Figure 7.11 In the most general case of linear programming, we have a set I of inequalities and a set E of equalities (a total of $m=|I|+|E|$ constraints) over n variables, of which a subset N are constrained to be nonnegative. The dual has $m=|I|+|E|$ variables, of which only those corresponding to I have nonnegativity constraints.

Primal LP:

$$
\begin{gathered}
\max c_{1} x_{1}+\cdots+c_{n} x_{n} \\
a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \leq b_{i} \text { for } i \in I \\
a_{i 1} x_{1}+\cdots+a_{\text {in }} x_{n}=b_{i} \text { for } i \in E \\
x_{j} \geq 0 \text { for } j \in N
\end{gathered}
$$

Dual LP:

$$
\begin{gathered}
\min b_{1} y_{1}+\cdots+b_{m} y_{m} \\
a_{1 j} y_{1}+\cdots+a_{m j} y_{m} \geq c_{j} \text { for } j \in N \\
a_{1 j} y_{1}+\cdots+a_{m j} y_{m}=c_{j} \text { for } j \notin N \\
y_{i} \geq 0 \text { for } i \in I
\end{gathered}
$$

Two examples of duals for the given primal LPs:

$$
\begin{aligned}
& \text { (P)Maximize } z_{\mathrm{P}}=2 x_{1}+3 x_{2} \\
& \text { subject to } \quad-x_{1}+x_{2} \leq 5 \\
& x_{1}+3 x_{2} \leq 35 \\
& x_{1} \leq 20 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

(D) Minimize $z_{\mathrm{D}}=5 \pi_{1}+35 \pi_{2}+20 \pi_{3}$
subject to $\quad-\pi_{1}+\pi_{2} \quad+\pi_{3} \geq 2$

$$
\pi_{1}+3 \pi_{2} \quad \geq 3
$$

$$
\pi_{1} \geq 0, \pi_{2} \geq 0, \pi_{3} \geq 0
$$

$\begin{array}{rr}\text { (D) Minimize } & z_{D}=8 \pi_{1}+13 \pi_{2} \\ \text { subject to } & -\pi_{1}+\pi_{2} \geq-3 \\ & -\pi_{1}+2 \pi_{2}=-2 \\ & \pi_{1} \text { unrestricted, } \pi_{2} \leq 0\end{array}$
$\begin{array}{rr}\text { (D) Minimize } & z_{D}=8 \pi_{1}+13 \pi_{2} \\ \text { subject to } & -\pi_{1}+\pi_{2} \geq-3 \\ & -\pi_{1}+2 \pi_{2}=-2 \\ & \pi_{1} \text { unrestricted, } \pi_{2} \leq 0\end{array}$

$$
\begin{aligned}
-\pi_{1}+\pi_{2} & \geq-3 \\
-\pi_{1}+2 \pi_{2} & =-2
\end{aligned}
$$

$\begin{array}{rr}\text { (D) Minimize } & z_{D}=8 \pi_{1}+13 \pi_{2} \\ \text { subject to } & -\pi_{1}+\pi_{2} \geq-3 \\ & -\pi_{1}+2 \pi_{2}=-2 \\ & \pi_{1} \text { unrestricted, } \pi_{2} \leq 0\end{array}$
(P) Maximize $z_{\mathrm{P}}=-3 x_{1}-2 x_{2}$
subject to

$$
\begin{array}{r}
-x_{1}-x_{2}=8 \\
x_{1}+2 x_{2} \geq 13
\end{array}
$$

$x_{1} \geq 0, x_{2}$ unrestricted

Operations Research Models and Methods
Examples from

