1. (a) Let a directed graph G_{1} be given.

Does each of the following list of vertices form a path in G_{1} ? If yes, determine (by circling) if the path is simple, if it is a circuit, and give its length.
a, b, e, c, b
a, d, a, d, a
$\mathrm{a}, \mathrm{d}, \mathrm{e}, \mathrm{b}, \mathrm{a}$
$\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{c}, \mathrm{b}, \mathrm{a}$
Yes [simple circuit length \square] No
, , ,
Yes [simple circuit length \square] No
Yes [simple circuit length \square] No
(b) For the simple graph G_{2}

Find M^{2}, where M is the adjacency matrix of G_{2}

Find the number of paths from A to D in G_{2} of length 2. \square
2. Provide a pseudo code of an algorithm for finding a closest pair of numbers in a set of n real distinct numbers and give a worst-case estimate of the number of comparisons.
3. Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

4. Let $a_{1}=2, a_{2}=9$, and $a_{\mathrm{n}}=2 a_{\mathrm{n}-1}+3 a_{\mathrm{n}-2}$ for $\mathrm{n} \geq 3$. Show using induction that $a_{\mathrm{n}} \leq 3^{\mathrm{n}}$ for all positive integers n.
5. Use mathematical induction to show that $\sum_{j=0}^{n}(j+1)=\frac{(n+1)(n+2)}{2}$ whenever n is a nonnegative integer.
6. Let $f(n)=2 n \log \left(n^{2}+5\right)+3 n+1$. What is big-O estimate of $f(n)$? Be sure to specify the values of the witnesses C and k.
7. Use Dijkstra's algorithm to find the length of the shortest path between the vertices a and z in the following weighted graph. Use the table below to \log in your computation.

a	b	c	d	e	z	S
0	∞	∞	∞	∞	∞	a
X						
X						
X						
X						
X						
X						
X						
X						

Draw a tree representing the shortest distances from a to each of the other vertices. Indicate the distance next to each vertex.

(c) ©
8. How many vertices and how many edges does each of the following graphs have?
(a) K_{5}
(b) C_{4}
(c) W_{5}
(d) $\mathrm{K}_{2,5}$
9. Write a pseudocode for an algorithm for evaluating a polynomial of degree n, $p(x)=a_{\mathrm{n}} x^{\mathrm{n}}+a_{\mathrm{n}-1} x^{\mathrm{n}-1}+\ldots+a_{1} x+a_{0}$, at $x=c$.
What is big-O estimate of the time complexity of your algorithm (in terms of the number of multiplications and additions used) as a function of n ? Explain your answer.
10. For which values of n do these graphs have a Euler circuit?
a) K_{n} b) C_{n} c) W_{n} d) Q_{n}
11. What is the effect in the time required to solve a problem when you double the size of the input from n to $2 n$? Express your answer in the simplest form possible, either as a ratio or a difference. Explain the meaning of your answer.
a) $\log n$
b) $100 n$
c) n^{2}
12. Give a recursive algorithm for finding the maximum of a finite set of integers, the recursion should make use of the fact that the maximum of n integers is the larger of the last integer in the list and the maximum of the first $n-1$ integers in the list.

