
© 97 N. Holzschuch

3D objects representation 
and data structure

Dr Nicolas Holzschuch

University of Cape Town

e-mail: holzschu@cs.uct.ac.za

mailto:holzschu@cs.uct.ac.za


© 97 N. Holzschuch

Map of the lecture

• Object representations in 3D
– internal/external

• Data structure
– vertex list, edge list, winged edge

• Plane equation
– computing the plane equation



© 97 N. Holzschuch

Objects representation

• In application model

• Will be modified by the application

• Ultimately, will be send for display

• Must be adapted for both tasks



© 97 N. Holzschuch

Sending to display

• Need the list of faces, with list of 
vertices for each face

• Redundant information not a problem
– one vertex may appear several times

• Neighbouring information not needed

• Data structure:
– list of faces

– list of vertices for each face



© 97 N. Holzschuch

Access by the application

• Modification of the application model
– moving vertices

– adding new faces

– adding new vertices

– redundant information is excluded

• Needs neighbouring information
– for coloring

– for computing average normals (shading)



© 97 N. Holzschuch

Internal vs. external

• External data structure:
– used for display

– can be very simple

• Internal data structure
– will have complex manipulations

– must provide for these manipulations



© 97 N. Holzschuch

Vertex list

• List of faces

• For each face:
– list of pointers to vertices

• Good points: 
– redundancy removed. Space saved.

• Bad points: 
– find which polygons share an edge, or a 

given vertex?



© 97 N. Holzschuch

Edge list

• For each face: 
– list of pointers to edges

• For each edge: 
– the two polygons sharing it

– the two vertices

• Neighbouring information available
– faces adjacent to an edge



© 97 N. Holzschuch

Edge list: shortcomings

• List of polygons sharing a vertex?

• I move a vertex:
– I need to find which edges share this vertex

– must go through the whole list

• I add a face, an edge:
– must go through the whole list



© 97 N. Holzschuch

Winged-edge data structure

Polygon 1

Polygon 2

Edge 1

V1

V2

E2

E3

E4

E5



© 97 N. Holzschuch

Winged-edge data structure

• Each vertex also has a pointer to one of 
its edges

• Each face has a pointer to one of its 
edges

• Efficient:
– faces adjacent to one vertex

– edges adjacent to one vertex



© 97 N. Holzschuch

Plane equation

• Each face is a planar polygon

• Plane equation: ax+by+cz+d = 0

• Normal to the plane: (a,b,c)

• Finding the equation?



© 97 N. Holzschuch

Finding a plane equation

• Plane defined by three points: P1,P2,P3

• First, find the normal:
n = P1P2 ^ P1P3

• If n=0? then it isn’t a plane

• n gives a,b and c

• Find d using P1



© 97 N. Holzschuch

Using a plane equation

• n is fundamental:
– defines a front and a back

– M is in front of the plane: P1M•n ≥ 0

– M is behind the plane: P1M•n ≤ 0

• Same classification using the equation:
ax+by+cz+d  ≥ 0



© 97 N. Holzschuch

3D objects: conclusion

• Data structure essential
– must be adapted to the task

– trivial data structure sufficient for display

– more complex data structure required for 
application

• Plane equation


	3D objects representation and data structure
	Map of the lecture
	Objects representation
	Sending to display
	Access by the application
	Internal vs. external

	Vertex list
	Edge list
	Edge list: shortcomings

	Winged-edge data structure
	Plane equation
	Finding a plane equation
	Using a plane equation

	3D objects: conclusion

