3D objects representation and data structure

Dr Nicolas Holzschuch
University of Cape Town
e-mail: holzschu@cs.uct.ac.za
Map of the lecture

• Object representations in 3D
 – internal/external

• Data structure
 – vertex list, edge list, winged edge

• Plane equation
 – computing the plane equation
Objects representation

• In application model
• Will be modified by the application
• Ultimately, will be send for display
• Must be adapted for both tasks
Sending to display

• Need the list of faces, with list of vertices for each face
• Redundant information not a problem
 – one vertex may appear several times
• Neighbouring information not needed
• Data structure:
 – list of faces
 – list of vertices for each face
Access by the application

• Modification of the application model
 – moving vertices
 – adding new faces
 – adding new vertices
 – redundant information is excluded

• Needs neighbouring information
 – for coloring
 – for computing average normals (shading)
Internal vs. external

• External data structure:
 – used for display
 – can be very simple

• Internal data structure
 – will have complex manipulations
 – must provide for these manipulations
Vertex list

• List of faces
• For each face:
 – list of pointers to vertices
• Good points:
 – redundancy removed. Space saved.
• Bad points:
 – find which polygons share an edge, or a given vertex?
Edge list

• For each face:
 – list of pointers to edges

• For each edge:
 – the two polygons sharing it
 – the two vertices

• Neighbouring information available
 – faces adjacent to an edge
Edge list: shortcomings

- List of polygons sharing a vertex?
- I move a vertex:
 - I need to find which edges share this vertex
 - must go through the whole list
- I add a face, an edge:
 - must go through the whole list
Winged-edge data structure

Polygon 1

V1

E2

Edge 1

V2

E4

Polygon 2

E3

E5
Winged-edge data structure

• Each vertex also has a pointer to one of its edges
• Each face has a pointer to one of its edges
• Efficient:
 – faces adjacent to one vertex
 – edges adjacent to one vertex
Plane equation

• Each face is a planar polygon
• Plane equation: $ax+by+cz+d = 0$
• Normal to the plane: (a,b,c)
• Finding the equation?
Finding a plane equation

- Plane defined by three points: P1, P2, P3
- First, find the normal:
 \[\mathbf{n} = \mathbf{P1P2} \times \mathbf{P1P3} \]
- If \(\mathbf{n} = 0 \), then it isn’t a plane
- \(\mathbf{n} \) gives \(a, b \) and \(c \)
- Find \(d \) using P1
Using a plane equation

• \(\mathbf{n} \) is fundamental:
 – defines a front and a back
 – \(M \) is in front of the plane: \(\mathbf{P}_1 \mathbf{M} \cdot \mathbf{n} \geq 0 \)
 – \(M \) is behind the plane: \(\mathbf{P}_1 \mathbf{M} \cdot \mathbf{n} \leq 0 \)

• Same classification using the equation:
 \[ax + by + cz + d \geq 0 \]
3D objects: conclusion

• Data structure essential
 – must be adapted to the task
 – trivial data structure sufficient for display
 – more complex data structure required for application

• Plane equation