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A Note to Students, Teachers, and other Readers

Thank you for reading this short preface. Allowme to share a few key points about
the text so that you may beƩer understand what you will find beyond this page.

This text deals with matrix algebra, as opposed to linear algebra. Without argu-
ing semanƟcs, I view matrix algebra as a subset of linear algebra, focused primarily
on basic concepts and soluƟon techniques. There is liƩle formal development of the-
ory and abstract concepts are avoided. This is akin to the master carpenter teaching
his apprenƟce how to use a hammer, saw and plane before teaching how to make a
cabinet.

This book is intended to be read. Each secƟon starts with “AS YOU READ” quesƟons
that the reader should be able to answer aŌer a careful reading of the secƟon even if
all the concepts of the secƟon are not fully understood. I use these quesƟons as a daily
reading quiz for my students. The text is wriƩen in a conversaƟonal manner, hopefully
resulƟng in a text that is easy (and even enjoyable) to read.

Many examples are given to illustrate concepts. When a concept is first learned,
I try to demonstrate all the necessary steps so mastery can be obtained. Later, when
this concept is now a tool to study another idea, certain steps are glossed over to focus
on the newmaterial at hand. I would suggest that technology be employed in a similar
fashion.

This text is “open.” If it nearly suits your needs as an instructor, but falls short in
any way, feel free to make changes. I will readily share the source files (and help you
understand them) and you can do with them as you wish. I would find such a process
very rewarding on my own end, and I would enjoy seeing this text become beƩer and
even eventually grow into a separate linear algebra text. I do ask that the CreaƟve
Commons copyright be honored, in that any changes acknowledge this as a source
and that it only be used non commercially.

This is the third ediƟon of the Fundamentals of Matrix Algebra text. I had not
intended a third ediƟon, but it proved necessary given the number of errors found in
the second ediƟon and the other opportuniƟes found to improve the text. It varies
from the first and second ediƟons in mostly minor ways. I hope this ediƟon is “stable;”
I do not want a fourth ediƟon anyƟme soon.

Finally, I welcome any and all feedback. Please contact me with suggesƟons, cor-
recƟons, etc.

Sincerely,
Gregory Hartman
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SùÝã�ÃÝ Ê¥ L®Ä��Ù EØç�ã®ÊÄÝ

You have probably encountered systems of linear equaƟons before; you can proba-
bly remember solving systems of equaƟons where you had three equaƟons, three
unknowns, and you tried to find the value of the unknowns. In this chapter we will
uncover some of the fundamental principles guiding the soluƟon to such problems.

Solving such systems was a bit Ɵme consuming, but not terribly difficult. So why
bother? We bother because linear equaƟons have many, many, many applicaƟons,
from business to engineering to computer graphics to understandingmoremathemat-
ics. And not only are there many applicaƟons of systems of linear equaƟons, on most
occasions where these systems arise we are using far more than three variables. (En-
gineering applicaƟons, for instance, oŌen require thousands of variables.) So geƫng
a good understanding of how to solve these systems effecƟvely is important.

But don’t worry; we’ll start at the beginning.

1.1 IntroducƟon to Linear EquaƟons

...AS YOU READ . . .

1. What is one of the annoying habits of mathemaƟcians?

2. What is the difference between constants and coefficients?

3. Can a coefficient in a linear equaƟon be 0?

We’ll begin this secƟon by examining a problem you probably already know how
to solve.

.. Example 1 ..Suppose a jar contains red, blue and green marbles. You are told
that there are a total of 30 marbles in the jar; there are twice as many red marbles as



Chapter 1 Systems of Linear EquaƟons

green ones; the number of blue marbles is the same as the sum of the red and green
marbles. How many marbles of each color are there?

SÊ½çã®ÊÄ We could aƩempt to solve this with some trial and error, and we’d
probably get the correct answer without too much work. However, this won’t lend
itself towards learning a good technique for solving larger problems, so let’s be more
mathemaƟcal about it.

Let’s let r represent the number of redmarbles, and let b and g denote the number
of blue and green marbles, respecƟvely. We can use the given statements about the
marbles in the jar to create some equaƟons.

Since we know there are 30 marbles in the jar, we know that

r+ b+ g = 30. (1.1)

Also, we are told that there are twice as many red marbles as green ones, so we know
that

r = 2g. (1.2)

Finally, we know that the number of blue marbles is the same as the sum of the red
and green marbles, so we have

b = r+ g. (1.3)

From this stage, there isn’t one “right” way of proceeding. Rather, there are many
ways to use this informaƟon to find the soluƟon. One way is to combine ideas from
equaƟons 1.2 and 1.3; in 1.3 replace r with 2g. This gives us

b = 2g+ g = 3g. (1.4)

We can then combine equaƟons 1.1, 1.2 and 1.4 by replacing r in 1.1 with 2g as we did
before, and replacing b with 3g to get

r+ b+ g = 30

2g+ 3g+ g = 30

6g = 30

g = 5 (1.5)

We can now use equaƟon 1.5 to find r and b; we know from 1.2 that r = 2g = 10
and then since r+ b+ g = 30, we easily find that b = 15. ...

MathemaƟcians oŌen see soluƟons to given problems and then ask “What if. . .?”
It’s an annoying habit that we would do well to develop – we should learn to think
like a mathemaƟcian. What are the right kinds of “what if” quesƟons to ask? Here’s
another annoying habit of mathemaƟcians: they oŌen ask “wrong” quesƟons. That
is, they oŌen ask quesƟons and find that the answer isn’t parƟcularly interesƟng. But
asking enoughquesƟons oŌen leads to somegood “right” quesƟons. So don’t be afraid
of doing something “wrong;” we mathemaƟcians do it all the Ɵme.

So what is a good quesƟon to ask aŌer seeing Example 1? Here are two possible
quesƟons:

2



1.1 IntroducƟon to Linear EquaƟons

1. Did we really have to call the red balls “r”? Could we call them “q”?

2. What if we had 60 balls at the start instead of 30?

Let’s look at the first quesƟon. Would the soluƟon to our problem change if we
called the red balls q? Of course not. At the end, we’d find that q = 10, and we would
know that this meant that we had 10 red balls.

Now let’s look at the second quesƟon. Suppose we had 60 balls, but the other
relaƟonships stayed the same. How would the situaƟon and soluƟon change? Let’s
compare the “orginal” equaƟons to the “new” equaƟons.

Original New
r+ b+ g = 30 r+ b+ g = 60

r = 2g r = 2g
b = r+ g b = r+ g

By examining these equaƟons, we see that nothing has changed except the first
equaƟon. It isn’t too much of a stretch of the imaginaƟon to see that we would solve
this new problem exactly the same way that we solved the original one, except that
we’d have twice as many of each type of ball.

A conclusion fromanswering these two quesƟons is this: it doesn’tmaƩerwhatwe
call our variables, and while changing constants in the equaƟons changes the soluƟon,
they don’t really change themethod of how we solve these equaƟons.

In fact, it is a great discovery to realize that all we care about are the constants and
the coefficients of the equaƟons. By systemaƟcally handling these, we can solve any
set of linear equaƟons in a very nice way. Before we go on, we must first define what
a linear equaƟon is.

..
DefiniƟon 1

.

.
Linear EquaƟon

A linear equaƟon is an equaƟon that can be wriƩen in the
form

a1x1 + a2x2 + · · ·+ anxn = c

where the xi are variables (the unknowns), the ai are
coefficients, and c is a constant.

A system of linear equaƟons is a set of linear equaƟons that
involve the same variables.

A soluƟon to a system of linear equaƟons is a set of values
for the variables xi such that each equaƟon in the system is
saƟsfied.

So in Example 1, whenwe answered “howmanymarbles of each color are there?,”
we were also answering “find a soluƟon to a certain system of linear equaƟons.”

3



Chapter 1 Systems of Linear EquaƟons

The following are examples of linear equaƟons:

2x+ 3y− 7z = 29

x1 +
7
2
x2 + x3 − x4 + 17x5 =

3
√
−10

y1 + 142y4 + 4 = y2 + 13− y1
√
7r+ πs+

3t
5

= cos(45◦)

NoƟce that the coefficients and constants can be fracƟons and irraƟonal numbers
(like π, 3

√
−10 and cos(45◦)). The variables only come in the form of aixi; that is, just

one variable mulƟplied by a coefficient. (Note that 3t
5 = 3

5 t, just a variable mulƟplied
by a coefficient.) Also, it doesn’t really maƩer what side of the equaƟon we put the
variables and the constants, although most of the Ɵme we write them with the vari-
ables on the leŌ and the constants on the right.

We would not regard the above collecƟon of equaƟons to consƟtute a system of
equaƟons, since each equaƟon uses differently named variables. An example of a sys-
tem of linear equaƟons is

x1 − x2 + x3 + x4 = 1

2x1 + 3x2 + x4 = 25

x2 + x3 = 10

It is important to noƟce that not all equaƟons used all of the variables (it is more
accurate to say that the coefficients can be 0, so the last equaƟon could have been
wriƩen as 0x1 + x2 + x3 + 0x4 = 10). Also, just because we have four unknowns does
not mean we have to have four equaƟons. We could have had fewer, even just one,
and we could have had more.

To get a beƩer feel for what a linear equaƟon is, we point out some examples of
what are not linear equaƟons.

2xy+ z = 1

5x2 + 2y5 = 100
1
x
+
√
y+ 24z = 3

sin2 x1 + cos2 x2 = 29

2x1 + ln x2 = 13

The first example is not a linear equaƟon since the variables x and y are mulƟ-
plied together. The second is not a linear equaƟon because the variables are raised
to powers other than 1; that is also a problem in the third equaƟon (remember that
1/x = x−1 and

√
x = x1/2). Our variables cannot be the argument of funcƟon like sin,

cos or ln, nor can our variables be raised as an exponent.

4



1.2 Using Matrices To Solve Systems of Linear EquaƟons

At this stage, we have yet to discuss how to efficiently find a soluƟon to a system
of linear equaƟons. That is a goal for the upcoming secƟons. Right now we focus on
idenƟfying linear equaƟons. It is also useful to “limber” up by solving a few systems of
equaƟons using any method we have at hand to refresh our memory about the basic
process.

Exercises 1.1

In Exercises 1 – 10, state whether or not the
given equaƟon is linear.

1. x+ y+ z = 10

2. xy+ yz+ xz = 1

3. −3x+ 9 = 3y− 5z+ x− 7

4.
√
5y+ πx = −1

5. (x− 1)(x+ 1) = 0

6.
√

x21 + x22 = 25

7. x1 + y+ t = 1

8. 1
x + 9 = 3 cos(y)− 5z

9. cos(15)y+ x
4 = −1

10. 2x + 2y = 16

In Exercises 11 – 14, solve the system of linear
equaƟons.

11.
x + y = −1
2x − 3y = 8

12.
2x − 3y = 3
3x + 6y = 8

13.
x − y + z = 1
2x + 6y − z = −4
4x − 5y + 2z = 0

14.
x + y − z = 1
2x + y = 2

y + 2z = 0

15. A farmer looks out his window at his
chickens and pigs. He tells his daugh-
ter that he sees 62 heads and 190 legs.
How many chickens and pigs does the
farmer have?

16. A lady buys 20 trinkets at a yard sale.
The cost of each trinket is either $0.30
or $0.65. If she spends $8.80, how
many of each type of trinket does she
buy?

1.2 Using Matrices To Solve Systems of Linear EquaƟons

...AS YOU READ . . .

1. What is remarkable about the definiƟon of a matrix?

2. VerƟcal lines of numbers in a matrix are called what?

3. In a matrix A, the entry a53 refers to which entry?

4. What is an augmented matrix?

In SecƟon 1.1 we solved a linear system using familiar techniques. Later, we com-
mented that in the linear equaƟons we formed, the most important informaƟon was

5
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the coefficients and the constants; the names of the variables really didn’t maƩer. In
Example 1 we had the following three equaƟons:

r+ b+ g = 30

r = 2g

b = r+ g

Let’s rewrite these equaƟons so that all variables are on the leŌ of the equal sign
and all constants are on the right. Also, for a bitmore consistency, let’s list the variables
in alphabeƟcal order in each equaƟon. Therefore we can write the equaƟons as

b + g + r = 30
− 2g + r = 0

−b + g + r = 0
. (1.6)

As we menƟoned before, there isn’t just one “right” way of finding the soluƟon to
this system of equaƟons. Here is another way to do it, a way that is a bit different from
our method in SecƟon 1.1.

First, lets add the first and last equaƟons together, and write the result as a new
third equaƟon. This gives us:

b + g + r = 30
− 2g + r = 0

2g + 2r = 30
.

A nice feature of this is that the only equaƟon with a b in it is the first equaƟon.
Now let’s mulƟply the second equaƟon by− 1

2 . This gives

b + g + r = 30
g − 1/2r = 0
2g + 2r = 30

.

Let’s now do two steps in a row; our goal is to get rid of the g’s in the first and third
equaƟons. In order to remove the g in the first equaƟon, let’s mulƟply the second
equaƟon by −1 and add that to the first equaƟon, replacing the first equaƟon with
that sum. To remove the g in the third equaƟon, let’s mulƟply the second equaƟon by
−2 and add that to the third equaƟon, replacing the third equaƟon. Our new system
of equaƟons now becomes

b + 3/2r = 30
g − 1/2r = 0

3r = 30
.

Clearly we can mulƟply the third equaƟon by 1
3 and find that r = 10; let’s make

this our new third equaƟon, giving

b + 3/2r = 30
g − 1/2r = 0

r = 10
.

6



1.2 Using Matrices To Solve Systems of Linear EquaƟons

Now let’s get rid of the r’s in the first and second equaƟon. To remove the r in the
first equaƟon, let’s mulƟply the third equaƟon by − 3

2 and add the result to the first
equaƟon, replacing the first equaƟon with that sum. To remove the r in the second
equaƟon, we canmulƟply the third equaƟon by 1

2 and add that to the second equaƟon,
replacing the second equaƟon with that sum. This gives us:

b = 15
g = 5

r = 10
.

Clearly we have discovered the same result as when we solved this problem in SecƟon
1.1.

Now again revisit the idea that all that really maƩers are the coefficients and the
constants. There is nothing special about the leƩers b, g and r; we could have used x,
y and z or x1, x2 and x3. And even then, since we wrote our equaƟons so carefully, we
really didn’t need to write the variable names at all as long as we put things “in the
right place.”

Let’s look again at our system of equaƟons in (1.6) and write the coefficients and
the constants in a rectangular array. This Ɵme we won’t ignore the zeros, but rather
write them out.

b + g + r = 30
− 2g + r = 0

−b + g + r = 0
⇔

 1 1 1 30
0 −2 1 0
−1 1 1 0


NoƟce how even the equal signs are gone; we don’t need them, for we know that the
last column contains the coefficients.

