1. (a) Let a directed graph G_1 be given.

Does each of the following list of vertices form a path in G_1? If yes, determine (by circling) if the path is simple, if it is a circuit, and give its length.

- a, b, e, c, b
 Yes [simple circuit length] No
- a, d, a, d, a
 Yes [simple circuit length] No
- a, d, e, b, a
 Yes [simple circuit length] No
- a, b, e, c, b, a
 Yes [simple circuit length] No

(b) For the simple graph G_2

Find M_2, where M is the adjacency matrix of G_2

$$M^2 = \begin{pmatrix} \end{pmatrix}$$

Find the number of paths from A to D in G_2 of length 2.
2. Provide a pseudo code of an algorithm for finding a closest pair of numbers in a set of \(n \) real distinct numbers and give a worst-case estimate of the number of comparisons.
3. Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

4. Let \(a_1 = 2, a_2 = 9, \) and \(a_n = 2a_{n-1} + 3a_{n-2} \) for \(n \geq 3 \). Show using induction that \(a_n \leq 3^n \) for all positive integers \(n \).
5. Use mathematical induction to show that \[\sum_{j=0}^{n} (j + 1) = \frac{(n+1)(n+2)}{2} \] whenever \(n \) is a nonnegative integer.

6. Let \(f(n) = 2n\log(n^2+5) + 3n + 1 \). What is big-O estimate of \(f(n) \)? Be sure to specify the values of the witnesses \(C \) and \(k \).
7. Use Dijkstra’s algorithm to find the length of the shortest path between the vertices a and z in the following weighted graph. Use the table below to log in your computation.

![Weighted Graph](image)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>z</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>a</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Draw a tree representing the shortest distances from a to each of the other vertices. Indicate the distance next to each vertex.

![Tree Representation](image)
8. How many vertices and how many edges does each of the following graphs have?
(a) K_5

(b) C_4

(c) W_5

(d) $K_{2,5}$

9. Write a pseudocode for an algorithm for evaluating a polynomial of degree $n,$
$p(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0,$ at $x = c.$
What is big-O estimate of the time complexity of your algorithm (in terms of the number of multiplications and additions used) as a function of n? Explain your answer.
10. Let S be the subset of the set of ordered pairs of integers defined recursively by

Basis step: $(0, 0) \in S.$

Recursive step: If $(a, b) \in S$, then $(a + 2, b + 3) \in S$ and $(a + 3, b + 2) \in S$.

a) List the elements of S produced by the first two applications of the recursive definition.

b) Use structural induction to show that $5 \mid a + b$ when $(a, b) \in S$.
11. For which values of n do these graphs have an Euler circuit?
 a) K_n b) C_n c) W_n d) Q_n

12. What is the effect in the time required to solve a problem when you double the size of the input from n to $2n$? Express your answer in the simplest form possible, either as a ratio or a difference. Explain the meaning of your answer.
 a) $\log n$
 b) $100n$
 c) n^2
13. Use mathematical induction to prove that every postage of n cents greater than 5 cents can be formed from 3-cent and 4-cent stamps.

14. Give a recursive algorithm for finding the maximum of a finite set of integers, the recursion should make use of the fact that the maximum of n integers is the larger of the last integer in the list and the maximum of the first \(n - 1 \) integers in the list.