We want a path from s to t that is both short and has few edges (less than k edges)

for each vertex v and each integer $i \leq k, \operatorname{dist}(v, i)=$ the length of the shortest path from s to v that uses i edges

$$
\operatorname{dist}(v, i)=\min _{(u, v) \in E}\{\operatorname{dist}(u, i-1)+\ell(u, v)\}
$$

	0	1	2	3	4
S	0	∞			
A	∞	1			
B	∞	∞			
C	∞	2			
D	∞	5			
T	∞	∞			