We have just created amatrix. The definiƟon of matrix is remarkable only in how
unremarkable it seems.

..
DefiniƟon 2

.

.
Matrix

Amatrix is a rectangular array of numbers.

The horizontal lines of numbers form rows and the verƟcal
lines of numbers form columns. A matrix with m rows and
n columns is said to be anm×nmatrix (“anm by nmatrix”).

The entries of anm× nmatrix are indexed as follows:
a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

am1 am2 am3 · · · amn

 .

That is, a32 means “the number in the third row and second
column.”

7
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In the future, we’ll want to create matrices with just the coefficients of a system
of linear equaƟons and leave out the constants. Therefore, when we include the con-
stants, we oŌen refer to the resulƟng matrix as an augmented matrix.

We can use augmented matrices to find soluƟons to linear equaƟons by using es-
senƟally the same steps we used above. Every Ɵme we used the word “equaƟon”
above, subsƟtute the word “row,” as we show below. The comments explain how we
get from the current set of equaƟons (or matrix) to the one on the next line.

We can use a shorthand to describematrix operaƟons; let R1, R2 represent “row 1”
and “row 2,” respecƟvely. We can write “add row 1 to row 3, and replace row 3 with
that sum” as “R1 + R3 → R3.” The expression “R1 ↔ R2” means “interchange row 1
and row 2.”

b + g + r = 30
− 2g + r = 0

−b + g + r = 0

 1 1 1 30
0 −2 1 0
−1 1 1 0


Replace equaƟon 3 with the sum

of equaƟons 1 and 3

Replace row 3 with the sum of
rows 1 and 3.

(R1 + R3 → R3)

b + g + r = 30
− 2g + r = 0

2g + 2r = 30

 1 1 1 30
0 −2 1 0
0 2 2 30


MulƟply equaƟon 2 by− 1

2
MulƟply row 2 by− 1

2
(− 1

2R2 → R2)

b + g + r = 30
g + −1/2r = 0
2g + 2r = 30

 1 1 1 30
0 1 − 1

2 0
0 2 2 30


Replace equaƟon 1 with the sum
of (−1) Ɵmes equaƟon 2 plus

equaƟon 1;
Replace equaƟon 3 with the sum
of (−2) Ɵmes equaƟon 2 plus

equaƟon 3

Replace row 1 with the sum of
(−1) Ɵmes row 2 plus row 1

(−R2 + R1 → R1);
Replace row 3 with the sum of
(−2) Ɵmes row 2 plus row 3

(−2R2 + R3 → R3)

b + 3/2r = 30
g − 1/2r = 0

3r = 30

 1 0 3
2 30

0 1 − 1
2 0

0 0 3 30


MulƟply equaƟon 3 by 1

3
MulƟply row 3 by 1

3
( 13R3 → R3)

8



1.2 Using Matrices To Solve Systems of Linear EquaƟons

b + 3/2r = 30
g − 1/2r = 0

r = 10

 1 0 3
2 30

0 1 − 1
2 0

0 0 1 10


Replace equaƟon 2 with the sum

of 1
2 Ɵmes equaƟon 3 plus

equaƟon 2;
Replace equaƟon 1 with the sum
of− 3

2 Ɵmes equaƟon 3 plus
equaƟon 1

Replace row 2 with the sum of 1
2

Ɵmes row 3 plus row 2
( 12R3 + R2 → R2);

Replace row 1 with the sum of
− 3

2 Ɵmes row 3 plus row 1
(− 3

2R3 + R1 → R1)

b = 15
g = 5

r = 10

 1 0 0 15
0 1 0 5
0 0 1 10


The final matrix contains the same soluƟon informaƟon as we have on the leŌ in

the form of equaƟons. Recall that the first column of ourmatrices held the coefficients
of the b variable; the second and third columns held the coefficients of the g and r
variables, respecƟvely. Therefore, the first row of the matrix can be interpreted as
“b+ 0g+ 0r = 15,” or more concisely, “b = 15.”

Let’s pracƟce this manipulaƟon again.

.. Example 2 ..Find a soluƟon to the following system of linear equaƟons by si-
multaneously manipulaƟng the equaƟons and the corresponding augmented matri-
ces.

x1 + x2 + x3 = 0
2x1 + 2x2 + x3 = 0
−1x1 + x2 − 2x3 = 2

SÊ½çã®ÊÄ We’ll first convert this systemof equaƟons into amatrix, thenwe’ll
proceed by manipulaƟng the system of equaƟons (and hence the matrix) to find a
soluƟon. Again, there is not just one “right” way of proceeding; we’ll choose amethod
that is preƩy efficient, but other methods certainly exist (and may be “beƩer”!). The
method use here, though, is a good one, and it is the method that we will be learning
in the future.

The given system and its corresponding augmented matrix are seen below.

Original system of equaƟons Corresponding matrix

x1 + x2 + x3 = 0
2x1 + 2x2 + x3 = 0
−1x1 + x2 − 2x3 = 2

 1 1 1 0
2 2 1 0
−1 1 −2 2


We’ll proceed by trying to get the x1 out of the second and third equaƟon.

9



Chapter 1 Systems of Linear EquaƟons

Replace equaƟon 2 with the sum
of (−2) Ɵmes equaƟon 1 plus

equaƟon 2;
Replace equaƟon 3 with the sum
of equaƟon 1 and equaƟon 3

Replace row 2 with the sum of
(−2) Ɵmes row 1 plus row 2

(−2R1 + R2 → R2);
Replace row 3 with the sum of

row 1 and row 3
(R1 + R3 → R3)

x1 + x2 + x3 = 0
−x3 = 0

2x2 − x3 = 2

 1 1 1 0
0 0 −1 0
0 2 −1 2


..
NoƟce that the second equaƟon no longer contains x2. We’ll exchange the order of

the equaƟons so that we can follow the convenƟon of solving for the second variable
in the second equaƟon.

Interchange equaƟons 2 and 3
Interchange rows 2 and 3

R2 ↔ R3

x1 + x2 + x3 = 0
2x2 − x3 = 2

−x3 = 0

 1 1 1 0
0 2 −1 2
0 0 −1 0


MulƟply equaƟon 2 by 1

2
MulƟply row 2 by 1

2
( 12R2 → R2)

x1 + x2 + x3 = 0
x2 − 1

2x3 = 1
−x3 = 0

 1 1 1 0
0 1 − 1

2 1
0 0 −1 0


MulƟply equaƟon 3 by−1

MulƟply row 3 by−1
(−1R3 → R3)

x1 + x2 + x3 = 0
x2 − 1

2x3 = 1
x3 = 0

 1 1 1 0
0 1 − 1

2 1
0 0 1 0


NoƟce that the last equaƟon (and also the last row of thematrix) show that x3 = 0.

Knowing this would allow us to simply eliminate the x3 from the first two equaƟons.
However, wewill formally do this bymanipulaƟng the equaƟons (and rows) as we have
previously.

Replace equaƟon 1 with the sum
of (−1) Ɵmes equaƟon 3 plus

equaƟon 1;
Replace equaƟon 2 with the sum

of 1
2 Ɵmes equaƟon 3 plus

equaƟon 2

Replace row 1 with the sum of
(−1) Ɵmes row 3 plus row 1

(−R3 + R1 → R1);
Replace row 2 with the sum of 1

2
Ɵmes row 3 plus row 2

( 12R3 + R2 → R2)

x1 + x2 = 0
x2 = 1

x3 = 0

 1 1 0 0
0 1 0 1
0 0 1 0

10
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NoƟce how the second equaƟon shows that x2 = 1. All that remains to do is to
solve for x1.

Replace equaƟon 1 with the sum
of (−1) Ɵmes equaƟon 2 plus

equaƟon 1

Replace row 1 with the sum of
(−1) Ɵmes row 2 plus row 1

(−R2 + R1 → R1)

x1 = −1
x2 = 1

x3 = 0

 1 0 0 −1
0 1 0 1
0 0 1 0


Obviously the equaƟons on the leŌ tell us that x1 = −1, x2 = 1 and x3 = 0, and

noƟce how the matrix on the right tells us the same informaƟon. ...

Exercises 1.2
In Exercises 1 – 4, convert the given system of
linear equaƟons into an augmented matrix.

1.
3x + 4y + 5z = 7
−x + y − 3z = 1
2x − 2y + 3z = 5

2.
2x + 5y − 6z = 2
9x − 8z = 10
−2x + 4y + z = −7

3.
x1 + 3x2 − 4x3 + 5x4 = 17

−x1 + 4x3 + 8x4 = 1
2x1 + 3x2 + 4x3 + 5x4 = 6

4.

3x1 − 2x2 = 4
2x1 = 3

−x1 + 9x2 = 8
5x1 − 7x2 = 13

In Exercises 5 – 9, convert the given aug-
mented matrix into a system of linear equa-
Ɵons. Use the variables x1, x2, etc.

5.
[

1 2 3
−1 3 9

]

6.
[
−3 4 7
0 1 −2

]

7.
[
1 1 −1 −1 2
2 1 3 5 7

]

8.


1 0 0 0 2
0 1 0 0 −1
0 0 1 0 5
0 0 0 1 3



9.
[
1 0 1 0 7 2
0 1 3 2 0 5

]
In Exercises 10 – 15, perform the given row
operaƟons on A, where

A =

 2 −1 7
0 4 −2
5 0 3

 .

10. −1R1 → R1

11. R2 ↔ R3

12. R1 + R2 → R2

13. 2R2 + R3 → R3

14. 1
2R2 → R2

15. − 5
2R1 + R3 → R3

A matrix A is given below. In Exercises 16 –
20, a matrix B is given. Give the row opera-
Ɵon that transforms A into B.

A =

 1 1 1
1 0 1
1 2 3



16. B =

 1 1 1
2 0 2
1 2 3


17. B =

 1 1 1
2 1 2
1 2 3


18. B =

 3 5 7
1 0 1
1 2 3


11
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19. B =

 1 0 1
1 1 1
1 2 3


20. B =

 1 1 1
1 0 1
0 2 2


In Exercises 21 – 26, rewrite the system of
equaƟons inmatrix form. Find the soluƟon to
the linear system by simultaneously manipu-
laƟng the equaƟons and the matrix.

21.
x + y = 3
2x − 3y = 1

22.
2x + 4y = 10
−x + y = 4

23.
−2x + 3y = 2
−x + y = 1

24.
2x + 3y = 2
−2x + 6y = 1

25.
−5x1 + 2x3 = 14

x2 = 1
−3x1 + x3 = 8

26.
− 5x2 + 2x3 = −11

x1 + 2x3 = 15
− 3x2 + x3 = −8

1.3 Elementary Row OperaƟons and Gaussian Elimina-
Ɵon
...AS YOU READ . . .

1. Give two reasons why the Elementary Row OperaƟons are called “Elementary.”

2. T/F: Assuming a soluƟon exists, all linear systems of equaƟons can be solved
using only elementary row operaƟons.

3. Give one reason why one might not be interested in puƫng a matrix into re-
duced row echelon form.

4. IdenƟfy the leading 1s in the following matrix:
1 0 0 1
0 1 1 0
0 0 1 1
0 0 0 0


5. Using the “forward” and “backward” steps of Gaussian eliminaƟon creates lots

of making computaƟons easier.

In our examples thus far, we have essenƟally used just three types ofmanipulaƟons
in order to find soluƟons to our systems of equaƟons. These three manipulaƟons are:

1. Add a scalar mulƟple of one equaƟon to a second equaƟon, and replace the
second equaƟon with that sum

12



1.3 Elementary Row OperaƟons and Gaussian EliminaƟon

2. MulƟply one equaƟon by a nonzero scalar

3. Swap the posiƟon of two equaƟons in our list

We saw earlier how we could write all the informaƟon of a system of equaƟons in
a matrix, so it makes sense that we can perform similar operaƟons on matrices (as we
have done before). Again, simply replace the word “equaƟon” above with the word
“row.”

We didn’t jusƟfy our ability to manipulate our equaƟons in the above three ways;
it seems rather obvious that we should be able to do that. In that sense, these oper-
aƟons are “elementary.” These operaƟons are elementary in another sense; they are
fundamental – they form the basis formuch of what wewill do inmatrix algebra. Since
these operaƟons are so important, we list them again here in the context of matrices.

..
Key Idea 1

.

.
Elementary Row OperaƟons

1. Add a scalar mulƟple of one row to another row, and
replace the laƩer row with that sum

2. MulƟply one row by a nonzero scalar

3. Swap the posiƟon of two rows

Given any system of linear equaƟons, we can find a soluƟon (if one exists) by using
these three row operaƟons. Elementary row operaƟons give us a new linear system,
but the soluƟon to the new system is the same as the old. We can use these opera-
Ɵons as much as we want and not change the soluƟon. This brings to mind two good
quesƟons:

1. Since we can use these operaƟons as much as we want, how do we know when
to stop? (Where are we supposed to “go” with these operaƟons?)

2. Is there an efficient way of using these operaƟons? (How do we get “there” the
fastest?)

We’ll answer the first quesƟon first. Most of the Ɵme1 we will want to take our
original matrix and, using the elementary row operaƟons, put it into something called
reduced row echelon form.2 This is our “desƟnaƟon,” for this form allows us to readily
idenƟfywhether or not a soluƟon exists, and in the case that it does, what that soluƟon
is.

In the previous secƟon, when we manipulated matrices to find soluƟons, we were
unwiƫngly puƫng the matrix into reduced row echelon form. However, not all solu-
Ɵons come in such a simplemanner as we’ve seen so far. Puƫng amatrix into reduced

1unless one prefers obfuscaƟon to clarificaƟon
2Some texts use the term reduced echelon form instead.

13



Chapter 1 Systems of Linear EquaƟons

row echelon form helps us idenƟfy all types of soluƟons. We’ll explore the topic of un-
derstanding what the reduced row echelon form of a matrix tells us in the following
secƟons; in this secƟon we focus on finding it.

..
DefiniƟon 3

.

.
Reduced Row Echelon Form

A matrix is in reduced row echelon form if its entries saƟsfy
the following condiƟons.

1. The first nonzero entry in each row is a 1 (called a lead-
ing 1).

2. Each leading 1 comes in a column to the right of the
leading 1s in rows above it.

3. All rows of all 0s come at the boƩom of the matrix.

4. If a column contains a leading 1, then all other entries
in that column are 0.

A matrix that saƟsfies the first three condiƟons is said to be
in row echelon form.

