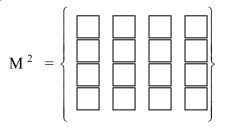
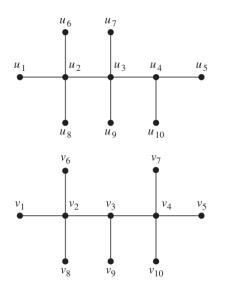

1. (a) Let a directed graph G_1 be given.


Does each of the following list of vertices form a path in G_1 ? If yes, determine (by circling) if the path is simple, if it is a circuit, and give its length.

a, b, e, c, b	Yes [simple circuit	length] No
a, d, a, d, a	Yes [simple circuit	length] No
a, d, e, b, a	Yes [simple circuit	length] No
a, b, e, c, b, a	Yes [simple circuit	length] No

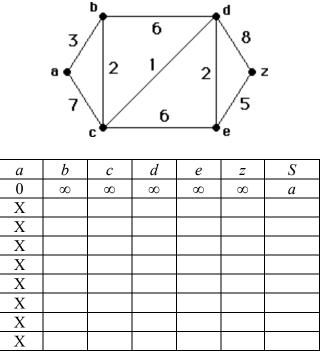
(b) For the simple graph G₂


Find M^2 , where M is the adjacency matrix of G_2

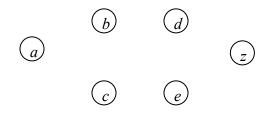
Find the number of paths from A to D in G_2 of length 2.

2. Provide a pseudo code of an algorithm for finding a closest pair of numbers in a set of n real distinct numbers and give a worst-case estimate of the number of comparisons.

3. Determine whether the given pair of graphs G and H is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.



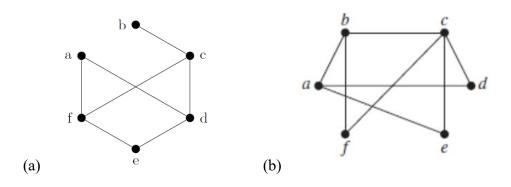
4. Let $a_1 = 2$, $a_2 = 9$, and $a_n = 2a_{n-1} + 3a_{n-2}$ for $n \ge 3$. Show using induction that $a_n \le 3^n$ for all positive integers n.


5. Use mathematical induction to show that $\sum_{j=0}^{n} (j+1) = \frac{(n+1)(n+2)}{2}$ whenever *n* is a nonnegative integer.

6. Let $f(n) = 2n\log(n^2+5) + 3n + 1$. What is big-O estimate of f(n)? Be sure to specify the values of the witnesses C and k.

7. Use Dijkstra's algorithm to find the length of the shortest path between the vertices a and z in the following weighted graph. Use the table below to log in your computation.

Draw a tree representing the shortest distances from *a* to each of the other vertices. Indicate the distance next to each vertex.


8. How many vertices and how many edges does each of the following graphs have? (a) K_5

(b) C₄

(c) W₅

(d) K_{2,5}

9. Write a pseudocode for an algorithm for evaluating a polynomial of degree *n*, $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, at x = c. What is big-O estimate of the time complexity of your algorithm (in terms of the number of multiplications and additions used) as a function of *n*? Explain your answer. 10. Are the following graphs bipartite? Justify your answers.

11. What is the effect in the time required to solve a problem when you double the size of the input from n to 2n? Express your answer in the simplest form possible, either as a ratio or a difference. Explain the meaning of your answer.

a) log *n* b) 100*n*

c) n^2

12. Give a recursive algorithm for finding the maximum of a finite set of integers, the recursion should make use of the fact that the maximum of n integers is the larger of the last integer in the list and the maximum of the first n - 1 integers in the list.