CIS 2166, Introduction to Finite State Machines

David Dobor

November 17, 2015

Notes to Chapter 13.2 of Rosen’s textbook. Introduces Finite State Machines with Output. Gives a definition and an example that is simpler than the one found in the textbook.

A Formal Definition of a Finite State Machine with Output

A Finite State Machine with Output, \(M \), is the following 6-tuple:

\[
M = (S, \quad I, \quad O, \quad f, \quad g, \quad S_0)
\]

- \(S \), // finite set of states
- \(I \), // finite input alphabet
- \(O \), // finite output alphabet
- \(f \), // transition function (assigns to each (state, input) pair a new state
- \(g \), // output function (assigns to each (state, input) pair an output
- \(S_0 \) // designated START state

Example

Consider a coke vending machine, similar to the one described in the textbook, only simpler.

This machine is perfectly suited to be modeled by the ‘Finite-State-Machine-with-Output’ model just defined and has the following features:

- Accepts only quarters
- A drink costs 75 cents
- Has no ‘Return My Change’ button
- Only vends Coke, Orange Juice, or Beer

How does the machine work? Can the above formal definition of a finite state machine be understood with this machine?

- States represent how close you are to getting your drink - a state represents how many quarters are sitting in the machine at any given moment.

 There could be 3, 2, 1, or 0 quarters in this machine at any given time, and only 3 quarters will buy you a drink.

 Call the states \((S_0, S_{25}, S_{50}, S_{75})\), with \(S_0\) meaning ‘no quarters currently in the machine’, \(S_{25}\) - ‘exactly one quarter in the machine’,

Figure 1: A Finite State Machine with Output.
\(S_{50} \) - ‘two quarters’, and \(S_{75} \) - ‘three quarters currently in the machine’.

- **Inputs** are the actions that you undertake. These are ‘deposit a quarter’, for example; or ‘press a button to vend a drink’.

Use \(I = (\mathsf{\$25}, \mathsf{C}, \mathsf{O}, \mathsf{B}) \) to denote the inputs for this machine. Here \(B \) stands for ‘press the beer button’, \(O \) stands for ‘press the orange juice button’, \(C \) for ‘press the coke button’ and \(\mathsf{\$25} \) stands for ‘deposit a quarter into the machine’.

- **Outputs** are \((\mathsf{Coke}, \mathsf{OJ}, \mathsf{Beer}, \emptyset)\), where \(\emptyset \) means that you get nothing out of the machine and Coke, OJ, and Beer stand for the drinks you can get out of the machine.

- **Transition and Output Functions.**

When in a given state (think: three quarters in the machine right now), and on a given input (think: about to press the beer button), the machine transits to another state (think: no more quarters in the machine soon) and gives you an output (think: your much awaited can of beer is about to be vended). Thus for each state-input pair we transit to another state and receive some output (which maybe empty, denoted by \(\emptyset \)).

It is customary to specify these transition functions in a table, or by a state diagram. We’ll show both.

<table>
<thead>
<tr>
<th>State</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_0)</td>
<td>(S_{25})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(S_{25})</td>
<td>(S_{50})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(S_{50})</td>
<td>(S_{75})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(S_{75})</td>
<td>(S_{25})</td>
<td>(\mathsf{Coke})</td>
</tr>
</tbody>
</table>

For example if you are in state \(S_{75} \) (you’ve given up three quarters to the machine), and you input another quarter, the output will be a quarter (we assume the machine doesn’t swallow your extra quarters). On the other hand, in the same state, if you input \(C \) (i.e. you press the ’Coke’ button) then the output will be \(C \) (i.e. the machine will vend you a coke). You find this in the table by following the state row for \(S_{75} \) to the right, toward the output part of the table, and looking in the entry for the column labeled \(\mathsf{\$25} \) or \(C \) in that part of the table.

- Finally, specify the **START state**. We’ll assume \(S_0 \) to be the start state: as you approach the machine and begin to contemplate which type of refreshment might serve best to lift your spirits, no
one before you has been generous enough to leave any money in
the machine for you.

• Alternatively, the machine can be represented pictorially. Each
edge in the following diagram is labeled by an input-output pair.
For example, the edge from S_0 to S_1 is labeled with $(\$25, \emptyset)$, mean-
ing that when in state S_0, and input of $\$25$ gets you nothing. But
the edge labeled $(C, Coke)$ means that pressing the C button easily
quenches your thirst with the sugary drink when the machine is in
state S_{75}.

Figure 2: A State Diagram Representing
the Vending Machine.