
All Pairs Shortest Paths

Problem: Given n nodes and distances dij (which could be negative, or 0, or 
positive) on all edges, find shortest path distances between all pairs of nodes.
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Does Dijkstra’s algorithm work?
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All Pairs Shortest Paths

Problem: Given n nodes and distances dij (which could be negative, or 0, or 
positive) on all edges, find shortest path distances between all pairs of nodes.

Does Dijkstra’s algorithm work?
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Ans: No! Example: s-v Shortest Paths
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All Pairs Shortest Paths (APSP)

Problem: Given n nodes and distances dij (which could be negative, or 0, or 
positive) on all edges, find shortest path distances between all pairs of nodes.
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Structure:
For all x, y:

either SP(x, y) = dxy

Or there exists some z s.t
SP(x, y) = SP(x, z) + SP(y, z)



All Pairs Shortest Paths (APSP)

Problem: Given n nodes and distances dij (which could be negative, or 0, or 
positive) on all edges, find shortest path distances between all pairs of nodes.

Structure:
For all x, y:

either SP(x, y) = dxy

Or there exists some z s.t
SP(x, y) = SP(x, z) + SP(y, z)

Property: If there is no negative weight 
cycle, then for all x, y, SP(x, y) is simple 
(that is, includes no cycles)
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All Pairs Shortest Paths

Problem: Given n nodes and distances dij (which could be negative, or 0, or 
positive) on all edges, find shortest path distances between all pairs of nodes.

STEP 1: Define Subtasks
D(i,j,k) = length of shortest path from
 i to j with intermediate nodes in {1,2,...k}
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All Pairs Shortest Paths

Problem: Given n nodes and distances dij (which could be negative, or 0, or 
positive) on all edges, find shortest path distances between all pairs of nodes.

STEP 1: Define Subtasks
D(i,j,k) = length of shortest path from
 i to j with intermediate nodes in {1,2,...k}
Shortest Path lengths = D(i,j,n)
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All Pairs Shortest Paths

Problem: Given n nodes and distances dij (which could be negative, or 0, or 
positive) on all edges, find shortest path distances between all pairs of nodes.

STEP 1: Define Subtasks
D(i,j,k) = length of shortest path from
 i to j with intermediate nodes in {1,2,...k}
Shortest Path lengths = D(i,j,n)

STEP 2: Express Recursively
D(i,j,k) =	

min{D(i,j,k-1), D(i,k,k-1) + D(k,j,k-1)}
Base case: D(i,j,0) = dij
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All Pairs Shortest Paths

Problem: Given n nodes and distances dij (which could be negative, or 0, or 
positive) on all edges, find shortest path distances between all pairs of nodes.

STEP 1: Define Subtasks
D(i,j,k) = length of shortest path from
 i to j with intermediate nodes in {1,2,...k}
Shortest Path lengths = D(i,j,n)

STEP 2: Express Recursively
D(i,j,k) =	

min{D(i,j,k-1), D(i,k,k-1) + D(k,j,k-1)}
Base case: D(i,j,0) = dij

STEP 3: Order of Subtasks
By increasing order of k
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All Pairs Shortest Paths

Problem: Given n nodes and distances dij (which could be negative, or 0, or 
positive) on all edges, find shortest path distances between all pairs of nodes.

STEP 1: Define Subtasks
D(i,j,k) = length of shortest path from
 i to j with intermediate nodes in {1,2,...k}
Shortest Path lengths = D(i,j,n)

STEP 2: Express Recursively
D(i,j,k) =	

min{D(i,j,k-1), D(i,k,k-1) + D(k,j,k-1)}
Base case: D(i,j,0) = dij

STEP 3: Order of Subtasks
By increasing order of k

Running Time = O(n3)
Exercise: 
Reconstruct the shortest paths
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Summary: Dynamic Programming

Main Steps:

1. Divide the problem into subtasks 

2. Define the subtasks recursively (express larger subtasks in terms of 
smaller ones)

3. Find the right order for solving the subtasks (but do not solve them 
recursively!)



Summary: Dynamic Programming vs 
Divide and Conquer

Divide-and-conquer

A problem of size n is decomposed into a 
few subproblems which are significantly 
smaller (e.g. n/2, 3n/4,...)

Therefore, size of subproblems decreases 
geometrically.
eg. n, n/2, n/4, n/8, etc

Use a recursive algorithm.	



Dynamic programming

A problem of size n is expressed in terms 
of subproblems that are not much smaller 
(e.g. n-1, n-2,...)

A recursive algorithm would take exp. time.

Saving grace: in total, there are only 
polynomially many subproblems.

Avoid recursion and instead solve the 
subproblems one-by-one, saving the 
answers in a table, in a clever explicit order.