.. Example 3 ..Which of the following matrices is in reduced row echelon form?

a)
[
1 0
0 1

]
b)

[
1 0 1
0 1 2

]

c)
[
0 0
0 0

]
d)

[
1 1 0
0 0 1

]

e)

 1 0 0 1
0 0 0 0
0 0 1 3

 f)

 1 2 0 0
0 0 3 0
0 0 0 4



g)

 0 1 2 3 0 4
0 0 0 0 1 5
0 0 0 0 0 0

 h)

 1 1 0
0 1 0
0 0 1



SÊ½çã®ÊÄ The matrices in a), b), c), d) and g) are all in reduced row echelon
form. Check to see that each saƟsfies the necessary condiƟons. If your insƟncts were
wrong on some of these, correct your thinking accordingly.

The matrix in e) is not in reduced row echelon form since the row of all zeros is
not at the boƩom. The matrix in f) is not in reduced row echelon form since the first

14



1.3 Elementary Row OperaƟons and Gaussian EliminaƟon

nonzero entries in rows 2 and 3 are not 1. Finally, the matrix in h) is not in reduced
row echelon form since the first entry in column 2 is not zero; the second 1 in column
2 is a leading one, hence all other entries in that column should be 0.

We end this example with a preview of what we’ll learn in the future. Consider
the matrix in b). If this matrix came from the augmented matrix of a system of linear
equaƟons, then we can readily recognize that the soluƟon of the system is x1 = 1 and
x2 = 2. Again, in previous examples, when we found the soluƟon to a linear system,
we were unwiƫngly puƫng our matrices into reduced row echelon form. ...

We began this secƟon discussing how we can manipulate the entries in a matrix
with elementary row operaƟons. This led to two quesƟons, “Where do we go?” and
“How do we get there quickly?” We’ve just answered the first quesƟon: most of the
Ɵme we are “going to” reduced row echelon form. We now address the second ques-
Ɵon.

There is no one “right” way of using these operaƟons to transform a matrix into
reduced row echelon form. However, there is a general technique that works very well
in that it is very efficient (sowe don’twaste Ɵmeon unnecessary steps). This technique
is called Gaussian eliminaƟon. It is named in honor of the great mathemaƟcian Karl
Friedrich Gauss.

While this technique isn’t very difficult to use, it is one of those things that is eas-
ier understood by watching it being used than explained as a series of steps. With this
in mind, we will go through one more example highlighƟng important steps and then
we’ll explain the procedure in detail.

.. Example 4 ..Put the augmented matrix of the following system of linear equa-
Ɵons into reduced row echelon form.

−3x1 − 3x2 + 9x3 = 12
2x1 + 2x2 − 4x3 = −2

−2x2 − 4x3 = −8

SÊ½çã®ÊÄ We start by converƟng the linear system into an augmented ma-
trix.  −3 −3 9 12

2 2 −4 −2
0 −2 −4 −8


Our next step is to change the entry in the box to a 1. To do this, let’s mulƟply row

1 by− 1
3 .

− 1
3R1 → R1

 1 1 −3 −4
2 2 −4 −2
0 −2 −4 −8


15
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We have now created a leading 1; that is, the first entry in the first row is a 1.
Our next step is to put zeros under this 1. To do this, we’ll use the elementary row
operaƟon given below.

−2R1 + R2 → R2

 1 1 −3 −4
0 0 2 6
0 −2 −4 −8


Once this is accomplished, we shiŌ our focus from the leading one down one row,

and to the right one column, to the posiƟon that is boxed. We again want to put a 1
in this posiƟon. We can use any elementary row operaƟons, but we need to restrict
ourselves to using only the second row and any rows below it. Probably the simplest
thing we can do is interchange rows 2 and 3, and then scale the new second row so
that there is a 1 in the desired posiƟon.

R2 ↔ R3

 1 1 −3 −4
0 −2 −4 −8
0 0 2 6



− 1
2R2 → R2

 1 1 −3 −4
0 1 2 4
0 0 2 6


We have now created another leading 1, this Ɵme in the second row. Our next

desire is to put zeros underneath it, but this has already been accomplished by our
previous steps. Therefore we again shiŌ our aƩenƟon to the right one column and
down one row, to the next posiƟon put in the box. We want that to be a 1. A simple
scaling will accomplish this.

1
2R3 → R3

 1 1 −3 −4
0 1 2 4
0 0 1 3


This ends what we will refer to as the forward steps. Our next task is to use the

elementary row operaƟons and go back and put zeros above our leading 1s. This is
referred to as the backward steps. These steps are given below.

3R3 + R1 → R1

−2R3 + R2 → R2

 1 1 0 5
0 1 0 −2
0 0 1 3



−R2 + R1 → R1

 1 0 0 7
0 1 0 −2
0 0 1 3


It is now easy to read off the soluƟon as x1 = 7, x2 = −2 and x3 = 3. ...
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1.3 Elementary Row OperaƟons and Gaussian EliminaƟon

We now formally explain the procedure used to find the soluƟon above. As you
read through the procedure, follow along with the example above so that the expla-
naƟon makes more sense.

Forward Steps

1. Working from leŌ to right, consider the first column that isn’t all zeros that hasn’t
already been worked on. Then working from top to boƩom, consider the first
row that hasn’t been worked on.

2. If the entry in the row and column that we are considering is zero, interchange
rowswith a row below the current row so that that entry is nonzero. If all entries
below are zero, we are done with this column; start again at step 1.

3. MulƟply the current row by a scalar to make its first entry a 1 (a leading 1).

4. Repeatedly use Elementary Row OperaƟon 1 to put zeros underneath the lead-
ing one.

5. Go back to step 1 and work on the new rows and columns unƟl either all rows
or columns have been worked on.

If the above steps have been followed properly, then the following should be true
about the current state of the matrix:

1. The first nonzero entry in each row is a 1 (a leading 1).

2. Each leading 1 is in a column to the right of the leading 1s above it.

3. All rows of all zeros come at the boƩom of the matrix.

Note that this means we have just put a matrix into row echelon form. The next
steps finish the conversion into reduced row echelon form. These next steps are re-
ferred to as the backward steps. These are much easier to state.

Backward Steps

1. StarƟng from the right and working leŌ, use Elementary Row OperaƟon 1 re-
peatedly to put zeros above each leading 1.

The basic method of Gaussian eliminaƟon is this: create leading ones and then use
elementary row operaƟons to put zeros above and below these leading ones. We can
do this in any order we please, but by following the “Forward Steps” and “Backward
Steps,” wemake use of the presence of zeros to make the overall computaƟons easier.
This method is very efficient, so it gets its own name (which we’ve already been using).
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..
DefiniƟon 4

.

.
Gaussian EliminaƟon

Gaussian eliminaƟon is the technique for finding the re-
duced row echelon form of a matrix using the above pro-
cedure. It can be abbreviated to:

1. Create a leading 1.

2. Use this leading 1 to put zeros underneath it.

3. Repeat the above steps unƟl all possible rows have
leading 1s.

4. Put zeros above these leading 1s.

Let’s pracƟce some more.

.. Example 5 ..UseGaussian eliminaƟon to put thematrixA into reduced rowech-
elon form, where

A =

−2 −4 −2 −10 0
2 4 1 9 −2
3 6 1 13 −4

 .

SÊ½çã®ÊÄ We start by wanƟng to make the entry in the first column and first
row a 1 (a leading 1). To do this we’ll scale the first row by a factor of− 1

2 .

− 1
2R1 → R1

 1 2 1 5 0
2 4 1 9 −2
3 6 1 13 −4


Next we need to put zeros in the column below this newly formed leading 1.

−2R1 + R2 → R2

−3R1 + R3 → R3

 1 2 1 5 0
0 0 −1 −1 −2
0 0 −2 −2 −4


Our aƩenƟon now shiŌs to the right one column and down one row to the posiƟon

indicated by the box. Wewant to put a 1 in that posiƟon. Our only opƟons are to either
scale the current row or to interchange rows with a row below it. However, in this case
neither of these opƟons will accomplish our goal. Therefore, we shiŌ our aƩenƟon to
the right one more column.

We want to put a 1 where there is a –1. A simple scaling will accomplish this; once
done, we will put a 0 underneath this leading one.

−R2 → R2

 1 2 1 5 0
0 0 1 1 2
0 0 −2 −2 −4


18
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2R2 + R3 → R3

 1 2 1 5 0
0 0 1 1 2
0 0 0 0 0


Our aƩenƟon now shiŌs over one more column and down one row to the posiƟon

indicated by the box; we wish to make this a 1. Of course, there is no way to do this,
so we are done with the forward steps.

Our next goal is to put a 0 above each of the leading 1s (in this case there is only
one leading 1 to deal with).

−R2 + R1 → R1

 1 2 0 4 −2
0 0 1 1 2
0 0 0 0 0


This final matrix is in reduced row echelon form. ...

.. Example 6 Put the matrix 1 2 1 3
2 1 1 1
3 3 2 1


into reduced row echelon form.

SÊ½çã®ÊÄ Here we will show all steps without explaining each one.

−2R1 + R2 → R2

−3R1 + R3 → R3

 1 2 1 3
0 −3 −1 −5
0 −3 −1 −8


− 1

3R2 → R2

 1 2 1 3
0 1 1/3 5/3
0 −3 −1 −8


3R2 + R3 → R3

 1 2 1 3
0 1 1/3 5/3
0 0 0 −3


− 1

3R3 → R3

 1 2 1 3
0 1 1/3 5/3
0 0 0 1


−3R3 + R1 → R1

− 5
3R3 + R2 → R2

 1 2 1 0
0 1 1/3 0
0 0 0 1


−2R2 + R1 → R1

 1 0 1/3 0
0 1 1/3 0
0 0 0 1


..
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The last matrix in the above example is in reduced row echelon form. If one thinks
of the original matrix as represenƟng the augmentedmatrix of a system of linear equa-
Ɵons, this final result is interesƟng. What does it mean to have a leading one in the
last column? We’ll figure this out in the next secƟon.

.. Example 7 ..Put the matrix A into reduced row echelon form, where

A =

 2 1 −1 4
1 −1 2 12
2 2 −1 9

 .

SÊ½çã®ÊÄ We’ll again show the steps without explanaƟon, although we will
stop at the end of the forward steps and make a comment.

1
2R1 → R1

 1 1/2 −1/2 2
1 −1 2 12
2 2 −1 9


−R1 + R2 → R2

−2R1 + R3 → R3

 1 1/2 −1/2 2
0 −3/2 5/2 10
0 1 0 5



− 2
3R2 → R2

 1 1/2 −1/2 2
0 1 −5/3 −20/3
0 1 0 5



−R2 + R3 → R3

 1 1/2 −1/2 2
0 1 −5/3 −20/3
0 0 5/3 35/3


3
5R3 → R3

 1 1/2 −1/2 2
0 1 −5/3 −20/3
0 0 1 7


Let’s take a break here and think about the state of our linear system at this mo-

ment. ConverƟng back to linear equaƟons, we now know

x1 + 1/2x2 − 1/2x3 = 2
x2 − 5/3x3 = −20/3

x3 = 7
.

Since we know that x3 = 7, the second equaƟon turns into

x2 − (5/3)(7) = −20/3,

telling us that x2 = 5.
Finally, knowing values for x2 and x3 lets us subsƟtute in the first equaƟon and find

x1 + (1/2)(5)− (1/2)(7) = 2,
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so x1 = 3.

This process of subsƟtuƟng known values back into other equaƟons is called back
subsƟtuƟon. This process is essenƟally what happens when we perform the backward
steps of Gaussian eliminaƟon. Wemake note of this below as we finish out finding the
reduced row echelon form of our matrix.

5
3R3 + R2 → R2

(knowing x3 = 7 allows us
to find x2 = 5)

 1 1/2 −1/2 2
0 1 0 5
0 0 1 7


1
2R3 + R1 → R1

− 1
2R2 + R1 → R1

(knowing x2 = 5 and x3 = 7
allows us to find x1 = 3)

 1 0 0 3
0 1 0 5
0 0 1 7


We did our operaƟons slightly “out of order” in that we didn’t put the zeros above

our leading 1 in the third column in the same step, highlighƟng how back subsƟtuƟon
works. ...

In all of our pracƟce, we’ve only encountered systems of linear equaƟons with ex-
actly one soluƟon. Is this always going to be the case? Could we ever have systems
with more than one soluƟon? If so, how many soluƟons could there be? Could we
have systems without a soluƟon? These are some of the quesƟons we’ll address in
the next secƟon.

Exercises 1.3
In Exercises 1 – 4, state whether or not the
given matrices are in reduced row echelon
form. If it is not, state why.

1. (a)
[
1 0
0 1

]
(b)

[
0 1
1 0

] (c)
[
1 1
1 1

]
(d)

[
1 0 1
0 1 2

]
2. (a)

[
1 0 0
0 0 1

]
(b)

[
1 0 1
0 1 1

] (c)
[
0 0 0
1 0 0

]
(d)

[
0 0 0
0 0 0

]

3. (a)

 1 1 1
0 1 1
0 0 1


(b)

 1 0 0
0 1 0
0 0 0



(c)

 1 0 0
0 0 1
0 0 0


(d)

 1 0 0 −5
0 1 0 7
0 0 1 3



4. (a)

 2 0 0 2
0 2 0 2
0 0 2 2


(b)

 0 1 0 0
0 0 1 0
0 0 0 0


(c)

 0 0 1 −5
0 0 0 0
0 0 0 0


(d)

 1 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 0 0


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In Exercises 5 – 22, use Gaussian EliminaƟon
to put the given matrix into reduced row ech-
elon form.

5.
[

1 2
−3 −5

]
6.

[
2 −2
3 −2

]
7.

[
4 12
−2 −6

]
8.

[
−5 7
10 14

]
9.

[
−1 1 4
−2 1 1

]
10.

[
7 2 3
3 1 2

]
11.

[
3 −3 6
−1 1 −2

]
12.

[
4 5 −6

−12 −15 18

]

13.

−2 −4 −8
−2 −3 −5
2 3 6


14.

 2 1 1
1 1 1
2 1 2



15.

 1 2 1
1 3 1
−1 −3 0



16.

 1 2 3
0 4 5
1 6 9



17.

 1 1 1 2
2 −1 −1 1
−1 1 1 0



18.

 2 −1 1 5
3 1 6 −1
3 0 5 0



19.

 1 1 −1 7
2 1 0 10
3 2 −1 17



20.

 4 1 8 15
1 1 2 7
3 1 5 11


21.

[
2 2 1 3 1 4
1 1 1 3 1 4

]

22.
[
1 −1 3 1 −2 9
2 −2 6 1 −2 13

]

1.4 Existence and Uniqueness of SoluƟons

...AS YOU READ . . .

