3D objects representation and data structure

Dr Nicolas Holzschuch University of Cape Town e-mail: holzschu@cs.uct.ac.za

Map of the lecture

- Object representations in 3D

 internal/external
- Data structure
 - vertex list, edge list, winged edge
- Plane equation
 - computing the plane equation

Objects representation

- In application model
- Will be modified by the application
- Ultimately, will be send for display
- Must be adapted for both tasks

Sending to display

- Need the list of faces, with list of vertices for each face
- Redundant information not a problem
 one vertex may appear several times
- Neighbouring information not needed
- Data structure:
 - list of faces
 - list of vertices for each face

Access by the application

- Modification of the application model
 - moving vertices
 - adding new faces
 - adding new vertices
 - redundant information is excluded
- Needs neighbouring information
 - for coloring
 - for computing average normals (shading)

Internal vs. external

- External data structure:
 - used for display
 - can be very simple
- Internal data structure
 - will have complex manipulations
 - must provide for these manipulations

Vertex list

- List of faces
- For each face:
 - list of pointers to vertices
- Good points:
 - redundancy removed. Space saved.
- Bad points:
 - find which polygons share an edge, or a given vertex?

Edge list

• For each face:

list of pointers to edges

- For each edge:
 - the two polygons sharing it
 - the two vertices
- Neighbouring information available
 - faces adjacent to an edge

Edge list: shortcomings

- List of polygons sharing a vertex?
- I move a vertex:
 - I need to find which edges share this vertexmust go through the whole list

- I add a face, an edge:
 - must go through the whole list

Winged-edge data structure

• Each vertex also has a pointer to one of its edges

- Each face has a pointer to one of its edges
- Efficient:
 - faces adjacent to one vertex
 - edges adjacent to one vertex

Plane equation

- Each face is a planar polygon
- Plane equation: ax+by+cz+d = 0
- Normal to the plane: (*a*,*b*,*c*)
- Finding the equation?

Finding a plane equation

• Plane defined by three points: P1,P2,P3

- First, find the normal: **n** = P1P2 ^ P1P3
- If **n**=0? then it isn't a plane
- **n** gives *a*,*b* and *c*
- Find *d* using P1

Using a plane equation

- **n** is fundamental:
 - defines a front and a back
 - M is in front of the plane: $P1M \bullet n \ge 0$
 - M is behind the plane: $P1M \bullet n \le 0$
- Same classification using the equation: $ax+by+cz+d \ge 0$

3D objects: conclusion

- Data structure essential
 - must be adapted to the task
 - trivial data structure sufficient for display
 - more complex data structure required for application
- Plane equation