1. (a) Let a directed graph G₁ be given.

Does each of the following list of vertices form a path in G_1 ? If yes, determine (by circling) if the path is simple, if it is a circuit, and give its length.

a, b, e, c, b

Yes [simple circuit length] No

a, d, a, d, a

Yes [simple circuit length] No

a, d, e, b, a

Yes [simple circuit length] No

a, b, e, c, b, a

Yes [simple circuit length] No

(b) For the simple graph G₂

Find M², where M is the adjacency matrix of G₂

Find the number of paths from A to D in G_2 of length 2.

2

2. Provide a pseudo code of an algorithm for finding a closest pair of numbers in a set of n real

distinct numbers and give a worst-case estimate of the number of comparisons.

3. Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

4. Let $a_1 = 2$, $a_2 = 9$, and $a_n = 2a_{n-1} + 3a_{n-2}$ for $n \ge 3$. Show using induction that $a_n \le 3^n$ for all positive integers n.

5. Use mathematical induction to show that $\sum_{j=0}^{n} (j+1) = \frac{(n+1)(n+2)}{2}$ whenever n is a nonnegative integer.

6. Let $f(n) = 2n\log(n^2 + 5) + 3n + 1$. What is big-O estimate of f(n)? Be sure to specify the values of the witnesses C and k.

7. Use Dijkstra's algorithm to find the length of the shortest path between the vertices a and z in the following weighted graph. Use the table below to log in your computation.

а	b	С	d	e	\boldsymbol{z}	S
0	∞	8	8	8	8	а
X						
X						
X						
X						
X						
X						
X						
X						

Draw a tree representing the shortest distances from a to each of the other vertices. Indicate the distance next to each vertex.

 \bigcirc d

c) (ϵ

8. How many vertices and how many edges does each of the following graphs have?
(a) K_5

- (b) C₄
- (c) W₅
- (d) $K_{2,5}$

9. Write a pseudocode for an algorithm for evaluating a polynomial of degree n, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, at x = c. What is big-O estimate of the time complexity of your algorithm (in terms of the number of

multiplications and additions used) as a function of n? Explain your answer.

- **10.** For which values of n do these graphs have a Euler circuit?
- **a)** K_n **b)** C_n **c)** W_n **d)** Q_n

- 11. What is the effect in the time required to solve a problem when you double the size of the input from n to 2n? Express your answer in the simplest form possible, either as a ratio or a difference. Explain the meaning of your answer.
- a) log *n*
- b) 100*n*
- c) n^2

12. Give a recursive algorithm for finding the maximum of a finite set of integers, the recursion should make use of the fact that the maximum of n integers is the larger of the last integer in the list and the maximum of the first $n-1$ integers in the list.