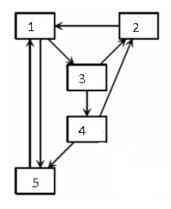

1. Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

2. Prove by induction that $n^2 - 7n + 12$ is nonnegative whenever *n* is an integer with $n \ge 3$.

3. (a) How many vertices and how many edges are in K_n for n>2?

(b) For which n does K_n (for n>2) have an Euler circuit? Justify your answer.


(c) For which n does K_n (for n>2) have a Hamilton circuit? Justify your answer.

(d) How many vertices and how many edges are in complete bipartite graph $K_{m,n}$ for m,n>1?

(e) For which n does complete bipartite graph $K_{m,n}$ (for m,n>1) have an Euler circuit? Justify your answer.

(f) For which n does complete bipartite graph $K_{m,n}$ (for m,n>1) have a Hamilton circuit? Justify your answer.

4. For the web graph shown below write the link matrix A that expresses the system of PageRank linear equations in the form $\mathbf{A}\mathbf{x} = \mathbf{x}$, where $\mathbf{x} = [x_1 x_2 x_3 x_4 x_5]^T$. Is the matrix $\mathbf{M} = (1 - m)\mathbf{A} + m\mathbf{S}$ for m=0.25 column-stochastic? Justify your answer.

5. Use the method of Gaussian elimination to find **x** for the system of linear equations Ax=b, where **A** and **b** are given below. Show your work.

$$A = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 3 & 5 \\ 2 & 6 & 11 \end{bmatrix}, b = \begin{bmatrix} 10 \\ 4 \\ 6 \end{bmatrix}$$

6. Use method of Gaussian elimination to find the determinant of matrix **B** given below. Show your work.

$$\begin{bmatrix} 0 & 1 & 2 \\ -1 & 1 & 3 \\ 2 & -2 & 0 \end{bmatrix}$$

7. Find the eigenvalues and the eigenvectors of these two matrices. Show your work.

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \quad \text{and} \quad A + I = \begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix}$$

8. Find the eigenvalues and the eigenvectors of matrix A. Show your work.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 2 & 3 & 3 \end{bmatrix}.$$

9. Find the matrix A that performs those transformations, in order, on the Cartesian plane. To which point is the point (-4, 1) mapped by this transformation?
(a) horizontal stretch by a factor of 2
(b) reflection across the y-axis.

10. Find the standard matrix \mathbf{A} for the given linear transformation T.

$$T\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix}x_1 + 2x_2 - 3x_3\\0\\x_1 + 4x_3\\5x_2 + x_3\end{bmatrix}$$

11. Provide a pseudo-code of an algorithm for finding the second largest number in a sequence of *n* distinct integers (n > 1) distinct integers. What is its worst-case time complexity in terms of the number of comparisons? Justify your answer.

12. Let $f(n) = 2n\log(n^2+3) + 7n + 5$. What is the big-O estimate of f(n)? Be sure to specify the values of witnesses *C* and *k*.