
All Pairs Shortest Paths

Problem: Given n nodes and distances dij (which could be negative, or 0, or
positive) on all edges, find shortest path distances between all pairs of nodes.

1

2

0

-2

3

3

2

2

1

-2

a

c d f

e g

h

b

Does Dijkstra’s algorithm work?

s

v

w

u
2

1

3

-6

latecki
Text Box
 Part taken from slides by Kamalika Chaudhuri

All Pairs Shortest Paths

Problem: Given n nodes and distances dij (which could be negative, or 0, or
positive) on all edges, find shortest path distances between all pairs of nodes.

Does Dijkstra’s algorithm work?

s

v

w

u
2

1

3

-6

Ans: No! Example: s-v Shortest Paths

1

2

0

-2

3

3

2

2

1

-2

a

c d f

e g

h

b

All Pairs Shortest Paths (APSP)

Problem: Given n nodes and distances dij (which could be negative, or 0, or
positive) on all edges, find shortest path distances between all pairs of nodes.

1

2

0

-2

3

3

2

2

1

-2

a

c d f

e g

h

b

Structure:
For all x, y:

either SP(x, y) = dxy

Or there exists some z s.t
SP(x, y) = SP(x, z) + SP(y, z)

All Pairs Shortest Paths (APSP)

Problem: Given n nodes and distances dij (which could be negative, or 0, or
positive) on all edges, find shortest path distances between all pairs of nodes.

Structure:
For all x, y:

either SP(x, y) = dxy

Or there exists some z s.t
SP(x, y) = SP(x, z) + SP(y, z)

Property: If there is no negative weight
cycle, then for all x, y, SP(x, y) is simple
(that is, includes no cycles)

s a c t

b d

1 1 1

1

-1-2

1

2

0

-2

3

3

2

2

1

-2

a

c d f

e g

h

b

All Pairs Shortest Paths

Problem: Given n nodes and distances dij (which could be negative, or 0, or
positive) on all edges, find shortest path distances between all pairs of nodes.

STEP 1: Define Subtasks
D(i,j,k) = length of shortest path from
 i to j with intermediate nodes in {1,2,...k}

1

2

0

-2

3

3

2

2

1

-2

a

c d f

e g

h

b

All Pairs Shortest Paths

Problem: Given n nodes and distances dij (which could be negative, or 0, or
positive) on all edges, find shortest path distances between all pairs of nodes.

STEP 1: Define Subtasks
D(i,j,k) = length of shortest path from
 i to j with intermediate nodes in {1,2,...k}
Shortest Path lengths = D(i,j,n)

1

2

0

-2

3

3

2

2

1

-2

a

c d f

e g

h

b

All Pairs Shortest Paths

Problem: Given n nodes and distances dij (which could be negative, or 0, or
positive) on all edges, find shortest path distances between all pairs of nodes.

STEP 1: Define Subtasks
D(i,j,k) = length of shortest path from
 i to j with intermediate nodes in {1,2,...k}
Shortest Path lengths = D(i,j,n)

STEP 2: Express Recursively
D(i,j,k) =	

min{D(i,j,k-1), D(i,k,k-1) + D(k,j,k-1)}
Base case: D(i,j,0) = dij

1

2

0

-2

3

3

2

2

1

-2

a

c d f

e g

h

b

All Pairs Shortest Paths

Problem: Given n nodes and distances dij (which could be negative, or 0, or
positive) on all edges, find shortest path distances between all pairs of nodes.

STEP 1: Define Subtasks
D(i,j,k) = length of shortest path from
 i to j with intermediate nodes in {1,2,...k}
Shortest Path lengths = D(i,j,n)

STEP 2: Express Recursively
D(i,j,k) =	

min{D(i,j,k-1), D(i,k,k-1) + D(k,j,k-1)}
Base case: D(i,j,0) = dij

STEP 3: Order of Subtasks
By increasing order of k

1

2

0

-2

3

3

2

2

1

-2

a

c d f

e g

h

b

All Pairs Shortest Paths

Problem: Given n nodes and distances dij (which could be negative, or 0, or
positive) on all edges, find shortest path distances between all pairs of nodes.

STEP 1: Define Subtasks
D(i,j,k) = length of shortest path from
 i to j with intermediate nodes in {1,2,...k}
Shortest Path lengths = D(i,j,n)

STEP 2: Express Recursively
D(i,j,k) =	

min{D(i,j,k-1), D(i,k,k-1) + D(k,j,k-1)}
Base case: D(i,j,0) = dij

STEP 3: Order of Subtasks
By increasing order of k

Running Time = O(n3)
Exercise:
Reconstruct the shortest paths

1

2

0

-2

3

3

2

2

1

-2

a

c d f

e g

h

b

Summary: Dynamic Programming

Main Steps:

1. Divide the problem into subtasks

2. Define the subtasks recursively (express larger subtasks in terms of
smaller ones)

3. Find the right order for solving the subtasks (but do not solve them
recursively!)

Summary: Dynamic Programming vs
Divide and Conquer

Divide-and-conquer

A problem of size n is decomposed into a
few subproblems which are significantly
smaller (e.g. n/2, 3n/4,...)

Therefore, size of subproblems decreases
geometrically.
eg. n, n/2, n/4, n/8, etc

Use a recursive algorithm.	

Dynamic programming

A problem of size n is expressed in terms
of subproblems that are not much smaller
(e.g. n-1, n-2,...)

A recursive algorithm would take exp. time.

Saving grace: in total, there are only
polynomially many subproblems.

Avoid recursion and instead solve the
subproblems one-by-one, saving the
answers in a table, in a clever explicit order.

