
1. (a) Let a directed graph G_1 be given.

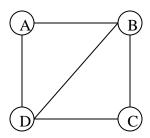
Does each of the following list of vertices form a path in G_1 ? If yes, determine (by circling) if the path is simple, if it is a circuit, and give its length.

a, b, e, c, b

Yes [simple circuit length] No

a, d, a, d, a

Yes [simple circuit length] No

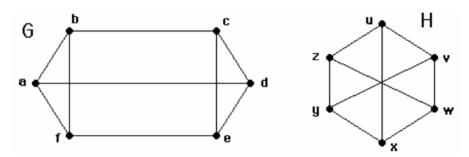

a, d, e, b, a

Yes [simple circuit length] No

a, b, e, c, b, a

Yes [simple circuit length] No

(b) For the simple graph G_2

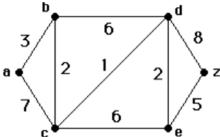

Find M², where M is the adjacency matrix of G₂

$$\mathbf{M}^{2} = \left\{ \begin{array}{c|c} & & & & \\ \hline & & & & \\ \hline \end{array} \right.$$

Find the number of paths from A to D in G_2 of length 2.

2. Provide a pseudo code of an algorithm for finding a closest pair of numbers in a set of n real distinct numbers and give a worst-case estimate of the number of comparisons.

3. Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.


4. Let $a_1 = 2$, $a_2 = 9$, and $a_n = 2a_{n-1} + 3a_{n-2}$ for $n \ge 3$. Show using induction that $a_n \le 3^n$ for all positive integers n.

5. Prove using induction that for all positive integers n the following formula holds

$$\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} = \frac{2^n - 1}{2^n}$$

6. Let $f(n) = 5n^2 + 2n\log(n) + 3n + 1$. Show that f(n) is $O(n^2)$. Be sure to specify the values of the witnesses C and k.

7. Use Dijkstra's algorithm to find the length of the shortest path between the vertices a and z in the following weighted graph. Use the table below to log in your computation.

а	b	С	d	e	Z	S
0	∞	∞	∞	∞	∞	а
X						
X						
X						
X						
X						
X						
X						
X						

Draw a tree representing the shortest distances from a to each of the other vertices. Indicate the distance next to each vertex.

 $\binom{d}{d}$

(a)

8. How many vertices and how many edges does each of the following graphs have? (a) K_5

(c) W₅

(b) C₄

- (d) $K_{2,5}$
- **9**. Write a pseudocode for an algorithm for evaluating a polynomial of degree n, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, at x = c. What is big-O estimate of the time complexity of your algorithm (in terms of the number of

multiplications and additions used) as a function of n? Explain your answer.

- **10**. Let *S* be the subset of the set of ordered pairs of integers defined recursively by *Basis step:* $(0, 0) \in S$.
- Recursive step: If $(a, b) \in S$, then $(a + 2, b + 3) \in S$ and $(a + 3, b + 2) \in S$.
- a) List the elements of S produced by the first two applications of the recursive definition.
- **b**) Use structural induction to show that $5 \mid a + b$ when $(a, b) \in S$.

- **11.** For which values of n do these graphs have an Euler circuit? **a)** K_n **b)** C_n **c)** W_n **d)** Q_n

12. Show that $\log(n!)$ is $\Theta(n \cdot \log(n))$.