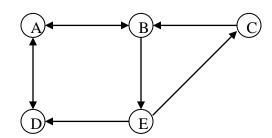
1. (a) Let a directed graph G_1 be given.



Does each of the following list of vertices form a path in G_1 ? If yes, determine (by circling) if the path is simple, if it is a circuit, and give its length.

a, b, e, c, b

Yes [simple circuit length] No

a, d, a, d, a

Yes [simple circuit length] No

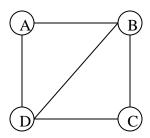
a, d, e, b, a

Yes [simple circuit length] No

a, b, e, c, b, a

Yes [simple circuit length] No

(b) For the simple graph G_2



Find M², where M is the adjacency matrix of G₂

$$\mathbf{M}^{2} = \left\{ \begin{array}{c|c} & & & & \\ \hline & & & & \\ \hline \end{array} \right.$$

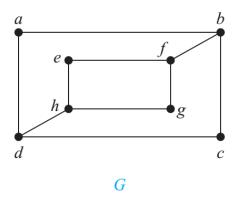
Find the number of paths from A to D in G_2 of length 2.

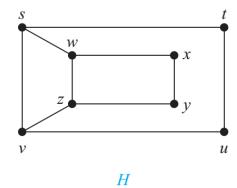
2. Use structural induction to show that l(T) = i(T) + 1 for a full binary tree T, where l(T) is the number of leaves of T and i(T) is the number of internal vertices of T.

Note: The root r is a leaf of the full binary tree with exactly one vertex r. This tree has no internal vertices. If a full binary tree has more than one vertex, then its root belongs to its internal vertices.

.

3. Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.





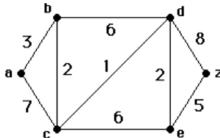
4. Prove that that $n^2 < n!$. Clearly state the basis step and inductive hypothesis.

5. Prove that for all positive integers n the following formula holds

$$\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} = \frac{2^n - 1}{2^n}$$

6. Let $f(n) = 2n^2 + 5n\log(n) + 8n + 7$. Show that f(n) is $O(n^2)$. Be sure to specify the values of the witnesses C and k.

7. Use Dijkstra's algorithm to find the length of the shortest path between the vertices a and z in the following weighted graph.



а	b	С	d	e	Z	S
0	8	8	∞	8	8	а
X						
X						
X						
X						
X						
X						
X						
X						

Draw a tree representing the shortest distances from a to each of the other vertices. Indicate the distance next to each vertex.

 $\binom{d}{d}$

 $\stackrel{\frown}{(e)}$

8. How many vertices and how many edges does each of the following graphs have? (a) K_5
(b) C ₄
(c) W ₅
(d) $K_{2,5}$
9 . Give a recursive algorithm for finding the string w^i , the concatenation of i copies of w , when w is a bit string.

7

10. Describe an algorithm for finding the second largest integer in a sequence of distinct integers. Give a big-O estimate of the number of comparisons used by your algorithm.

- 11. Give a recursive definition of
- a) the set of odd positive integers.
- b) the set of positive integer powers of 3.
- c) the set of polynomials with integer coefficients.

12. Let *S* be the subset of the set of ordered pairs of integers defined recursively by *Basis step:* $(0, 0) \in S$.

Recursive step: If $(a, b) \in S$, then $(a + 2, b + 3) \in S$ and $(a + 3, b + 2) \in S$.

- a) List the elements of S produced by the first two applications of the recursive definition.
- **b)** Use structural induction to show that $5 \mid a + b$ when $(a, b) \in S$.

13. Write a pseudocode for an algorithm for	r evaluating a polynomial of degree n
$p(x) = a_n x^n + a_{n-1} x^{n-1} + + a_1 x + a_0$, at $x = a_0$	c.

What is big-O estimate of the time complexity of your algorithm (in terms of the number of multiplications and additions used) as a function of n? Explain your answer.

14. Show that $\log(n!)$ is $\Theta(n \cdot \log(n))$.