Knapsack without repetition example for $\boldsymbol{W}=10$
$K(w, j)=$ maximum value achievable using a knapsack of capacity w and items $1, \ldots, j$.

Item	Weight	Value	Initialize all $K(0, j)=0$ and all $K(w, 0)=0$ for $j=1$ to $n:$
1	6	$\$ 30$	for $w=1$ to $W:$
2	3	$\$ 14$	if $w_{j}>w: K(w, j)=K(w, j-1)$
3	4	$\$ 16$	else: $\left.K(w, j) \xlongequal[=]{\max \{K(w, j-1)}, K\left(w-w_{j}, j-1\right)+v_{j}\right\}$
4	2	$\$ 9$	return $K(W, n)$

	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0		
2	0	0	0		
3	0	0	14		
4	0	0			
5	0	0			
6	0	30			
7	0	36			
8	0	30			
9	0	30	44		
10	0	30			

$$
\begin{aligned}
& K(1,1)=0 \quad K(2,1)=K(2,0)=0 \\
& K(6,1)=\max \{K(6,0), K(6-6,0)+30\}=30 \\
& K(2,1) \\
& K(1,2)=0, K(2,2)=0 \\
& K(3,2)=\operatorname{mox}\{K(3,1), \overbrace{(3-3,1)+14}^{0}=14 \\
& K(9,2)=\max \{K(9-3,1)+14, \ldots\}=44 \\
& 30+14
\end{aligned}
$$