1. T/F: It is possible for a linear system to have exactly 5 soluƟons.

2. T/F: A variable that corresponds to a leading 1 is “free.”

3. How can one tell what kind of soluƟon a linear system of equaƟons has?

4. Give an example (different from those given in the text) of a 2 equaƟon, 2 un-
known linear system that is not consistent.

5. T/F: A parƟcular soluƟon for a linear system with infinite soluƟons can be found
by arbitrarily picking values for the free variables.
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1.4 Existence and Uniqueness of SoluƟons

So far, whenever we have solved a system of linear equaƟons, we have always
found exactly one soluƟon. This is not always the case; we will find in this secƟon that
some systems do not have a soluƟon, and others have more than one.

We start with a very simple example. Consider the following linear system:

x− y = 0.

There are obviously infinite soluƟons to this system; as long as x = y, we have a so-
luƟon. We can picture all of these soluƟons by thinking of the graph of the equaƟon
y = x on the tradiƟonal x, y coordinate plane.

Let’s conƟnue this visual aspect of considering soluƟons to linear systems. Con-
sider the system

x+ y = 2

x− y = 0.

Each of these equaƟons can be viewed as lines in the coordinate plane, and since their
slopes are different, we know they will intersect somewhere (see Figure 1.1 (a)). In
this example, they intersect at the point (1, 1) – that is, when x = 1 and y = 1, both
equaƟons are saƟsfied and we have a soluƟon to our linear system. Since this is the
only place the two lines intersect, this is the only soluƟon.

Now consider the linear system

x+ y = 1

2x+ 2y = 2.

It is clear that while we have two equaƟons, they are essenƟally the same equaƟon;
the second is just a mulƟple of the first. Therefore, when we graph the two equaƟons,
we are graphing the same line twice (see Figure 1.1 (b); the thicker line is used to
represent drawing the line twice). In this case, we have an infinite soluƟon set, just as
if we only had the one equaƟon x+ y = 1. We oŌen write the soluƟon as x = 1− y to
demonstrate that y can be any real number, and x is determined once we pick a value
for y.

..

(a)

.

(b)

.

(c)

..Figure 1.1: The three possibiliƟes for two linear equaƟons with two unknowns.
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Finally, consider the linear system

x+ y = 1

x+ y = 2.

We should immediately spot a problem with this system; if the sum of x and y is 1,
how can it also be 2? There is no soluƟon to such a problem; this linear system has no
soluƟon. We can visualize this situaƟon in Figure 1.1 (c); the two lines are parallel and
never intersect.

If wewere to consider a linear systemwith three equaƟons and two unknowns, we
could visualize the soluƟon by graphing the corresponding three lines. We can picture
that perhaps all three lines would meet at one point, giving exactly 1 soluƟon; per-
haps all three equaƟons describe the same line, giving an infinite number of soluƟons;
perhaps we have different lines, but they do not all meet at the same point, giving
no soluƟon. We further visualize similar situaƟons with, say, 20 equaƟons with two
variables.

While it becomes harder to visualize when we add variables, no maƩer how many
equaƟons and variables we have, soluƟons to linear equaƟons always come in one of
three forms: exactly one soluƟon, infinite soluƟons, or no soluƟon. This is a fact that
we will not prove here, but it deserves to be stated.

..
Theorem 1

.

.
SoluƟon Forms of Linear Systems

Every linear system of equaƟons has exactly one soluƟon,
infinite soluƟons, or no soluƟon.

This leads us to a definiƟon. Here we don’t differenƟate between having one so-
luƟon and infinite soluƟons, but rather just whether or not a soluƟon exists.

..
DefiniƟon 5

.

.
Consistent and Inconsistent Linear Systems

A system of linear equaƟons is consistent if it has a soluƟon
(perhaps more than one). A linear system is inconsistent if
it does not have a soluƟon.

How can we tell what kind of soluƟon (if one exists) a given system of linear equa-
Ɵons has? The answer to this quesƟon lies with properly understanding the reduced
row echelon form of a matrix. To discover what the soluƟon is to a linear system, we
first put the matrix into reduced row echelon form and then interpret that form prop-
erly.

Before we start with a simple example, let us make a note about finding the re-
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1.4 Existence and Uniqueness of SoluƟons

duced row echelon form of a matrix.

TechnologyNote: In the previous secƟon, we learned how to find the reduced row
echelon form of a matrix using Gaussian eliminaƟon – by hand. We need to know how
to do this; understanding the process has benefits. However, actually execuƟng the
process by hand for every problem is not usually beneficial. In fact, with large systems,
compuƟng the reduced row echelon form by hand is effecƟvely impossible. Our main
concern iswhat “the rref” is, notwhat exact stepswere used to arrive there. Therefore,
the reader is encouraged to employ some form of technology to find the reduced row
echelon form. Computer programs such asMathemaƟca, MATLAB, Maple, and Derive
can be used; many handheld calculators (such as Texas Instruments calculators) will
perform these calculaƟons very quickly.

As a general rule, when we are learning a new technique, it is best to not use
technology to aid us. This helps us learn not only the technique but some of its “inner
workings.” We can then use technology once we havemastered the technique and are
now learning how to use it to solve problems.

From here on out, in our examples, when we need the reduced row echelon form
of a matrix, we will not show the steps involved. Rather, we will give the iniƟal matrix,
then immediately give the reduced row echelon form of the matrix. We trust that the
reader can verify the accuracy of this form by both performing the necessary steps by
hand or uƟlizing some technology to do it for them.

Our first example explores officially a quick example used in the introducƟon of
this secƟon.

.. Example 8 ..Find the soluƟon to the linear system

x1 + x2 = 1
2x1 + 2x2 = 2

.

SÊ½çã®ÊÄ Create the corresponding augmentedmatrix, and thenput thema-
trix into reduced row echelon form.[

1 1 1
2 2 2

]
−→
rref

[
1 1 1
0 0 0

]
Now convert the reduced matrix back into equaƟons. In this case, we only have

one equaƟon,
x1 + x2 = 1

or, equivalently,

x1 = 1− x2
x2 is free.

We have just introduced a new term, the word free. It is used to stress that idea
that x2 can take on any value; we are “free” to choose any value for x2. Once this value
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Chapter 1 Systems of Linear EquaƟons

is chosen, the value of x1 is determined. We have infinite choices for the value of x2,
so therefore we have infinite soluƟons.

For example, if we set x2 = 0, then x1 = 1; if we set x2 = 5, then x1 = −4. ...

Let’s try another example, one that uses more variables.

.. Example 9 Find the soluƟon to the linear system

x2 − x3 = 3
x1 + 2x3 = 2

−3x2 + 3x3 = −9
.

SÊ½çã®ÊÄ To find the soluƟon, put the corresponding matrix into reduced
row echelon form. 0 1 −1 3

1 0 2 2
0 −3 3 −9

 −→
rref

 1 0 2 2
0 1 −1 3
0 0 0 0


Now convert this reduced matrix back into equaƟons. We have

x1 + 2x3 = 2

x2 − x3 = 3

or, equivalently,

x1 = 2− 2x3
x2 = 3+ x3
x3 is free.

These two equaƟons tell us that the values of x1 and x2 depend on what x3 is. As
we saw before, there is no restricƟon on what x3 must be; it is “free” to take on the
value of any real number. Once x3 is chosen, we have a soluƟon. Since we have infinite
choices for the value of x3, we have infinite soluƟons.

As examples, x1 = 2, x2 = 3, x3 = 0 is one soluƟon; x1 = −2, x2 = 5, x3 = 2 is
another soluƟon. Try plugging these values back into the original equaƟons to verify
that these indeed are soluƟons. (By the way, since infinite soluƟons exist, this system
of equaƟons is consistent.) ..

In the two previous examples we have used the word “free” to describe certain
variables. What exactly is a free variable? How do we recognize which variables are
free and which are not?

Look back to the reducedmatrix in Example 8. NoƟce that there is only one leading
1 in that matrix, and that leading 1 corresponded to the x1 variable. That told us that
x1 was not a free variable; since x2 did not correspond to a leading 1, it was a free
variable.
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1.4 Existence and Uniqueness of SoluƟons

Look also at the reduced matrix in Example 9. There were two leading 1s in that
matrix; one corresponded to x1 and the other to x2. This meant that x1 and x2 were
not free variables; since there was not a leading 1 that corresponded to x3, it was a
free variable.

We formally define this and a few other terms in this following definiƟon.

..
DefiniƟon 6

.

.
Dependent and Independent Variables

Consider the reduced row echelon form of an augmented
matrix of a linear system of equaƟons. Then:

a variable that corresponds to a leading 1 is a basic, or
dependent, variable, and

a variable that does not correspond to a leading 1 is a free,
or independent, variable.

One can probably see that “free” and “independent” are relaƟvely synonymous. It
follows that if a variable is not independent, it must be dependent; the word “basic”
comes from connecƟons to other areas of mathemaƟcs that we won’t explore here.

These definiƟons help us understand when a consistent system of linear equaƟons
will have infinite soluƟons. If there are no free variables, then there is exactly one
soluƟon; if there are any free variables, there are infinite soluƟons.

..
Key Idea 2

.

.
Consistent SoluƟon Types

A consistent linear system of equaƟons will have exactly
one soluƟon if and only if there is a leading 1 for each
variable in the system.

If a consistent linear system of equaƟons has a free variable,
it has infinite soluƟons.

If a consistent linear system has more variables than leading
1s, then the system will have infinite soluƟons.

A consistent linear system with more variables than equa-
Ɵons will always have infinite soluƟons.

Note: Key Idea 2 applies only to consistent systems. If a system is inconsistent,
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then no soluƟon exists and talking about free and basic variables is meaningless.

When a consistent system has only one soluƟon, each equaƟon that comes from
the reduced row echelon form of the corresponding augmented matrix will contain
exactly one variable. If the consistent system has infinite soluƟons, then there will be
at least one equaƟon coming from the reduced row echelon form that contains more
than one variable. The “first” variable will be the basic (or dependent) variable; all
others will be free variables.

We have now seen examples of consistent systems with exactly one soluƟon and
others with infinite soluƟons. How will we recognize that a system is inconsistent?
Let’s find out through an example.

.. Example 10 Find the soluƟon to the linear system

x1 + x2 + x3 = 1
x1 + 2x2 + x3 = 2
2x1 + 3x2 + 2x3 = 0

.

SÊ½çã®ÊÄ We start by puƫng the corresponding matrix into reduced row
echelon form.  1 1 1 1

1 2 1 2
2 3 2 0

 −→
rref

 1 0 1 0
0 1 0 0
0 0 0 1


Now let us take the reduced matrix and write out the corresponding equaƟons.

The first two rows give us the equaƟons

x1 + x3 = 0

x2 = 0.

So far, so good. However the last row gives us the equaƟon

0x1 + 0x2 + 0x3 = 1

or, more concisely, 0 = 1. Obviously, this is not true; we have reached a contradicƟon.
Therefore, no soluƟon exists; this system is inconsistent. ..

In previous secƟons we have only encountered linear systems with unique solu-
Ɵons (exactly one soluƟon). Now we have seen three more examples with different
soluƟon types. The first two examples in this secƟon had infinite soluƟons, and the
third had no soluƟon. How can we tell if a system is inconsistent?

A linear system will be inconsistent only when it implies that 0 equals 1. We can
tell if a linear system implies this by puƫng its corresponding augmented matrix into
reduced row echelon form. If we have any row where all entries are 0 except for the
entry in the last column, then the system implies 0=1. More succinctly, if we have a
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leading 1 in the last column of an augmented matrix, then the linear system has no
soluƟon.

..
Key Idea 3

.

.
Inconsistent Systems of Linear EquaƟons

A system of linear equaƟons is inconsistent if the reduced
row echelon form of its corresponding augmented matrix
has a leading 1 in the last column.

.. Example 11 Confirm that the linear system

x + y = 0
2x + 2y = 4

has no soluƟon.

SÊ½çã®ÊÄ We can verify that this system has no soluƟon in two ways. First,
let’s just think about it. If x+ y = 0, then it stands to reason, by mulƟplying both sides
of this equaƟon by 2, that 2x+ 2y = 0. However, the second equaƟon of our system
says that 2x+ 2y = 4. Since 0 ̸= 4, we have a contradicƟon and hence our system has
no soluƟon. (We cannot possibly pick values for x and y so that 2x+ 2y equals both 0
and 4.)

Now let us confirm this using the prescribed technique from above. The reduced
row echelon form of the corresponding augmented matrix is[

1 1 0
0 0 1

]
.

We have a leading 1 in the last column, so therefore the system is inconsistent. ..

Let’s summarize what we have learned up to this point. Consider the reduced row
echelon form of the augmented matrix of a system of linear equaƟons.3 If there is a
leading 1 in the last column, the systemhas no soluƟon. Otherwise, if there is a leading
1 for each variable, then there is exactly one soluƟon; otherwise (i.e., there are free
variables) there are infinite soluƟons.

Systems with exactly one soluƟon or no soluƟon are the easiest to deal with; sys-
tems with infinite soluƟons are a bit harder to deal with. Therefore, we’ll do a liƩle
more pracƟce. First, a definiƟon: if there are infinite soluƟons, what do we call one of
those infinite soluƟons?

3That sure seems like a mouthful in and of itself. However, it boils down to “look at the reduced form of
the usual matrix.”
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..
DefiniƟon 7

.

.
ParƟcular SoluƟon

Consider a linear systemof equaƟonswith infinite soluƟons.
A parƟcular soluƟon is one soluƟon out of the infinite set of
possible soluƟons.

The easiest way to find a parƟcular soluƟon is to pick values for the free variables
which then determines the values of the dependent variables. Again, more pracƟce is
called for.

.. Example 12 ..Give the soluƟon to a linear system whose augmented matrix in
reduced row echelon form is  1 −1 0 2 4

0 0 1 −3 7
0 0 0 0 0


and give two parƟcular soluƟons.

SÊ½çã®ÊÄ We can essenƟally ignore the third row; it does not divulge any
informaƟon about the soluƟon.4 The first and second rows can be rewriƩen as the
following equaƟons:

x1 − x2 + 2x4 = 4

x3 − 3x4 = 7.

NoƟce how the variables x1 and x3 correspond to the leading 1s of the given matrix.
Therefore x1 and x3 are dependent variables; all other variables (in this case, x2 and
x4) are free variables.

We generally write our soluƟon with the dependent variables on the leŌ and inde-
pendent variables and constants on the right. It is also a good pracƟce to acknowledge
the fact that our free variables are, in fact, free. So our final soluƟon would look some-
thing like

x1 = 4+ x2 − 2x4
x2 is free

x3 = 7+ 3x4
x4 is free.

To find parƟcular soluƟons, choose values for our free variables. There is no “right”
way of doing this; we are “free” to choose whatever we wish.

