Figure 3.3 Finding all nodes reachable from a particular node.

procedure explore\((G, v) \)

Input: \(G = (V, E) \) is a graph; \(v \in V \)

Output: visited\((u) \) is set to true for all nodes \(u \) reachable from \(v \)

visited\((v) = \text{true} \)
previsit\((v) \)
for each edge \((v, u) \in E \):
 if not visited\((u) \):
 explore\((u) \)
postvisit\((v) \)
Figure 3.5 Depth-first search.

procedure \texttt{dfs}(G)

for all \(v \in V \):
 \(\text{visited}(v) = \text{false} \)

for all \(v \in V \):
 if not \(\text{visited}(v) \): \(\text{explore}(v) \)

Figure 3.6 (a) A 12-node graph. (b) DFS search forest.

```
procedure \texttt{previsit}(v) \qquad procedure \texttt{postvisit}(v)
\begin{align*}
\text{pre}[v] &= \text{clock} \\
\text{clock} &= \text{clock} + 1 \\
\text{post}[v] &= \text{clock} \\
\text{clock} &= \text{clock} + 1
\end{align*}
```

Property For any nodes \(u \) and \(v \), the two intervals \([\text{pre}(u), \text{post}(u)] \) and \([\text{pre}(v), \text{post}(v)] \) are either disjoint or one is contained within the other.

Why? Because \([\text{pre}(u), \text{post}(u)] \) is essentially the time during which vertex \(u \) was on the stack. The last-in, first-out behavior of a stack explains the rest.
Figure 3.5 Depth-first search.

```plaintext
procedure dfs(G)
    for all \( v \in V \):
        visited(v) = false
    for all \( v \in V \):
        if not visited(v): explore(v)
```

Figure 3.7 DFS on a directed graph.

Fig. 3.7 has two forward edges, two back edges, and two cross edges. Because of DFS exploration strategy, vertex \(u \) is an **ancestor** of vertex \(v \) when \(u \) is discovered first and \(v \) is discovered during `explore(u)`, i.e., \(\text{pre}(u) < \text{pre}(v) < \text{post}(v) < \text{post}(u) \).