2D transformations and homogeneous coordinates

Dr Nicolas Holzschuch
University of Cape Town
e-mail holzschuecs.uct.ac.za

Map of the lecture

- Transformations in 2D.
- vector/matrix notation
- example: translation, scaling, rotation
- Homogeneous coordinates:
- consistant notation
- several other good points (later)
- Composition of transformations
- Transformations for the window system

Transformations in 2D

- In the application model:
- a 2D description of an object (vertices)
- a transformation to apply
- Each vertex is modified:
- $x^{\prime}=f(x, y)$
- $y^{\prime}=g(x, y)$
- Express the modification

Translations

- Each vertex is modified:
- $x^{\prime}=x+t_{x}$
- $y^{\prime}=y+t_{y}$

Translations: vector notation

- Use vector for the notation:
- makes things simpler
- A point is a vector: $\left[\begin{array}{l}x \\ y\end{array}\right]$
- A translation is merely a vector sum:

$$
\mathrm{P}^{\prime}=\mathrm{P}+\mathrm{T}
$$

Scaling in 2D

- Coordinates multiplied by the scaling factor:
- $x^{\prime}=s_{x} x$
- $y^{\prime}=s_{y} y$

Scaling in 2D, matrix notation

- Scaling is a matrix multiplication:

$$
\begin{aligned}
\mathbf{P}^{\prime} & =\mathbf{S P} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] } & =\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

Rotating in 2D

- New coordinates depend on both x and y
- $x^{\prime}=\cos \theta x-\sin \theta y$
- $y^{\prime}=\sin \theta x+\cos \theta y$

Before

After

Rotating in 2D, matrix notation

- A rotation is a matrix multiplication:

$$
\mathrm{P}^{\prime}=\mathbf{R P}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D transformations, summary

- Vector-matrix notation siplifies writing:
- translation is a vector sum
- rotation and scaling are matrix-vector mult
- I would like a consistent notation:
- that expresses all three identically
- that expresses combination of these also identically
- How to do this?

Homogeneous coordinates

- Introduced in mathematics:
- for projections and drawings
- used in artillery, architecture
- used to be classified material (in the 1850s)
- Add a third coordinate, w
- A 2D point is a 3 coordinates vector:

Homogeneous coordinates (2)

- Two points are equal if and only if: $x^{\prime} / w^{\prime}=x / w$ and $y^{\prime} / w^{\prime}=y / w$
- $w=0$: points at infinity
- useful for projections and curve drawing
- Homogenize = divide by w.
- Homogenized points: $\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

Translations with homogeneous

$$
\begin{aligned}
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]} \\
& \left\{\begin{array}{l}
x^{\prime}=x+w t_{x} \\
y^{\prime}=y+w t_{y} \\
w^{\prime}=w
\end{array}\right. \\
& \left\{\begin{array}{l}
\frac{x^{\prime}}{w^{\prime}}=\frac{x}{w}+t_{x} \\
\frac{y^{\prime}}{w^{\prime}}=\frac{y}{w}+t_{y}
\end{array}\right.
\end{aligned}
$$

Scaling with homogeneous

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]}
\end{gathered}\left\{\begin{array}{l}
\frac{x^{\prime}}{w^{\prime}}=S_{x} \frac{x}{w} \\
\frac{y^{\prime}}{w^{\prime}}=S_{y} \frac{y}{w} \\
\left\{\begin{array}{l}
x^{\prime}=s_{x} x \\
y^{\prime}=s_{y} y \\
w^{\prime}=w
\end{array}\right.
\end{array}\right.
$$

Rotation with homogeneous

$$
\begin{aligned}
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]} \\
& \left\{\begin{array}{l}
\frac{x^{\prime}}{w^{\prime}}=\cos \theta \frac{x}{w}-\sin \theta \frac{y}{w} \\
\frac{y^{\prime}}{w^{\prime}}=\sin \theta \frac{x}{w}+\cos \theta \frac{y}{w}
\end{array}\right. \\
& \left\{\begin{array}{l}
x^{\prime}=\cos \theta x-\sin \theta y \\
y^{\prime}=\sin \theta x+\cos \theta y \\
w^{\prime}=\quad w
\end{array}\right.
\end{aligned}
$$

Composition of transformations

- To compose transformations, multiply the matrices:
- composition of a rotation and a translation:

$$
\mathbf{M}=\mathbf{R T}
$$

- all transformations can be expressed as matrices
- even transformations that are not translations, rotations and scaling

Rotation around a point Q

- Rotation about a point Q:
- translate Q to origin $\left(\mathrm{T}_{\mathrm{Q}}\right)$,
- rotate about origin (\mathbf{R}_{Θ})
- translate back to $\mathrm{Q}\left(-\mathrm{T}_{\mathrm{Q}}\right)$.

$$
\mathrm{P}^{\prime}=\left(-\mathrm{T}_{\mathrm{Q}}\right) \mathrm{R}_{\Theta} \mathrm{T}_{\mathrm{Q}} \mathrm{P}
$$

Beware!

- Matrix multiplication is not commutative
- The order of the transformations is vital
- Rotation followed by translation isvery different from translation followed by rotation
- careful with the order of the matrices!
- Small commutativity:
- rotation commute with rotation, translation with translation...

From World to Window

- Inside the application:
- application model
- coordinates related to the model
- possibly floating point
- On the screen:
- pixel coordinates
- integer
- restricted viewport: umin/umax, vmin/vmax

From Model to Viewport

From Model to Viewport

- Model is (xmin,ymin)-(xmax,ymax)
- Viewport is (umin,vmin)-(umax,vmax)
- Translate by (-xmin,-ymin)
- Scale by ($\left.\frac{u \text { max-umin }}{x \max -x_{\min }}, \frac{v \max -v \min }{y \text { max-ymin }}\right)$
- Translate by (umin,vmin)

$$
\mathrm{M}=\mathrm{T}^{\prime} \mathrm{ST}
$$

From Model to Viewport

Pixel Coordinates

Mouse position: inverse problem

- Mouse click: coordinates in pixels
- We want the equivalent in World Coord
- because the user has selected an object
- to draw something
- for interaction
- How can we convert from window coordinates to model coordinates?

Mouse click: inverse problem

- Simply inverse the matrix:

$$
M^{-1}=\left(T^{\prime} S T\right)^{-1}
$$

Model Coordinates

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]=M^{-1}\left[\begin{array}{c}
u \\
v \\
w^{\prime}
\end{array}\right] \quad \text { Pixels coordinates }
$$

2D transformations: conclusion

- Simple, consistent matrix notation
- using homogeneous coordinates
- all transformations expressed as matrices
- Used by the window system:
- for conversion from model to window
- for conversion from window to model
- Used by the application:
- for modelling transformations