4Then why include it? Rows of zeros someƟmes appear “unexpectedly” in matrices aŌer they have been
put in reduced row echelon form. When this happens, we do learn something; it means that at least one
equaƟon was a combinaƟon of some of the others.
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By seƫng x2 = 0 = x4, we have the soluƟon x1 = 4, x2 = 0, x3 = 7, x4 = 0.
By seƫng x2 = 1 and x4 = −5, we have the soluƟon x1 = 15, x2 = 1, x3 = −8,
x4 = −5. It is easier to read this when are variables are listed verƟcally, so we repeat
these soluƟons:

One parƟcular soluƟon is:

x1 = 4

x2 = 0

x3 = 7

x4 = 0.

Another parƟcular soluƟon is:

x1 = 15

x2 = 1

x3 = −8

x4 = −5.
...

.. Example 13 ..Find the soluƟon to a linear system whose augmented matrix in
reduced row echelon form is [

1 0 0 2 3
0 1 0 4 5

]
and give two parƟcular soluƟons.

SÊ½çã®ÊÄ ConverƟng the two rows into equaƟons we have

x1 + 2x4 = 3

x2 + 4x4 = 5.

We see that x1 and x2 are our dependent variables, for they correspond to the
leading 1s. Therefore, x3 and x4 are independent variables. This situaƟon feels a liƩle
unusual,5 for x3 doesn’t appear in any of the equaƟons above, but cannot overlook it;
it is sƟll a free variable since there is not a leading 1 that corresponds to it. We write
our soluƟon as:

x1 = 3− 2x4
x2 = 5− 4x4
x3 is free

x4 is free.

To find two parƟcular soluƟons, we pick values for our free variables. Again, there
is no “right” way of doing this (in fact, there are . . . infinite ways of doing this) so we
give only an example here.

5What kind of situaƟon would lead to a column of all zeros? To have such a column, the original ma-
trix needed to have a column of all zeros, meaning that while we acknowledged the existence of a certain
variable, we never actually used it in any equaƟon. In pracƟcal terms, we could respond by removing the
corresponding column from thematrix and just keep in mind that that variable is free. In very large systems,
it might be hard to determine whether or not a variable is actually used and one would not worry about it.

When we learn about eigenvectors and eigenvalues, we will see that under certain circumstances this
situaƟon arises. In those cases we leave the variable in the system just to remind ourselves that it is there.
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One parƟcular soluƟon is:

x1 = 3

x2 = 5

x3 = 1000

x4 = 0.

Another parƟcular soluƟon is:

x1 = 3− 2π

x2 = 5− 4π

x3 = e2

x4 = π.

(In the second parƟcular soluƟon we picked “unusual” values for x3 and x4 just to high-
light the fact that we can.) ...

.. Example 14 Find the soluƟon to the linear system

x1 + x2 + x3 = 5
x1 − x2 + x3 = 3

and give two parƟcular soluƟons.

SÊ½çã®ÊÄ The corresponding augmentedmatrix and its reduced rowechelon
form are given below.[

1 1 1 5
1 −1 1 3

]
−→
rref

[
1 0 1 4
0 1 0 1

]
ConverƟng these two rows into equaƟons, we have

x1 + x3 = 4

x2 = 1

giving us the soluƟon

x1 = 4− x3
x2 = 1

x3 is free.

Once again, we get a bit of an “unusual” soluƟon; while x2 is a dependent variable,
it does not depend on any free variable; instead, it is always 1. (We can think of it
as depending on the value of 1.) By picking two values for x3, we get two parƟcular
soluƟons.

One parƟcular soluƟon is:

x1 = 4

x2 = 1

x3 = 0.

Another parƟcular soluƟon is:

x1 = 3

x2 = 1

x3 = 1.
..
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The constants and coefficients of a matrix work together to determine whether a
given system of linear equaƟons has one, infinite, or no soluƟon. The concept will be
fleshed out more in later chapters, but in short, the coefficients determine whether a
matrix will have exactly one soluƟon or not. In the “or not” case, the constants deter-
mine whether or not infinite soluƟons or no soluƟon exists. (So if a given linear system
has exactly one soluƟon, it will always have exactly one soluƟon even if the constants
are changed.) Let’s look at an example to get an idea of how the values of constants
and coefficients work together to determine the soluƟon type.

.. Example 15 For what values of k will the given system have exactly one solu-
Ɵon, infinite soluƟons, or no soluƟon?

x1 + 2x2 = 3
3x1 + kx2 = 9

SÊ½çã®ÊÄ We answer this quesƟon by forming the augmented matrix and
starƟng the process of puƫng it into reduced row echelon form. Below we see the
augmented matrix and one elementary row operaƟon that starts the Gaussian elimi-
naƟon process.[

1 2 3
3 k 9

]
−−−−−−−−−−−→−3R1 + R2 → R2

[
1 2 3
0 k− 9 0

]
This is as far as we need to go. In looking at the second row, we see that if k = 9,

then that row contains only zeros and x2 is a free variable; we have infinite soluƟons.
If k ̸= 9, then our next step would be to make that second row, second column en-
try a leading one. We don’t parƟcularly care about the soluƟon, only that we would
have exactly one as both x1 and x2 would correspond to a leading one and hence be
dependent variables.

Our final analysis is then this. If k ̸= 9, there is exactly one soluƟon; if k = 9, there
are infinite soluƟons. In this example, it is not possible to have no soluƟons. ..

As an extension of the previous example, consider the similar augmented matrix
where the constant 9 is replaced with a 10. Performing the same elementary row
operaƟon gives[

1 2 3
3 k 10

]
−−−−−−−−−−−→−3R1 + R2 → R2

[
1 2 3
0 k− 9 1

]
.

As in the previous example, if k ̸= 9, we can make the second row, second column
entry a leading one and hence we have one soluƟon. However, if k = 9, then our last
row is [0 0 1], meaning we have no soluƟon.

We have been studying the soluƟons to linear systems mostly in an “academic”
seƫng; we have been solving systems for the sake of solving systems. In the next sec-
Ɵon, we’ll look at situaƟons which create linear systems that need solving (i.e., “word
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problems”).

Exercises 1.4
In Exercises 1 – 14, find the soluƟon to the
given linear system. If the system has infinite
soluƟons, give 2 parƟcular soluƟons.

1.
2x1 + 4x2 = 2
x1 + 2x2 = 1

2.
−x1 + 5x2 = 3
2x1 − 10x2 = −6

3.
x1 + x2 = 3
2x1 + x2 = 4

4.
−3x1 + 7x2 = −7
2x1 − 8x2 = 8

5.
2x1 + 3x2 = 1
−2x1 − 3x2 = 1

6.
x1 + 2x2 = 1
−x1 − 2x2 = 5

7.
−2x1 + 4x2 + 4x3 = 6
x1 − 3x2 + 2x3 = 1

8.
−x1 + 2x2 + 2x3 = 2
2x1 + 5x2 + x3 = 2

9.
−x1 − x2 + x3 + x4 = 0

−2x1 − 2x2 + x3 = −1

10.
x1 + x2 + 6x3 + 9x4 = 0

−x1 − x3 − 2x4 = −3

11.
2x1 + x2 + 2x3 = 0
x1 + x2 + 3x3 = 1
3x1 + 2x2 + 5x3 = 3

12.
x1 + 3x2 + 3x3 = 1
2x1 − x2 + 2x3 = −1
4x1 + 5x2 + 8x3 = 2

13.
x1 + 2x2 + 2x3 = 1
2x1 + x2 + 3x3 = 1
3x1 + 3x2 + 5x3 = 2

14.
2x1 + 4x2 + 6x3 = 2
1x1 + 2x2 + 3x3 = 1
−3x1 − 6x2 − 9x3 = −3

In Exercises 15 – 18, state for which values
of k the given system will have exactly 1 solu-
Ɵon, infinite soluƟons, or no soluƟon.

15.
x1 + 2x2 = 1
2x1 + 4x2 = k

16.
x1 + 2x2 = 1
x1 + kx2 = 1

17.
x1 + 2x2 = 1
x1 + kx2 = 2

18.
x1 + 2x2 = 1
x1 + 3x2 = k

1.5 ApplicaƟons of Linear Systems

...AS YOU READ . . .

1. How do most problems appear “in the real world?”

2. The unknowns in a problem are also called what?

3. Howmany points are needed to determine the coefficients of a 5th degree poly-
nomial?

We’ve started this chapter by addressing the issue of finding the soluƟon to a sys-
tem of linear equaƟons. In subsequent secƟons, we defined matrices to store linear
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equaƟon informaƟon; we described how we can manipulate matrices without chang-
ing the soluƟons; we described how to efficiently manipulate matrices so that a work-
ing soluƟon can be easily found.

We shouldn’t lose sight of the fact that ourwork in the previous secƟonswas aimed
at finding soluƟons to systems of linear equaƟons. In this secƟon, we’ll learn how to
apply what we’ve learned to actually solve some problems.

Many, many, many problems that are addressed by engineers, businesspeople,
scienƟsts and mathemaƟcians can be solved by properly seƫng up systems of linear
equaƟons. In this secƟon we highlight only a few of the wide variety of problems that
matrix algebra can help us solve.

We start with a simple example.

.. Example 16 ..A jar contains 100 blue, green, red and yellow marbles. There are
twice as many yellow marbles as blue; there are 10 more blue marbles than red; the
sum of the red and yellowmarbles is the same as the sum of the blue and green. How
many marbles of each color are there?

SÊ½çã®ÊÄ Let’s call the number of blue balls b, and the number of the other
balls g, r and y, each represenƟng the obvious. Since we know that we have 100 mar-
bles, we have the equaƟon

b+ g+ r+ y = 100.

The next sentence in our problem statement allows us to create threemore equaƟons.
We are told that there are twice as many yellow marbles as blue. One of the fol-

lowing two equaƟons is correct, based on this statement; which one is it?

2y = b or 2b = y

The first equaƟon says that if we take the number of yellow marbles, then double
it, we’ll have the number of blue marbles. That is not what we were told. The second
equaƟon states that if we take the number of blue marbles, then double it, we’ll have
the number of yellow marbles. This is what we were told.

The next statement of “there are 10 more blue marbles as red” can be wriƩen as
either

b = r+ 10 or r = b+ 10.

Which is it?
The first equaƟon says that if we take the number of red marbles, then add 10,

we’ll have the number of blue marbles. This is what we were told. The next equaƟon
is wrong; it implies there are more red marbles than blue.

The final statement tells us that the sum of the red and yellowmarbles is the same
as the sum of the blue and green marbles, giving us the equaƟon

r+ y = b+ g.

35



Chapter 1 Systems of Linear EquaƟons

We have four equaƟons; altogether, they are

b+ g+ r+ y = 100

2b = y

b = r+ 10

r+ y = b+ g.

Wewant to write these equaƟons in a standard way, with all the unknowns on the
leŌ and the constants on the right. Let us also write them so that the variables appear
in the same order in each equaƟon (we’ll use alphabeƟcal order to make it simple).
We now have

b+ g+ r+ y = 100

2b− y = 0

b− r = 10

−b− g+ r+ y = 0

To find the soluƟon, let’s form the appropriate augmented matrix and put it into
reduced row echelon form. We do so here, without showing the steps.

1 1 1 1 100
2 0 0 −1 0
1 0 −1 0 10
−1 −1 1 1 0

 −→
rref


1 0 0 0 20
0 1 0 0 30
0 0 1 0 10
0 0 0 1 40


We interpret from the reduced row echelon form of the matrix that we have 20

blue, 30 green, 10 red and 40 yellow marbles. ...

Even if you had a bit of difficulty with the previous example, in reality, this type
of problem is preƩy simple. The unknowns were easy to idenƟfy, the equaƟons were
preƩy straighƞorward to write (maybe a bit tricky for some), and only the necessary
informaƟon was given.

Most problems that we face in the world do not approach us in this way; most
problems do not approach us in the form of “Here is an equaƟon. Solve it.” Rather,
most problems come in the form of:

Here is a problem. I want the soluƟon. To help, here is lots of informaƟon.
It may be just enough; it may be too much; it may not be enough. You
figure out what you need; just give me the soluƟon.

Faced with this type of problem, how do we proceed? Like much of what we’ve
done in the past, there isn’t just one “right” way. However, there are a few steps
that can guide us. You don’t have to follow these steps, “step by step,” but if you find
that you are having difficulty solving a problem, working through these stepsmay help.
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(Note: while the principles outlined herewill help one solve any type of problem, these
steps are wriƩen specifically for solving problems that involve only linear equaƟons.)

..
Key Idea 4

.

.
MathemaƟcal Problem Solving

1. Understand the problem. What exactly is being
asked?

2. IdenƟfy the unknowns. What are you trying to find?
What units are involved?

3. Give names to your unknowns (these are your vari-
ables).

4. Use the informaƟon given to write as many equaƟons
as you can that involve these variables.

5. Use the equaƟons to form an augmented matrix; use
Gaussian eliminaƟon to put the matrix into reduced
row echelon form.

6. Interpret the reduced row echelon form of the matrix
to idenƟfy the soluƟon.

7. Ensure the soluƟon makes sense in the context of the
problem.

Having idenƟfied some steps, let us put them into pracƟce with some examples.

.. Example 17 ..A concert hall has seaƟng arranged in three secƟons. As part of a
special promoƟon, guests will recieve two of three prizes. Guests seated in the first
and second secƟons will receive Prize A, guests seated in the second and third secƟons
will receive Prize B, and guests seated in the first and third secƟons will receive Prize
C. Concert promoters told the concert hall managers of their plans, and asked how
many seats were in each secƟon. (The promoters want to store prizes for each secƟon
separately for easier distribuƟon.) The managers, thinking they were being helpful,
told the promoters they would need 105 A prizes, 103 B prizes, and 88 C prizes, and
have since been unavailable for further help. How many seats are in each secƟon?

SÊ½çã®ÊÄ Before we rush in and start making equaƟons, we should be clear
about what is being asked. The final sentence asks: “How many seats are in each
secƟon?” This tells us what our unknowns should be: we should name our unknowns
for the number of seats in each secƟon. Let x1, x2 and x3 denote the number of seats
in the first, second and third secƟons, respecƟvely. This covers the first two steps of
our general problem solving technique.
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(It is tempƟng, perhaps, to name our variables for the number of prizes given away.
However, when we think more about this, we realize that we already know this – that
informaƟon is given to us. Rather, we should name our variables for the things we
don’t know.)

Having our unknowns idenƟfied and variables named, we now proceed to forming
equaƟons from the informaƟon given. Knowing that Prize A goes to guests in the first
and second secƟons and that we’ll need 105 of these prizes tells us

x1 + x2 = 105.

