can be expressed as combinations of translations, rotations, scaling

 expressed using matrix multiplication
- Transformations can be expressed as 4x4 matrices

Defining complex objects

Our problem:

Defining complex objects

- Object defined as a combination of smaller objects:
 - robot, car, tire
- Ensure a consistent behaviour:
 - the object stays connected
 - If I move the hand, the arm follows
- Use "natural" parameters: x, α, β, γ

How to do this?

- Easier to specify the position of the wheel with respect to the car
- Easier to specify the position of the bolts on the wheel with respect to the wheel
- We don't use absolute coordinates in life

Relative coordinates

- Use relative coordinates:
 - specify the position of the forearm with respect to the arm
- Using concatenation of transformations:
 - translate to the arm position
 - draw the arm
 - translate to the forearm position *relative to the arm*
 - draw the forearm

Concatenation of transformations

- Sometimes I want to go back to the origin:
 - I finished drawing the hand, now it's the other arm
 - better specify the position of the other arm with respect to the body (instead of the arm)
- I need the possibility to go back

Transformations stack

- Keep current transformation information
 - initially = **M**, from model to viewport
 - M'=MT (translation by x)
 - draw robot body
 - M"=M'T1 (translation to center of 1st wheel)
 - draw first wheel as circle of center (0,0)
 - return to **M**'
 - M^{'''}=M[']T2 (translation to center of 2nd wheel)
 - draw second wheel

Stack in graphics libraries

• OpenGL:

-popmatrix(), pushmatrix()

- SPHIGS:
 - openStructure(),
 closeStructure()
- Postscript:

-gsave, grestore

Sample implementation

- Set transformation as projection matrix
- translate by x (concatenate translation matrix with transformation matrix)
- draw car body
- save transformation matrix
 - translate+rotate
 - draw first wheel
- restore transformation matrix
- save transformation matrix
 - translate+rotate
 - draw second wheel
- restore transformation matrix

Hierarchical definition

- How to make sure you're having the right transformation?
- How to know it's time to go back to previous transformation?
- Define your object hierarchically
- Drawing = traversal of the tree

Object hierarchy: conclusion

- Define your object as a tree:
 - specify parts position *relative* to others
 - use a transformation stack
- Interests:
 - easy variation of parameters
 - objects are re-usable
 - one procedure for all four wheels
 - ensured consistency