Problem: Given \(n \) nodes and distances \(d_{ij} \) (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

Does Dijkstra’s algorithm work?
Problem: Given n nodes and distances d_{ij} (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

Does Dijkstra’s algorithm work?

Ans: No! Example: s-v Shortest Paths
All Pairs Shortest Paths (APSP)

Problem: Given \(n \) nodes and distances \(d_{ij} \) (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

Structure:
For all \(x, y \):
 either \(SP(x, y) = d_{xy} \)
Or there exists some \(z \) s.t
 \(SP(x, y) = SP(x, z) + SP(y, z) \)
All Pairs Shortest Paths (APSP)

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

Structure:
For all x, y:
- either $SP(x, y) = d_{xy}$
- Or there exists some z s.t $SP(x, y) = SP(x, z) + SP(y, z)$

Property: If there is no negative weight cycle, then for all x, y, $SP(x, y)$ is simple (that is, includes no cycles)
All Pairs Shortest Paths

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

STEP 1: Define Subtasks

$D(i,j,k) =$ length of shortest path from i to j with intermediate nodes in $\{1,2,...k\}$

![Graph](image)
All Pairs Shortest Paths

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

STEP 1: Define Subtasks

$D(i,j,k) = \text{length of shortest path from } i \text{ to } j \text{ with intermediate nodes in } \{1, 2, \ldots, k\}$

Shortest Path lengths = $D(i,j,n)$
Problem: Given n nodes and distances d_{ij} (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

STEP 1: Define Subtasks

$D(i,j,k) =$ length of shortest path from i to j with intermediate nodes in $\{1,2,...,k\}$

Shortest Path lengths $= D(i,j,n)$

STEP 2: Express Recursively

$D(i,j,k) = \min\{D(i,j,k-1), D(i,k,k-1) + D(k,j,k-1)\}$

Base case: $D(i,j,0) = d_{ij}$
All Pairs Shortest Paths

Problem: Given \(n \) nodes and distances \(d_{ij} \) (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

STEP 1: Define Subtasks

\[D(i,j,k) = \text{length of shortest path from } i \text{ to } j \text{ with intermediate nodes in } \{1,2,\ldots,k\} \]

Shortest Path lengths = \(D(i,j,n) \)

STEP 2: Express Recursively

\[D(i,j,k) = \min\{D(i,j,k-1), D(i,k,k-1) + D(k,j,k-1)\} \]

Base case: \(D(i,j,0) = d_{ij} \)

STEP 3: Order of Subtasks

By increasing order of \(k \)
Problem: Given n nodes and distances \(d_{ij} \) (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

STEP 1: Define Subtasks

\[D(i,j,k) = \text{length of shortest path from i to j with intermediate nodes in \{1,2,...,k\}} \]

Shortest Path lengths = \(D(i,j,n) \)

STEP 2: Express Recursively

\[D(i,j,k) = \min\{D(i,j,k-1), D(i,k,k-1) + D(k,j,k-1)\} \]

Base case: \(D(i,j,0) = d_{ij} \)

STEP 3: Order of Subtasks

By increasing order of \(k \)

Running Time = \(O(n^3) \)

Exercise:

Reconstruct the shortest paths
Summary: Dynamic Programming

Main Steps:

1. Divide the problem into **subtasks**

2. Define the subtasks **recursively** (express larger subtasks in terms of smaller ones)

3. Find the **right order** for solving the subtasks (but do not solve them recursively!)
<table>
<thead>
<tr>
<th>Divide-and-conquer</th>
<th>Dynamic programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>A problem of size n is decomposed into a few subproblems which are significantly smaller (e.g. n/2, 3n/4,...)</td>
<td>A problem of size n is expressed in terms of subproblems that are not much smaller (e.g. n-1, n-2,...)</td>
</tr>
<tr>
<td>Therefore, size of subproblems decreases geometrically.</td>
<td>A recursive algorithm would take exp. time.</td>
</tr>
<tr>
<td>eg. n, n/2, n/4, n/8, etc</td>
<td>Saving grace: in total, there are only polynomially many subproblems.</td>
</tr>
<tr>
<td>Use a recursive algorithm.</td>
<td>Avoid recursion and instead solve the subproblems one-by-one, saving the answers in a table, in a clever explicit order.</td>
</tr>
</tbody>
</table>