Proceeding in a similar fashion, we get two more equaƟons,

x2 + x3 = 103 and x1 + x3 = 88.

Thus our linear system is
x1 + x2 = 105
x2 + x3 = 103
x1 + x3 = 88

and the corresponding augmented matrix is 1 1 0 105
0 1 1 103
1 0 1 88

 .

To solve our system, let’s put this matrix into reduced row echelon form. 1 1 0 105
0 1 1 103
1 0 1 88

 −→
rref

 1 0 0 45
0 1 0 60
0 0 1 43


We can now read off our soluƟon. The first secƟon has 45 seats, the second has

60 seats, and the third has 43 seats. ...

.. Example 18 ..A lady takes a 2-milemotorizedboat trip down theHighwater River,
knowing the trip will take 30 minutes. She asks the boat pilot “How fast does this river
flow?” He replies “I have no idea, lady. I just drive the boat.”

She thinks for a moment, then asks “How long does the return trip take?” He
replies “The same; half an hour.” She follows up with the statement, “Since both legs
take the same Ɵme, you must not drive the boat at the same speed.”

“Naw,” the pilot said. “While I really don’t know exactly how fast I go, I do know
that since we don’t carry any tourists, I drive the boat twice as fast.”

The lady walks away saƟsfied; she knows how fast the river flows.
(How fast does it flow?)

SÊ½çã®ÊÄ This problem forces us to think about what informaƟon is given
and how to use it to find what we want to know. In fact, to find the soluƟon, we’ll find
out extra informaƟon that we weren’t asked for!
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We are asked to find how fast the river is moving (step 1). To find this, we should
recognize that, in some sense, there are three speeds at work in the boat trips: the
speed of the river (which we want to find), the speed of the boat, and the speed that
they actually travel at.

We know that each leg of the trip takes half an hour; if it takes half an hour to cover
2 miles, then they must be traveling at 4 mph, each way.

The other two speeds are unknowns, but they are related to the overall speeds.
Let’s call the speed of the river r and the speed of the boat b. (And we should be
careful. From the conversaƟon, we know that the boat travels at two different speeds.
So we’ll say that b represents the speed of the boat when it travels downstream, so
2b represents the speed of the boat when it travels upstream.) Let’s let our speed be
measured in the units of miles/hour (mph) as we used above (steps 2 and 3).

What is the rate of the people on the boat? When they are travelling downstream,
their rate is the sum of the water speed and the boat speed. Since their overall speed
is 4 mph, we have the equaƟon r+ b = 4.

When the boat returns going against the current, its overall speed is the rate of
the boat minus the rate of the river (since the river is working against the boat). The
overall trip is sƟll taken at 4 mph, so we have the equaƟon 2b − r = 4. (Recall: the
boat is traveling twice as fast as before.)

The corresponding augmented matrix is[
1 1 4
2 −1 4

]
.

Note that we decided to let the first column hold the coefficients of b.
Puƫng this matrix in reduced row echelon form gives us:[

1 1 4
2 −1 4

]
−→
rref

[
1 0 8/3
0 1 4/3

]
.

We finish by interpreƟng this soluƟon: the speed of the boat (going downstream)
is 8/3mph, or 2.6mph, and the speed of the river is 4/3mph, or 1.3mph. All we really
wanted to know was the speed of the river, at about 1.3 mph. ...

.. Example 19 ..Find the equaƟon of the quadraƟc funcƟon that goes through the
points (−1, 6), (1, 2) and (2, 3).

SÊ½çã®ÊÄ This may not seem like a “linear” problem since we are talking
about a quadraƟc funcƟon, but closer examinaƟon will show that it really is.

We normally write quadraƟc funcƟons as y = ax2 + bx + c where a, b and c are
the coefficients; in this case, they are our unknowns. We have three points; consider
the point (−1, 6). This tells us directly that if x = −1, then y = 6. Therefore we know
that 6 = a(−1)2+b(−1)+c. WriƟng this in amore standard form, we have the linear
equaƟon

a− b+ c = 6.

The second point tells us that a(1)2 + b(1) + c = 2, which we can simplify as
a + b + c = 2, and the last point tells us a(2)2 + b(2) + c = 3, or 4a + 2b + c = 3.
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Thus our linear system is
a− b+ c = 6
a+ b+ c = 2

4a+ 2b+ c = 3.

Again, to solve our system, we find the reduced row echelon form of the corre-
sponding augmented matrix. We don’t show the steps here, just the final result. 1 −1 1 6

1 1 1 2
4 2 1 3

 −−→
rref

 1 0 0 1
0 1 0 −2
0 0 1 3


This tells us that a = 1, b = −2 and c = 3, giving us the quadraƟc funcƟon

y = x2 − 2x+ 3. ...

One thing interesƟng about the previous example is that it confirms for us some-
thing that we may have known for a while (but didn’t know why it was true). Why do
we need two points to find the equaƟon of the line? Because in the equaƟon of the
a line, we have two unknowns, and hence we’ll need two equaƟons to find values for
these unknowns.

A quadraƟc has three unknowns (the coefficients of the x2 term and the x term, and
the constant). Therefore we’ll need three equaƟons, and therefore we’ll need three
points.

What happens if we try to find the quadraƟc funcƟon that goes through 3 points
that are all on the same line? The fast answer is that you’ll get the equaƟon of a line;
there isn’t a quadraƟc funcƟon that goes through 3 colinear points. Try it and see!
(Pick easy points, like (0, 0), (1, 1) and (2, 2). You’ll find that the coefficient of the x2

term is 0.)
Of course, we can do the same type of thing to find polynomials that go through 4,

5, etc., points. In general, if you are given n+1 points, a polynomial that goes through
all n+ 1 points will have degree at most n.

.. Example 20 ..A woman has 32 $1, $5 and $10 bills in her purse, giving her a total
of $100. How many bills of each denominaƟon does she have?

SÊ½çã®ÊÄ Let’s name our unknowns x, y and z for our ones, fives and tens,
respecƟvely (it is tempƟng to call them o, f and t, but o looks too much like 0). We
know that there are a total of 32 bills, so we have the equaƟon

x+ y+ z = 32.

We also know that we have $100, so we have the equaƟon

x+ 5y+ 10z = 100.

We have three unknowns but only two equaƟons, so we know that we cannot expect
a unique soluƟon. Let’s try to solve this system anyway and see what we get.

Puƫng the system into a matrix and then finding the reduced row echelon form,
we have [

1 1 1 32
1 5 10 100

]
−→
rref

[
1 0 − 5

4 15
0 1 9

4 17

]
.
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Reading from our reduced matrix, we have the infinite soluƟon set

x = 15+
5
4
z

y = 17− 9
4
z

z is free.

Whilewedohave infinite soluƟons,most of these soluƟons really don’tmake sense
in the context of this problem. (Seƫng z = 1

2 doesn’t make sense, for having half a
ten dollar bill doesn’t give us $5. Likewise, having z = 8 doesn’t make sense, for then
we’d have “−1” $5 bills.) So we must make sure that our choice of z doesn’t give us
fracƟons of bills or negaƟve amounts of bills.

To avoid fracƟons, z must be a mulƟple of 4 (−4, 0, 4, 8, . . .). Of course, z ≥ 0 for
a negaƟve number wouldn’t make sense. If z = 0, then we have 15 one dollar bills
and 17 five dollar bills, giving us $100. If z = 4, then we have x = 20 and y = 8.
We already menƟoned that z = 8 doesn’t make sense, nor does any value of z where
z ≥ 8.

So it seems that we have two answers; one with z = 0 and one with z = 4. Of
course, by the statement of the problem, we are led to believe that the lady has at
least one $10 bill, so probably the “best” answer is that we have 20 $1 bills, 8 $5 bills
and 4 $10 bills. The real point of this example, though, is to address how infinite solu-
Ɵons may appear in a real world situaƟon, and how suprising things may result. ...

.. Example 21 ..In a football game, teams can score points through touchdowns
worth 6 points, extra points (that follow touchdowns) worth 1 point, two point con-
versions (that also follow touchdowns) worth 2 points and field goals, worth 3 points.
You are told that in a football game, the two compeƟng teams scored on 7 occasions,
giving a total score of 24 points. Each touchdown was followed by either a successful
extra point or two point conversion. In what ways were these points scored?

SÊ½çã®ÊÄ The quesƟon asks how the points were scored; we can interpret
this as asking how many touchdowns, extra points, two point conversions and field
goals were scored. We’ll need to assign variable names to our unknowns; let t rep-
resent the number of touchdowns scored; let x represent the number of extra points
scored, let w represent the number of two point conversions, and let f represent the
number of field goals scored.

Nowwe address the issue of wriƟng equaƟons with these variables using the given
informaƟon. Since we have a total of 7 scoring occasions, we know that

t+ x+ w+ f = 7.

The total points scored is 24; considering the value of each type of scoring opportunity,
we can write the equaƟon

6t+ x+ 2w+ 3f = 24.
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Finally, we know that each touchdown was followed by a successful extra point or two
point conversion. This is subtle, but it tells us that the number of touchdowns is equal
to the sum of extra points and two point conversions. In other words,

t = x+ w.

To solve our problem, we put these equaƟons into a matrix and put thematrix into
reduced row echelon form. Doing so, we find 1 1 1 1 7

6 1 2 3 24
1 −1 −1 0 0

 −→
rref

 1 0 0 0.5 3.5
0 1 0 1 4
0 0 1 −0.5 −0.5

 .

Therefore, we know that

t = 3.5− 0.5f

x = 4− f

w = −0.5+ 0.5f.

We recognize that thismeans there are “infinite soluƟons,” but of coursemost of these
will not make sense in the context of a real football game. We must apply some logic
to make sense of the situaƟon.

Progressing in no parƟcular order, consider the second equaƟon, x = 4 − f. In
order for us to have a posiƟve number of extra points, we must have f ≤ 4. (And of
course, we need f ≥ 0, too.) Therefore, right away we know we have a total of only 5
possibiliƟes, where f = 0, 1, 2, 3 or 4.

From the first and third equaƟons, we see that if f is an even number, then t andw
will both be fracƟons (for instance, if f = 0, then t = 3.5) which does not make sense.
Therefore, we are down to two possible soluƟons, f = 1 and f = 3.

If f = 1, we have 3 touchdowns, 3 extra points, no two point conversions, and
(of course), 1 field goal. (Check to make sure that gives 24 points!) If f = 3, then
we 2 touchdowns, 1 extra point, 1 two point conversion, and (of course) 3 field goals.
Again, check to make sure this gives us 24 points. Also, we should check each soluƟon
to make sure that we have a total of 7 scoring occasions and that each touchdown
could be followed by an extra point or a two point conversion. ...

We have seen a variety of applicaƟons of systems of linear equaƟons. We would
do well to remind ourselves of the ways in which soluƟons to linear systems come:
there can be exactly one soluƟon, infinite soluƟons, or no soluƟons. While we did see
a few examples where it seemed like we had only 2 soluƟons, this was because we
were restricƟng our soluƟons to “make sense” within a certain context.

We should also remind ourselves that linear equaƟons are immensely important.
The examples we considered here ask fundamentally simple quesƟons like “How fast is
the water moving?” or “What is the quadraƟc funcƟon that goes through these three
points?” or “How were points in a football game scored?” The real “important” situ-
aƟons ask much more difficult quesƟons that oŌen require thousands of equaƟons!
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(Gauss began the systemaƟc study of solving systems of linear equaƟons while trying
to predict the next sighƟng of a comet; he needed to solve a system of linear equaƟons
that had 17 unknowns. Today, this a relaƟvely easy situaƟon to handle with the help of
computers, but to do it by hand is a real pain.) Once we understand the fundamentals
of solving systems of equaƟons, we can move on to looking at solving bigger systems
of equaƟons; this text focuses on geƫng us to understand the fundamentals.

Exercises 1.5
In Exercises 1 – 5, find the soluƟon of the
given problem by:

(a) creaƟng an appropriate system of linear
equaƟons

(b) forming the augmented matrix that cor-
responds to this system

(c) puƫng the augmented matrix into re-
duced row echelon form

(d) interpreƟng the reduced row echelon
form of the matrix as a soluƟon

1. A farmer looks out his window at his
chickens and pigs. He tells his daugh-
ter that he sees 62 heads and 190 legs.
How many chickens and pigs does the
farmer have?

2. A lady buys 20 trinkets at a yard sale.
The cost of each trinket is either $0.30
or $0.65. If she spends $8.80, how
many of each type of trinket does she
buy?

3. A carpenter canmake two sizes of table,
grande and venƟ. The grande table re-
quires 4 table legs and 1 table top; the
venƟ requires 6 table legs and 2 table
tops. AŌer doing work, he counts up
spare parts in his warehouse and real-
izes that he has 86 table tops leŌ over,
and 300 legs. How many tables of each
kind can he build and use up exactly all
of his materials?

4. A jar contains 100 marbles. We know
there are twice as many green marbles
as red; that the number of blue and yel-
lowmarbles together is the same as the
number of green; and that three Ɵmes
the number of yellowmarbles together
with the red marbles gives the same

numbers as the blue marbles. How
many of each color of marble are in the
jar?

5. A rescuemission has 85 sandwiches, 65
bags of chips and 210 cookies. They
know from experience that men will
eat 2 sandwiches, 1 bag of chips and
4 cookies; women will eat 1 sandwich,
a bag of chips and 2 cookies; kids will
eat half a sandwhich, a bag of chips and
3 cookies. If they want to use all their
food up, how many men, women and
kids can they feed?

In Exercises 6 – 15, find the polynomial with
the smallest degree that goes through the
given points.

6. (1, 3) and (3, 15)

7. (−2, 14) and (3, 4)

8. (1, 5), (−1, 3) and (3,−1)

9. (−4,−3), (0, 1) and (1, 4.5)

10. (−1,−8), (1,−2) and (3, 4)

11. (−3, 3), (1, 3) and (2, 3)

12. (−2, 15), (−1, 4), (1, 0) and (2,−5)

13. (−2,−7), (1, 2), (2, 9) and (3, 28)

14. (−3, 10), (−1, 2), (1, 2) and (2, 5)

15. (0, 1), (−3,−3.5), (−2,−2) and (4, 7)

16. The general exponenƟal funcƟon has
the form f(x) = aebx, where a and b are
constants and e is Euler’s constant (≈
2.718). We want to find the equaƟon
of the exponenƟal funcƟon that goes
through the points (1, 2) and (2, 4).

43



Chapter 1 Systems of Linear EquaƟons

(a) Show why we cannot simply sub-
situte in values for x and y in
y = aebx and solve using the
techniques we used for polyno-
mials.

