What 1s the effect in the time required to solve a prob-
lem when you double the size of the mput from n to 2n.
assuming that the number of milliseconds the algorithm
uses to solve the problem with input size n 1s each of these
function? [Express your answer in the simplest form pos-
sible. either as a ratio or a difference. Your answer may
be a function of n or a constant.

a) loglogn h) logn c) 100n
d) nlogn e) n? f) »?

g] 2"

In each case we want to compare the function evaluated at 2n to the function evaluated at n. The most
desirable form of the comparison (subtraction or division) will vary.
a) Notice that
log2 +logn o 1 +logn.
logn logn

loglog2n — loglogn = log

If n is large, the fraction in this expression is approximately equal to 1, and therefore the expression is
approximately equal to 0. In other words, hardly any extra time is required. For example, in going from
n = 1024 to n = 2048, the number of extra milliseconds is log11,/10 =~ 0.14.

b) Here we have log2n —logn = log %” =log2 = 1. One extra millisecond is required, independent of n.

¢) This time it makes more sense to use a ratio comparison, rather than a difference comparison. Because
100(2n)/(100n) = 2, we conclude that twice as much time is needed for the larger problem.

d) The controlling factor here is n, rather than logn, so again we look at the ratio:
2nlog(2n) 5 1+logn

nlogn logn
For large n, the final fraction is approximately 1, so we can say that the time required for 2n is a bit more
than twice what it is for n.
e) Because (2n)%/n? = 4, we see that four times as much time is required for the larger problem.
f) Because (3n)?/n? =9, we see that nine times as much time is required for the larger problem.
g) The relevant ratio is 227 /2", which equals 2". If n is large, then this is a huge number. For example, in
going from n = 10 to n = 20, the number of milliseconds increases over 1000-fold.



An algorithm is called optimal for the solution of a prob-
lem with respect to a specthied operation if there 1s no
algorithm for solving this problem using fewer opera-
tions.

a) Show that Algorithm 1 in Section 3.1 is an optimal
algorithm with respect to the number of comparisons
of integers. [ Note: Comparisons used for bookkeep-
ing in the loop are not of concern here. ]

b) Is the linear search algorithm optimal with respect to
the number of comparisons of integers (not including
comparisons used for bookkeeping in the loop)?

procedure max(a,, a,, ...., a,: integers)
max :=a,
fori:=2ton
if max < a;,then max := q;
return max{max is the largest element}

a) In order to find the maximum element of a list of n elements, we need to make at least n — 1 comparisons,
one to rule out each of the other elements. Since Algorithm 1 in Section 3.1 used just this number (not
counting bookkeeping), it is optimal.

b) Linear search is not optimal, since we found that binary search was more efficient. This assumes that we

can be given the list already sorted into increasing order.



