All Pairs Shortest Paths

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0 , or positive) on all edges, find shortest path distances between all pairs of nodes.

Does Dijkstra's algorithm work?

All Pairs Shortest Paths

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0 , or positive) on all edges, find shortest path distances between all pairs of nodes.

Does Dijkstra's algorithm work?
Ans: No! Example: s-v Shortest Paths

All Pairs Shortest Paths (APSP)

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0 , or positive) on all edges, find shortest path distances between all pairs of nodes.

Structure:

For all x, y : either $\operatorname{SP}(x, y)=d_{x y}$
Or there exists some z s.t $\operatorname{SP}(x, y)=\operatorname{SP}(x, z)+\operatorname{SP}(y, z)$

All Pairs Shortest Paths (APSP)

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0 , or positive) on all edges, find shortest path distances between all pairs of nodes.

Structure:

For all x, y : either $\operatorname{SP}(x, y)=d_{x y}$
Or there exists some z s.t

$$
S P(x, y)=S P(x, z)+S P(y, z)
$$

Property: If there is no negative weight cycle, then for all $x, y, \operatorname{SP}(x, y)$ is simple (that is, includes no cycles)

All Pairs Shortest Paths

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0 , or positive) on all edges, find shortest path distances between all pairs of nodes.

STEP I: Define Subtasks

$D(\mathrm{i}, \mathrm{j}, \mathrm{k})=$ length of shortest path from i to j with intermediate nodes in $\{1,2, . . . \mathrm{k}\}$

All Pairs Shortest Paths

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0 , or positive) on all edges, find shortest path distances between all pairs of nodes.

STEP I: Define Subtasks

$D(\mathrm{i}, \mathrm{j}, \mathrm{k})=$ length of shortest path from i to j with intermediate nodes in $\{1,2, . . \mathrm{k}\}$ Shortest Path lengths $=D(i, j, \mathrm{n})$

All Pairs Shortest Paths

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0 , or positive) on all edges, find shortest path distances between all pairs of nodes.

STEP I: Define Subtasks

$D(\mathrm{i}, \mathrm{j}, \mathrm{k})=$ length of shortest path from i to j with intermediate nodes in $\{1,2, \ldots \mathrm{k}\}$ Shortest Path lengths = D(i,j,n)

STEP 2: Express Recursively

$D(\mathrm{i}, \mathrm{j}, \mathrm{k})=\min \{\mathrm{D}(\mathrm{i}, \mathrm{j}, \mathrm{k}-\mathrm{I}), \mathrm{D}(\mathrm{i}, \mathrm{k}, \mathrm{k}-\mathrm{I})+\mathrm{D}(\mathrm{k}, \mathrm{j}, \mathrm{k}-\mathrm{I})\}$ Base case: $D(i, j, 0)=d_{i j}$

All Pairs Shortest Paths

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0 , or positive) on all edges, find shortest path distances between all pairs of nodes.

STEP I: Define Subtasks

$D(\mathrm{i}, \mathrm{j}, \mathrm{k})=$ length of shortest path from i to j with intermediate nodes in $\{1,2, \ldots \mathrm{k}\}$ Shortest Path lengths $=D(\mathrm{i}, \mathrm{j}, \mathrm{n})$

STEP 2: Express Recursively

$D(\mathrm{i}, \mathrm{j}, \mathrm{k})=\min \{\mathrm{D}(\mathrm{i}, \mathrm{j}, \mathrm{k}-\mathrm{I}), \mathrm{D}(\mathrm{i}, \mathrm{k}, \mathrm{k}-\mathrm{I})+\mathrm{D}(\mathrm{k}, \mathrm{j}, \mathrm{k}-\mathrm{I})\}$ Base case: $D(i, j, 0)=d_{i j}$

STEP 3: Order of Subtasks

By increasing order of k

All Pairs Shortest Paths

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0 , or positive) on all edges, find shortest path distances between all pairs of nodes.

STEP I: Define Subtasks

$D(\mathrm{i}, \mathrm{j}, \mathrm{k})=$ length of shortest path from i to j with intermediate nodes in $\{1,2, \ldots \mathrm{k}\}$ Shortest Path lengths $=D(\mathrm{i}, \mathrm{j}, \mathrm{n})$

STEP 2: Express Recursively

$D(\mathrm{i}, \mathrm{j}, \mathrm{k})=\min \{\mathrm{D}(\mathrm{i}, \mathrm{j}, \mathrm{k}-\mathrm{I}), \mathrm{D}(\mathrm{i}, \mathrm{k}, \mathrm{k}-\mathrm{I})+\mathrm{D}(\mathrm{k}, \mathrm{j}, \mathrm{k}-\mathrm{I})\}$ Base case: $D(i, j, 0)=d_{i j}$

STEP 3: Order of Subtasks

By increasing order of k

Summary: Dynamic Programming

Main Steps:

I. Divide the problem into subtasks
2. Define the subtasks recursively (express larger subtasks in terms of smaller ones)
3. Find the right order for solving the subtasks (but do not solve them recursively!)

Summary: Dynamic Programming vs Divide and Conquer

Divide-and-conquer

A problem of size n is decomposed into a few subproblems which are significantly smaller (e.g. n/2, 3n/4,...)

Therefore, size of subproblems decreases geometrically.
eg. $n, n / 2, n / 4, n / 8$, etc

Use a recursive algorithm.

Dynamic programming

A problem of size n is expressed in terms of subproblems that are not much smaller (e.g. n-I, n-2,...)

A recursive algorithm would take exp. time.

Saving grace: in total, there are only polynomially many subproblems.

Avoid recursion and instead solve the subproblems one-by-one, saving the answers in a table, in a clever explicit order.