(b) Show how the equality y = aebx

leads us to the linear equaƟon
ln y = ln a+ bx.

(c) Use the techniques we devel-
oped to solve for the unknowns
ln a and b.

(d) Knowing ln a, find a; find the ex-
ponenƟal funcƟon f(x) = aebx

that goes through the points
(1, 2) and (2, 4).

17. In a football game, 24 points are scored
from 8 scoring occasions. The number
of successful extra point kicks is equal
to the number of successful two point
conversions. Find all ways in which the
points may have been scored in this
game.

18. In a football game, 29 points are scored
from 8 scoring occasions. There are 2
more successful extra point kicks than
successful two point conversions. Find
all ways in which the points may have
been scored in this game.

19. In a basketball game, where points are
scored either by a 3 point shot, a 2 point
shot or a 1 point free throw, 80 points
were scored from 30 successful shots.
Find all ways in which the points may
have been scored in this game.

20. In a basketball game, where points are
scored either by a 3 point shot, a 2 point
shot or a 1 point free throw, 110 points
were scored from 70 successful shots.
Find all ways in which the points may
have been scored in this game.

21. Describe the equaƟons of the linear
funcƟons that go through the point
(1,3). Give 2 examples.

22. Describe the equaƟons of the linear
funcƟons that go through the point
(2,5). Give 2 examples.

23. Describe the equaƟons of the quadraƟc
funcƟons that go through the points
(2,−1) and (1,0). Give 2 examples.

24. Describe the equaƟons of the quadraƟc
funcƟons that go through the points
(−1, 3) and (2,6). Give 2 examples.
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A fundamental topic ofmathemaƟcs is arithmeƟc; adding, subtracƟng,mulƟplying and
dividing numbers. AŌer learning how to do this, most of us went on to learn how to
add, subtract, mulƟply and divide “x”. We are comfortable with expressions such as

x+ 3x− x · x2 + x5 · x−1

and know that we can “simplify” this to

4x− x3 + x4.

This chapter deals with the idea of doing similar operaƟons, but instead of an un-
known number x, we will be using a matrix A. So what exactly does the expression

A+ 3A− A · A2 + A5 · A−1

mean? We are going to need to learn to define whatmatrix addiƟon, scalar mulƟplica-
Ɵon, matrix mulƟplicaƟon and matrix inversion are. We will learn just that, plus some
more good stuff, in this chapter.

2.1 Matrix AddiƟon and Scalar MulƟplicaƟon

...AS YOU READ . . .

1. When are two matrices equal?

2. Write an explanaƟon of how to addmatrices as though wriƟng to someone who
knows what a matrix is but not much more.

3. T/F: There is only 1 zero matrix.

4. T/F: To mulƟply a matrix by 2 means to mulƟply each entry in the matrix by 2.



Chapter 2 Matrix ArithmeƟc

In the past, when we dealt with expressions that used “x,” we didn’t just add and
mulƟply x’s together for the fun of it, but rather because we were usually given some
sort of equaƟon that had x in it and we had to “solve for x.”

This begs the quesƟon, “What does it mean to be equal?” Two numbers are equal,
when, . . ., uh, . . ., nevermind. What does it mean for two matrices to be equal? We
say that matrices A and B are equal when their corresponding entries are equal. This
seems like a very simple definiƟon, but it is rather important, so we give it a box.

..
DefiniƟon 8

.
.

Matrix Equality
Twom×nmatrices A and B are equal if their corresponding
entries are equal.

NoƟce that our more formal definiƟon specifies that if matrices are equal, they
have the same dimensions. This should make sense.

Nowwemove on to describing how to add twomatrices together. To start off, take
a wild stab: what do you think the following sum is equal to?[

1 2
3 4

]
+

[
2 −1
5 7

]
= ?

If you guessed [
3 1
8 11

]
,

you guessed correctly. That wasn’t so hard, was it?
Let’s keep going, hoping that we are starƟng to get on a roll. Make another wild

guess: what do you think the following expression is equal to?

3 ·
[
1 2
3 4

]
= ?

If you guessed [
3 6
9 12

]
,

you guessed correctly!
Even if you guessed wrong both Ɵmes, you probably have seen enough in these

two examples to have a fair idea now what matrix addiƟon and scalar mulƟplicaƟon
are all about.

Before we formally define how to perform the above operaƟons, let us first recall
that if A is anm× nmatrix, then we can write A as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .
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2.1 Matrix AddiƟon and Scalar MulƟplicaƟon

Secondly, we should define what we mean by the word scalar. A scalar is any number
that we mulƟply a matrix by. (In some sense, we use that number to scale the matrix.)
We are now ready to define our first arithmeƟc operaƟons.

..
DefiniƟon 9

.

.
Matrix AddiƟon

Let A and B bem×nmatrices. The sum of A and B, denoted
A+ B, is

a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn

 .

..
DefiniƟon 10

.

.
Scalar MulƟplicaƟon

Let A be an m × n matrix and let k be a scalar. The scalar
mulƟplicaƟon of k and A, denoted kA, is

ka11 ka12 · · · ka1n
ka21 ka22 · · · ka2n
...

...
. . .

...
kam1 kam2 · · · kamn

 .

We are now ready for an example.

.. Example 22 ..Let

A =

 1 2 3
−1 2 1
5 5 5

 , B =

 2 4 6
1 2 2
−1 0 4

 , C =

[
1 2 3
9 8 7

]
.

Simplify the following matrix expressions.

1. A+ B

2. B+ A

3. A− B

4. A+ C

5. −3A+ 2B

6. A− A

7. 5A+ 5B

8. 5(A+ B)

SÊ½çã®ÊÄ
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1. A+ B =

 3 6 9
0 4 3
4 5 9

.
2. B+ A =

 3 6 9
0 4 3
4 5 9

.
3. A− B =

−1 −2 −3
−2 0 −1
6 5 1

.
4. A + C is not defined. If we look at our definiƟon of matrix addiƟon, we see

that the two matrices need to be the same size. Since A and C have different
dimensions, we don’t even try to create something as an addiƟon; we simply
say that the sum is not defined.

5. −3A+ 2B =

 1 2 3
5 −2 1

−17 −15 −7

.
6. A− A =

 0 0 0
0 0 0
0 0 0

.
7. Strictly speaking, this is

 5 10 15
−5 10 5
25 25 25

+
 10 20 30

5 10 10
−5 0 20

 =

 15 30 45
0 20 15
20 25 45

.
8. Strictly speaking, this is

5

 1 2 3
−1 2 1
5 5 5

+

 2 4 6
1 2 2
−1 0 4

 = 5 ·

 3 6 9
0 4 3
4 5 9


=

 15 30 45
0 20 15
20 25 45

 .

...

Our example raised a few interesƟng points. NoƟce how A + B = B + A. We
probably aren’t suprised by this, since we know that when dealing with numbers, a+
b = b+ a. Also, noƟce that 5A+ 5B = 5(A+ B). In our example, we were careful to
compute each of these expressions following the proper order of operaƟons; knowing
these are equal allows us to compute similar expressions in the most convenient way.

Another interesƟng thing that came from our previous example is that

A− A =

 0 0 0
0 0 0
0 0 0

 .

48



2.1 Matrix AddiƟon and Scalar MulƟplicaƟon

It seems like this should be a special matrix; aŌer all, every entry is 0 and 0 is a special
number.

In fact, this is a special matrix. We define 0, which we read as “the zero matrix,”
to be the matrix of all zeros.1 We should be careful; this previous “definiƟon” is a bit

ambiguous, for we have not stated what size the zero matrix should be. Is
[
0 0
0 0

]
the zero matrix? How about

[
0 0

]
?

Let’s not get bogged down in semanƟcs. If we ever see 0 in an expression, we
will usually know right away what size 0 should be; it will be the size that allows the
expression to make sense. If A is a 3 × 5 matrix, and we write A + 0, we’ll simply
assume that 0 is also a 3 × 5 matrix. If we are ever in doubt, we can add a subscript;
for instance, 02×7 is the 2× 7 matrix of all zeros.

Since the zero matrix is an important concept, we give it it’s own definiƟon box.

..
DefiniƟon 11

.

.
The Zero Matrix

The m × n matrix of all zeros, denoted 0m×n, is the zero
matrix.

When the dimensions of the zero matrix are clear from the
context, the subscript is generally omiƩed.

The following presents some of the properƟes of matrix addiƟon and scalar mulƟ-
plicaƟon that we discovered above, plus a few more.

..
Theorem 2

.

.
ProperƟes of Matrix AddiƟon and Scalar MulƟplicaƟon

The following equaliƟes hold for allm× nmatrices A, B and
C and scalars k.

1. A+ B = B+ A (CommutaƟve Property)

2. (A+ B) + C = A+ (B+ C) (AssociaƟve Property)

3. k(A+B) = kA+ kB (Scalar MulƟplicaƟon DistribuƟve
Property)

4. kA = Ak

5. A+ 0 = 0+ A = A (AddiƟve IdenƟty)

6. 0A = 0

Be sure that this last property makes sense; it says that if we mulƟply any matrix

1We use the bold face to disƟnguish the zero matrix, 0, from the number zero, 0.
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by the number 0, the result is the zero matrix, or 0.
We began this secƟon with the concept of matrix equality. Let’s put our matrix

addiƟon properƟes to use and solve a matrix equaƟon.

.. Example 23 Let

A =

[
2 −1
3 6

]
.

Find the matrix X such that
2A+ 3X = −4A.

SÊ½çã®ÊÄ We can use basic algebra techniques to manipulate this equaƟon
for X; first, let’s subtract 2A from both sides. This gives us

3X = −6A.

Now divide both sides by 3 to get

X = −2A.

Now we just need to compute−2A; we find that

X =

[
−4 2
−6 −12

]
.

..

Our matrix properƟes idenƟfied 0 as the AddiƟve IdenƟty; i.e., if you add 0 to any
matrix A, you simply get A. This is similar in noƟon to the fact that for all numbers a,
a+ 0 = a. AMulƟplicaƟve IdenƟty would be a matrix I where I× A = A for all matri-
ces A. (What would such a matrix look like? A matrix of all 1s, perhaps?) However, in
order for this to make sense, we’ll need to learn to mulƟply matrices together, which
we’ll do in the next secƟon.

Exercises 2.1
Matrices A and B are given below. In Exer-
cises 1 – 6, simplify the given expression.

A =

[
1 −1
7 4

]
B =

[
−3 2
5 9

]

1. A+ B

2. 2A− 3B

3. 3A− A

4. 4B− 2A

5. 3(A− B) + B

6. 2(A− B)− (A− 3B)

Matrices A and B are given below. In Exer-
cises 7 – 10, simplify the given expression.

A =

[
3
5

]
B =

[
−2
4

]

7. 4B− 2A

8. −2A+ 3A
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9. −2A− 3A

10. −B+ 3B− 2B

Matrices A and B are given below. In Exer-
cises 11 – 14, find X that saƟsfies the equa-
Ɵon.

A =

[
3 −1
2 5

]
B =

[
1 7
3 −4

]

11. 2A+ X = B

12. A− X = 3B

13. 3A+ 2X = −1B

14. A− 1
2X = −B

In Exercises 15 – 21, find values for the scalars
a and b that saƟsfy the given equaƟon.

15. a
[
1
2

]
+ b

[
−1
5

]
=

[
1
9

]
16. a

[
−3
1

]
+ b

[
8
4

]
=

[
7
1

]
17. a

[
4
−2

]
+ b

[
−6
3

]
=

[
10
−5

]
18. a

[
1
1

]
+ b

[
−1
3

]
=

[
5
5

]
19. a

[
1
3

]
+ b

[
−3
−9

]
=

[
4

−12

]

20. a

 1
2
3

+ b

 1
1
2

 =

 0
−1
−1


21. a

 1
0
1

+ b

 5
1
2

 =

 3
4
7



2.2 Matrix MulƟplicaƟon

...AS YOU READ . . .

1. T/F: Column vectors are used more in this text than row vectors, although some
other texts do the opposite.

2. T/F: To mulƟply A× B, the number of rows of A and B need to be the same.

3. T/F: The entry in the 2nd row and 3rd column of the product AB comes from
mulƟpling the 2nd row of A with the 3rd column of B.

4. Name two properƟes of matrix mulƟplicaƟon that also hold for “regular mulƟ-
plicaƟon” of numbers.

5. Name a property of “regular mulƟplicaƟon” of numbers that does not hold for
matrix mulƟplicaƟon.

6. T/F: A3 = A · A · A

In the previous secƟon we found that the definiƟon of matrix addiƟon was very
intuiƟve, and we ended that secƟon discussing the fact that eventually we’d like to
know what it means to mulƟply matrices together.

In the spirit of the last secƟon, take another wild stab: what do you think[
1 2
3 4

]
×
[
1 −1
2 2

]
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means?
You are likely to have guessed [

1 −2
6 8

]
but this is, in fact, not right.2 The actual answer is[

5 3
11 5

]
.

If you can look at this one example and suddenly understand exactly how matrix mul-
ƟplicaƟon works, then you are probably smarter than the author. While matrix mulƟ-
plicaƟon isn’t hard, it isn’t nearly as intuiƟve as matrix addiƟon is.

To further muddy the waters (before we clear them), consider[
1 2
3 4

]
×
[
1 −1 0
2 2 −1

]
.

Our experience from the last secƟon would lend us to believe that this is not defined,
but our confidence is probably a bit shaken by now. In fact, this mulƟplicaƟon is de-
fined, and it is [

5 3 −2
11 5 −4

]
.

You may see some similarity in this answer to what we got before, but again, probably
not enough to really figure things out.

So let’s take a step back and progress slowly. The first thing we’d like to do is define
a special type of matrix called a vector.

..
DefiniƟon 12

.

.
Column and Row Vectors

Am× 1 matrix is called a column vector.

A 1× nmatrix is called a row vector.

While it isn’t obvious right now, column vectors are going to become far more use-
ful to us than row vectors. Therefore, we oŌen omit the word “column” when refering
to column vectors, and we just call them “vectors.”3

2I guess you could define mulƟplicaƟon this way. If you’d prefer this type of mulƟplicaƟon, write your
own book.

3In this text, row vectors are only used in this secƟon when we discuss matrix mulƟplicaƟon, whereas
we’ll make extensive use of column vectors. Other texts make great use of row vectors, but liƩle use of
column vectors. It is a maƩer of preference and tradiƟon: “most” texts use column vectors more.
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We have been using upper case leƩers to denote matrices; we use lower case let-
ters with an arrow overtop to denote row and column vectors. An example of a row
vector is

u⃗ =
[
1 2 −1 0

]
and an example of a column vector is

v⃗ =

 1
7
8

 .

Before we learn how to mulƟply matrices in general, we will learn what it means
to mulƟply a row vector by a column vector.

