3D transformations and hierarchical modelling

Dr Nicolas Holzschuch University of Cape Town
e-mail:holzschu@cs.uct.ac.za

Map of the lecture

- Homogeneous coordinates in 3D
- Geometric transformations in 3D
- translations, rotations, scaling, ..
- Hierarchical modelling:
- the need for hierarchical modelling
-how to do it?

Homogeneous coordinates in 3D

- In order to model all transformations as matrices:
- introduce a fourth coordinate, w
- two vectors are equal if:

$$
x / w=x^{\prime} / w^{\prime}, y / w=y^{\prime} / w^{\prime} \text { and } z / w=z^{\prime} / w^{\prime}
$$

- All transformations are 4×4 matrices

Translations in 3D

$$
\begin{aligned}
& T\left(t_{x}, t_{y}, t_{z}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow[\longrightarrow]{\longrightarrow} \begin{array}{l}
x^{\prime}=x+w t_{x} \\
y^{\prime}=y+w t_{y} \\
z^{\prime}=z+w t_{z} \\
w^{\prime}=w
\end{array}
\end{aligned}
$$

Scaling in 3D

$$
S\left(s_{x}, s_{y}, s_{z}\right)=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rotations in 3D

- One rotation: one axis and one angle
- Matrix depends on both axis and angle
- direct expression possible, from axis and angle, using cross-products
- Rotations about axis have simple expression
- other rotations express as composition of these rotations

Rotation around x-axis

$R_{x}(\theta)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

x-axis is unmodified

Sanity check: a rotation of $\pi / 2$ should change y in z, and z in $-y$

$$
R_{x}\left(\frac{\pi}{2}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rotation around y-axis

$$
R_{y}(\theta)=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

y-axis is unmodified

Sanity check: a rotation of $\pi / 2$ should change z in x, and x in $-z$

$$
R_{y}\left(\frac{\pi}{2}\right)=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rotation about z-axis

$R_{z}(\theta)=\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\begin{gathered}
z \text {-axis is } \\
\text { unmodified }
\end{gathered}
$$

Sanity check: a rotation of $\pi / 2$ should change x in y, and y in $-x$

$$
R_{z}\left(\frac{\pi}{2}\right)=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Any transformation in 3D

- All transformations in 3D can be expressed as combinations of translations, rotations, scaling
- expressed using matrix multiplication
- Transformations can be expressed as 4×4 matrices

Defining complex objects

Our problem:

Defining complex objects

- Object defined as a combination of smaller objects:
- robot, car, tire
- Ensure a consistent behaviour:
- the object stays connected
- If I move the hand, the arm follows
- Use "natural" parameters: x, α, β, γ

How to do this?

- Easier to specify the position of the wheel with respect to the car
- Easier to specify the position of the bolts on the wheel with respect to the wheel
- We don't use absolute coordinates in life

Relative coordinates

- Use relative coordinates:
- specify the position of the forearm with respect to the arm
- Using concatenation of transformations:
- translate to the arm position
- draw the arm
- translate to the forearm position relative to the arm
- draw the forearm

Concatenation of transformations

- Sometimes I want to go back to the origin:
- I finished drawing the hand, now it's the other arm
- better specify the position of the other arm with respect to the body (instead of the arm)
- I need the possibility to go back

Transformations stack

- Keep current transformation information
- initially $=\mathbf{M}$, from model to viewport
- $\mathbf{M}^{\prime}=\mathbf{M T}$ (translation by \mathbf{x})
- draw robot body
- $\mathbf{M}^{\prime \prime}=\mathbf{M}^{\prime} \mathbf{T 1}$ (translation to center of 1st wheel)
- draw first wheel as circle of center $(0,0)$
- return to \mathbf{M}^{\prime}
- $\mathbf{M}^{\prime \prime \prime}=\mathbf{M}^{\prime} \mathbf{T 2}$ (translation to center of 2nd wheel)
- draw second wheel

Stack in graphics libraries

- OpenGL:
- popmatrix(), pushmatrix()
- SPHIGS:
- openStructure (), closeStructure ()
- Postscript:
-gsave, grestore

Sample implementation

- Set transformation as projection matrix
- translate by x (concatenate translation matrix with transformation matrix)
- draw car body
- save transformation matrix
- translate+rotate
- draw first wheel
- restore transformation matrix
- save transformation matrix
- translate+rotate
- draw second wheel
- restore transformation matrix

Hierarchical definition

- How to make sure you're having the right transformation?
- How to know it's time to go back to previous transformation?
- Define your object hierarchically
- Drawing = traversal of the tree

Object defined hierarchically

Object hierarchy: conclusion

- Define your object as a tree:
- specify parts position relative to others
- use a transformation stack
- Interests:
- easy variation of parameters
- objects are re-usable
- one procedure for all four wheels
- ensured consistency

