3D transformations and hierarchical modelling

Dr Nicolas Holzschuch
University of Cape Town
e-mail: holzschu@cs.uct.ac.za
Map of the lecture

• Homogeneous coordinates in 3D

• Geometric transformations in 3D
 – translations, rotations, scaling,…

• Hierarchical modelling:
 – the need for hierarchical modelling
 – how to do it?
Homogeneous coordinates in 3D

- In order to model all transformations as matrices:
 - introduce a fourth coordinate, w
 - two vectors are equal if:
 \[\frac{x}{w} = \frac{x'}{w'}, \frac{y}{w} = \frac{y'}{w'} \text{ and } \frac{z}{w} = \frac{z'}{w'} \]
- All transformations are 4x4 matrices
Translations in 3D

\[T(t_x, t_y, t_z) = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[
\begin{align*}
x' &= x + wt_x \\
y' &= y + wt_y \\
z' &= z + wt_z \\
w' &= w
\end{align*}
\]
Scaling in 3D

\[S(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[
\begin{aligned}
x' &= s_x x \\
y' &= s_y y \\
z' &= s_z z \\
w' &= w
\end{aligned}
\]
Rotations in 3D

• One rotation: one axis and one angle
• Matrix depends on both axis and angle
 – direct expression possible, from axis and angle, using cross-products
• Rotations about axis have simple expression
 – other rotations express as composition of these rotations
Rotation around x-axis

$$R_x(\theta) = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 & 0 \\
0 & \sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

Sanity check: a rotation of $\pi/2$ should change y in z, and z in $-y$

$$R_x\left(\frac{\pi}{2}\right) = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$
Rotation around y-axis

$$R_y(\theta) = \begin{bmatrix}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

Sanity check: a rotation of $\pi/2$ should change z in x, and x in $-z$

$$R_y(\frac{\pi}{2}) = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

y-axis is unmodified
Rotation about z-axis

\[
R_z(\theta) = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Sanity check: a rotation of \(\pi/2 \) should change \(x \) in \(y \), and \(y \) in \(-x\)

\[
R_z(\frac{\pi}{2}) = \begin{bmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

z-axis is unmodified
Any transformation in 3D

• All transformations in 3D can be expressed as combinations of translations, rotations, scaling
 – expressed using matrix multiplication

• Transformations can be expressed as 4x4 matrices
Defining complex objects

Our problem:
Defining complex objects

• Object defined as a combination of smaller objects:
 – robot, car, tire

• Ensure a consistent behaviour:
 – the object stays connected
 – If I move the hand, the arm follows

• Use “natural” parameters: x, α, β, γ
How to do this?

• Easier to specify the position of the wheel with respect to the car
• Easier to specify the position of the bolts on the wheel with respect to the wheel
• We don’t use absolute coordinates in life
Relative coordinates

- Use relative coordinates:
 - specify the position of the forearm with respect to the arm
- Using concatenation of transformations:
 - translate to the arm position
 - draw the arm
 - translate to the forearm position relative to the arm
 - draw the forearm
Concatenation of transformations

• Sometimes I want to go back to the origin:
 – I finished drawing the hand, now it’s the other arm
 – better specify the position of the other arm with respect to the body (instead of the arm)

• I need the possibility to go back
Transformations stack

- Keep current transformation information
 - initially = M, from model to viewport
 - $M' = MT$ (translation by x)
 - draw robot body
 - $M'' = M'T_1$ (translation to center of 1st wheel)
 - draw first wheel as circle of center (0,0)
 - return to M'
 - $M''' = M'T_2$ (translation to center of 2nd wheel)
 - draw second wheel
Stack in graphics libraries

- **OpenGL:**
 - `popmatrix()`, `pushmatrix()`

- **SPHIGS:**
 - `openStructure()`, `closeStructure()`

- **Postscript:**
 - `gsave`, `grestore`
Sample implementation

- Set transformation as projection matrix
- translate by x (concatenate translation matrix with transformation matrix)
- draw car body
- save transformation matrix
 - translate+rotate
 - draw first wheel
- restore transformation matrix
- save transformation matrix
 - translate+rotate
 - draw second wheel
- restore transformation matrix
Hierarchical definition

• How to make sure you’re having the right transformation?
• How to know it’s time to go back to previous transformation?
• Define your object hierarchically
• Drawing = traversal of the tree
Object defined hierarchically

transl. x

body

transl.

1st wh.

transl.

2nd wh.

transl.

Rot. α

1st arm

...
Object hierarchy: conclusion

• Define your object as a tree:
 – specify parts position relative to others
 – use a transformation stack

• Interests:
 – easy variation of parameters
 – objects are re-usable
 • one procedure for all four wheels
 – ensured consistency