3D objects representation and data structure

Dr Nicolas Holzschuch University of Cape Town e-mail:holzschu@cs.uct.ac.za
© 97 N. Holzschuch

Map of the lecture

- Object representations in 3D
-internal/external
- Data structure
- vertex list edge list winged edge
- Plane equation
- computing the plane equation
© 97 N. Holzschuch

Objects representation

- In application model
- Will be modified by the application
- Ultimately, will be send for display
- Must be adapted for both tasks
© 97 N. Holzschuch

Sending to display

- Need the list of faces, with list of vertices for each face
- Redundant information not a problem
- one vertex may appear several times
- Neighbouring information not needed
- Data structure:
- list of faces
- list of vertices for each face
© 97 N. Holzschuch

Access by the application

- Modification of the application model
- moving vertices
- adding new faces
- adding new vertices
- redundant information is excluded
- Needs neighbouring information
- for coloring
- for computing average normals (shading)

Internal vs. external

- External data structure:
- used for display
- can be very simple
- Internal data structure
- will have complex manipulations
- must provide for these manipulations
© 97 N. Holzschuch

Vertex list

- List of faces
- For each face:
- list of pointers to vertices
- Good points:
- redundancy removed. Space saved.
- Bad points:
- find which polygons share an edge, or a given vertex?
© 97 N. Holzschuch

Edge list

- For each face:
- list of pointers to edges
- For each edge:
- the two polygons sharing it
- the two vertices
- Neighbouring information available
- faces adjacent to an edge
© 97 N. Holzschuch

Edge list: shortcomings

- List of polygons sharing a vertex?
- I move a vertex:
- I need to find which edges share this vertex
- must go through the whole list
- I add a face, an edge:
- must go through the whole list

Winged-edge data structure

© 97 N. Holzschuch

Winged-edge data structure

- Each vertex also has a pointer to one of its edges
- Each face has a pointer to one of its edges
- Efficient:
- faces adjacent to one vertex
- edges adjacent to one vertex

Plane equation

- Each face is a planar polygon
- Plane equation: $a x+b y+c z+d=0$
- Normal to the plane: (a, b, c)
- Finding the equation?

Finding a plane equation

- Plane defined by three points: P1,P2,P3
- First, find the normal:

$$
\mathbf{n}=\mathrm{P} 1 \mathrm{P} 2 \wedge \mathrm{P} 1 \mathrm{P} 3
$$

- If $\mathbf{n}=0$? then it isn't a plane
- \mathbf{n} gives a, b and c
- Find d using P1

Using a plane equation

- \mathbf{n} is fundamental:
- defines a front and a back
-M is in front of the plane: $\mathrm{P} 1 \mathrm{M} \bullet \mathbf{n} \geq 0$
-M is behind the plane: $\mathrm{P} 1 \mathrm{M} \bullet \mathbf{n} \leq 0$
- Same classification using the equation:

$$
a x+b y+c z+d \geq 0
$$

3D objects: conclusion

- Data structure essential
- must be adapted to the task
- trivial data structure sufficient for display
- more complex data structure required for application
- Plane equation

