Elementary Row Matrix (and Column) Operations

There are three types of row operations on a matrix **A** of dimension m-by-n that can be produced by multiplying it from left with an elementary matrix **E** of dimension m-by-m, $E \cdot A$:

- 1. row switching, that is interchanging two rows of a matrix.
- 2. row addition, that is adding a row to another.
- 3. row multiplication, that is multiplying all entries of a row by a non-zero constant.

In <u>mathematics</u>, an <u>elementary matrix</u> is a <u>matrix</u> which differs from the <u>identity matrix</u> by one single elementary row operation. Repeated multiplication of the identity matrix by the elementary matrices can generate any <u>invertible matrix</u> (definition of the inverse matrix will come later). Left multiplication (pre-multiplication) by an elementary matrix represents <u>elementary row operations</u>, while <u>right multiplication</u> (post-multiplication) represents <u>elementary column operations</u>. Elementary row operations are the basis of the very important method of <u>Gaussian elimination</u> (will be explained below).

Row-switching transformations

The first type of row operation on a matrix A switches all matrix elements on row i with their counterparts on row j. The corresponding elementary matrix is obtained by swapping row i and row j of the <u>identity matrix</u>.

So $T_{ij} \cdot A$ is the matrix produced by exchanging row i and row j of A.

Row-multiplying transformations

The next type of row operation on a matrix A multiplies all elements on row i by m where m is a non-zero scalar (usually a real number). The corresponding elementary matrix is a diagonal matrix, with diagonal entries 1 everywhere except in the ith position, where it is m.

So $T_i(m) \cdot A$ is the matrix produced from A by multiplying row i by m.

Row-addition transformations

The final type of row operation on a matrix **A** adds row j multiplied by a scalar m to row i. The corresponding elementary matrix is the identity matrix but with an m in the (i,j) position.

So $T_{i,j}(m) \cdot A$ is the matrix produced from A by adding m times row j to row i.

Examples:

M*A adds 2 times row 1 to row 3:

$$MA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 5 & 5 & 5 \end{bmatrix}$$

M*A adds 4 times row 2 to row 1:

$$MA = \begin{bmatrix} 1 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 9 & 9 & 9 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$