..
DefiniƟon 13

.

.
MulƟplying a row vector by a column vector

Let u⃗ be an 1× n row vector with entries u1, u2, · · · , un and
let v⃗ be an n × 1 column vector with entries v1, v2, · · · , vn.
The product of u⃗ and v⃗, denoted u⃗ · v⃗ or u⃗⃗v, is

n∑
i=1

uivi = u1v1 + u2v2 + · · ·+ unvn.

Don’t worry if this definiƟon doesn’t make immediate sense. It is really an easy
concept; an example will make things more clear.

.. Example 24 ..Let

u⃗ =
[
1 2 3

]
, v⃗ =

[
2 0 1 −1

]
, x⃗ =

−2
4
3

 , y⃗ =


1
2
5
0

 .

Find the following products.

1. u⃗⃗x

2. v⃗⃗y

3. u⃗⃗y

4. u⃗⃗v
5. x⃗u⃗

SÊ½çã®ÊÄ

1. u⃗⃗x =
[
1 2 3

] −2
4
3

 = 1(−2) + 2(4) + 3(3) = 15
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2. v⃗⃗y =
[
2 0 1 −1

] 
1
2
5
0

 = 2(1) + 0(2) + 1(5)− 1(0) = 7

3. u⃗⃗y is not defined; DefiniƟon 13 specifies that in order to mulƟply a row vector
and column vector, they must have the same number of entries.

4. u⃗⃗v is not defined; we only know how to mulƟpy row vectors by column vec-
tors. We haven’t defined how to mulƟply two row vectors (in general, it can’t
be done).

5. The product x⃗u⃗ is defined, but we don’t know how to do it yet. Right now, we
only know how to mulƟply a row vector Ɵmes a column vector; we don’t know
how to mulƟply a column vector Ɵmes a row vector. (That’s right: u⃗⃗x ̸= x⃗u⃗!)...

Now that we understand how to mulƟply a row vector by a column vector, we are
ready to define matrix mulƟplicaƟon.

..
DefiniƟon 14

.

.
Matrix MulƟplicaƟon

Let A be an m × r matrix, and let B be an r × n matrix. The
matrix product of A and B, denoted A ·B, or simply AB, is the
m× nmatrixM whose entry in the ith row and jth column is
the product of the ith row of A and the jth column of B.

It may help to illustrate it in this way. Let matrix A have rows a⃗1, a⃗2, · · · , a⃗m and let
B have columns b⃗1, b⃗2, · · · , b⃗n. Thus A looks like

− a⃗1 −
− a⃗2 −

...
− a⃗m −


where the “−” symbols just serve as reminders that the a⃗i represent rows, and B looks
like  | | |

b⃗1 b⃗2 · · · b⃗n
| | |


where again, the “|” symbols just remind us that the b⃗i represent column vectors. Then

AB =


a⃗1b⃗1 a⃗1b⃗2 · · · a⃗1b⃗n
a⃗2b⃗1 a⃗2b⃗2 · · · a⃗2b⃗n
...

...
. . .

...
a⃗mb⃗1 a⃗mb⃗2 · · · a⃗mb⃗n

 .
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Two quick notes about this definiƟon. First, noƟce that in order tomulƟply A and B,
the number of columns of Amust be the same as the number of rows of B (we refer to
these as the “inner dimensions”). Secondly, the resulƟngmatrix has the same number
of rows as A and the same number of columns as B (we refer to these as the “outer
dimensions”).

final dimensions are the outer

dimensions︷ ︸︸ ︷
(m× r)× (r︸ ︷︷ ︸
these inner dimensions

must match

× n)

Of course, this will make much more sense when we see an example.

.. Example 25 ..Revisit the matrix product we saw at the beginning of this secƟon;
mulƟply [

1 2
3 4

] [
1 −1 0
2 2 −1

]
.

SÊ½çã®ÊÄ Let’s call our first matrix A and the second B. We should first check
to see that we can actually perform this mulƟplicaƟon. Matrix A is 2 × 2 and B is
2× 3. The “inner” dimensions match up, so we can compute the product; the “outer”
dimensions tell us that the product will be 2× 3. Let

AB =

[
m11 m12 m13

m21 m22 m23

]
.

Let’s find the value of each of the entries.
The entry m11 is in the first row and first column; therefore to find its value, we

need to mulƟply the first row of A by the first column of B. Thus

m11 =
[
1 2

] [ 1
2

]
= 1(1) + 2(2) = 5.

So now we know that

AB =

[
5 m12 m13

m21 m22 m23

]
.

Finishing out the first row, we have

m12 =
[
1 2

] [−1
2

]
= 1(−1) + 2(2) = 3

using the first row of A and the second column of B, and

m13 =
[
1 2

] [ 0
−1

]
= 1(0) + 2(−1) = −2
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using the first row of A and the third column of B. Thus we have

AB =

[
5 3 −2

m21 m22 m23

]
.

To compute the second row of AB, we mulƟply with the second row of A. We find

m21 =
[
3 4

] [ 1
2

]
= 11,

m22 =
[
3 4

] [−1
2

]
= 5,

and

m23 =
[
3 4

] [ 0
−1

]
= −4.

Thus

AB =

[
1 2
3 4

] [
1 −1 0
2 2 −1

]
=

[
5 3 −2
11 5 −4

]
.

...

.. Example 26 ..MulƟply 1 −1
5 2
−2 3

[
1 1 1 1
2 6 7 9

]
.

SÊ½çã®ÊÄ Let’s first check to make sure this product is defined. Again calling
the first matrix A and the second B, we see that A is a 3 × 2 matrix and B is a 2 × 4
matrix; the inner dimensions match so the product is defined, and the product will be
a 3× 4 matrix,

AB =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

 .

We will demonstrate how to compute some of the entries, then give the final an-
swer. The reader can fill in the details of how each entry was computed.

m11 =
[
1 −1

] [ 1
2

]
= −1.

m13 =
[
1 −1

] [ 1
7

]
= −6.

m23 =
[
5 2

] [ 1
7

]
= 19.

m24 =
[
5 2

] [ 1
9

]
= 23.
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m32 =
[
−2 3

] [ 1
6

]
= 16.

m34 =
[
−2 3

] [ 1
9

]
= 25.

So far, we’ve computed this much of AB:

AB =

 −1 m12 −6 m14

m21 m22 19 23
m31 16 m33 25

 .

The final product is

AB =

−1 −5 −6 −8
9 17 19 23
4 16 19 25

 .

...

.. Example 27 MulƟply, if possible,[
2 3 4
9 8 7

] [
3 6
5 −1

]
.

SÊ½çã®ÊÄ Again, we’ll call the first matrix A and the second B. Checking the
dimensions of each matrix, we see that A is a 2×3 matrix, whereas B is a 2×2 matrix.
The inner dimensions do not match, therefore this mulƟplicaƟon is not defined. ..

.. Example 28 ..In Example 24, we were told that the product x⃗u⃗ was defined,
where

x⃗ =

−2
4
3

 and u⃗ =
[
1 2 3

]
,

although we were not shown what that product was. Find x⃗u⃗.

SÊ½çã®ÊÄ Again, we need to check to make sure the dimensions work cor-
rectly (remember that even though we are referring to u⃗ and x⃗ as vectors, they are, in
fact, just matrices).

The column vector x⃗ has dimensions 3 × 1, whereas the row vector u⃗ has dimen-
sions 1 × 3. Since the inner dimensions do match, the matrix product is defined; the
outer dimensions tell us that the product will be a 3× 3 matrix, as shown below:

x⃗u⃗ =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 .

To compute the entry m11, we mulƟply the first row of x⃗ by the first column of u⃗.
What is the first row of x⃗? Simply the number−2. What is the first column of u⃗? Just
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the number 1. Thus m11 = −2. (This does seem odd, but through checking, you can
see that we are indeed following the rules.)

What about the entrym12? Again, wemulƟply the first row of x⃗ by the first column
of u⃗; that is, we mulƟply−2(2). Som12 = −4.

What about m23? MulƟply the second row of x⃗ by the third column of u⃗; mulƟply
4(3), som23 = 12.

One final example: m31 comes from mulƟplying the third row of x⃗, which is 3, by
the first column of u⃗, which is 1. Thereforem31 = 3.

So far we have computed

x⃗u⃗ =

 −2 −4 m13

m21 m22 12
3 m32 m33

 .

AŌer performing all 9 mulƟplicaƟons, we find

x⃗u⃗ =

−2 −4 −6
4 8 12
3 6 9

 .

...

In this last example, we saw a “nonstandard” mulƟplicaƟon (at least, it felt non-
standard). Studying the entries of this matrix, it seems that there are several different
paƩerns that can be seen amongst the entries. (Remember that mathemaƟcians like
to look for paƩerns. Also remember that we oŌen guess wrong at first; don’t be scared
and try to idenƟfy some paƩerns.)

In SecƟon 2.1, we idenƟfied the zeromatrix 0 that had a nice property in relaƟon to
matrix addiƟon (i.e., A+0 = A for anymatrixA). In the following examplewe’ll idenƟfy
a matrix that works well with mulƟplicaƟon as well as some mulƟplicaƟve properƟes.
For instance, we’ve learned how 1 · A = A; is there amatrix that acts like the number
1? That is, can we find a matrix X where X · A = A?4

.. Example 29 ..Let

A =

 1 2 3
2 −7 5
−2 −8 3

 , B =

 1 1 1
1 1 1
1 1 1



C =

 1 0 2
2 1 0
0 2 1

 , I =

 1 0 0
0 1 0
0 0 1

 .

Find the following products.

1. AB

2. BA

3. A03×4

4. AI

5. IA

6. I2

7. BC

8. B2

4We made a guess in SecƟon 2.1 that maybe a matrix of all 1s would work.
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SÊ½çã®ÊÄ We will find each product, but we leave the details of each computa-
Ɵon to the reader.

1. AB =

 1 2 3
2 −7 5
−2 −8 3

 1 1 1
1 1 1
1 1 1

 =

 6 6 6
0 0 0
−7 −7 −7



2. BA =

 1 1 1
1 1 1
1 1 1

 1 2 3
2 −7 5
−2 −8 3

 =

 1 −13 11
1 −13 11
1 −13 11


3. A03×4 = 03×4.

4. AI =

 1 2 3
2 −7 5
−2 −8 3

 1 0 0
0 1 0
0 0 1

 =

 1 2 3
2 −7 5
−2 −8 3



5. IA =

 1 0 0
0 1 0
0 0 1

 1 2 3
2 −7 5
−2 −8 3

 =

 1 2 3
2 −7 5
−2 −8 3


6. We haven’t formally defined what I2 means, but we could probably make the

reasonable guess that I2 = I · I. Thus

I2 =

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 =

 1 0 0
0 1 0
0 0 1



7. BC =

 1 1 1
1 1 1
1 1 1

 1 0 2
2 1 0
0 2 1

 =

 3 3 3
3 3 3
3 3 3



8. B2 = BB =

 1 1 1
1 1 1
1 1 1

 1 1 1
1 1 1
1 1 1

 =

 3 3 3
3 3 3
3 3 3


...

This example is simply chock full of interesƟng ideas; it is almost hard to think about
where to start.

InteresƟng Idea #1: NoƟce that in our example, AB ̸= BA! When dealing with
numbers, we were used to the idea that ab = ba. With matrices, mulƟplicaƟon is
not commutaƟve. (Of course, we can find special situaƟons where it does work. In
general, though, it doesn’t.)

InteresƟng Idea #2: Right before this example we wondered if there was a matrix
that “acted like the number 1,” and guessed it may be a matrix of all 1s. However,
we found out that such a matrix does not work in that way; in our example, AB ̸= A.
We did find that AI = IA = A. There is a MulƟplicaƟve IdenƟty; it just isn’t what we
thought it would be. And just as 12 = 1, I2 = I.

InteresƟng Idea #3: When dealing with numbers, we are very familiar with the
noƟon that “If ax = bx, then a = b.” (As long as x ̸= 0.) NoƟce that, in our example,
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BB = BC, yet B ̸= C. In general, just becauseAX = BX, we cannot conclude thatA = B.

Matrix mulƟplicaƟon is turning out to be a very strange operaƟon. We are very
used tomulƟplying numbers, andwe know a bunch of properƟes that hold when using
this type of mulƟplicaƟon. When mulƟplying matrices, though, we probably find our-
selves asking two quesƟons, “What does work?” and “What doesn’t work?” We’ll an-
swer these quesƟons; first we’ll do an example that demonstrates some of the things
that do work.

.. Example 30 ..Let

A =

[
1 2
3 4

]
, B =

[
1 1
1 −1

]
and C =

[
2 1
1 2

]
.

Find the following:

1. A(B+ C)

2. AB+ AC

3. A(BC)

4. (AB)C

SÊ½çã®ÊÄ We’ll compute each of these without showing all the intermediate
steps. Keep in mind order of operaƟons: things that appear inside of parentheses
are computed first.

1.

A(B+ C) =
[
1 2
3 4

]([
1 1
1 −1

]
+

[
2 1
1 2

])
=

[
1 2
3 4

] [
3 2
2 1

]
=

[
7 4
17 10

]

2.

AB+ AC =

[
1 2
3 4

] [
1 1
1 −1

]
+

[
1 2
3 4

] [
2 1
1 2

]
=

[
3 −1
7 −1

]
+

[
4 5
10 11

]
=

[
7 4
17 10

]
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3.

A(BC) =
[
1 2
3 4

]([
1 1
1 −1

] [
2 1
1 2

])
=

[
1 2
3 4

] [
3 3
1 −1

]
=

[
5 1
13 5

]

4.

(AB) C =

([
1 2
3 4

] [
1 1
1 −1

])[
2 1
1 2

]
=

[
3 −1
7 −1

] [
2 1
1 2

]
=

[
5 1
13 5

]
...

In looking at our example, we should noƟce two things. First, it looks like the “dis-
tribuƟve property” holds; that is, A(B+ C) = AB+ AC. This is nice as many algebraic
techniques we have learned about in the past (when doing “ordinary algebra”) will sƟll
work. Secondly, it looks like the “associaƟve property” holds; that is, A(BC) = (AB)C.
This is nice, for it tells us that when we are mulƟplying several matrices together, we
don’t have to be parƟcularly careful in what order wemulƟply certain pairs of matrices
together.5

In leading to an important theorem, let’s define a matrix we saw in an earlier ex-
ample.6

..
DefiniƟon 15

.

.
IdenƟty Matrix

The n × n matrix with 1’s on the diagonal and zeros else-
where is the n × n idenƟty matrix, denoted In. When the
context makes the dimension of the idenƟty clear, the sub-
script is generally omiƩed.

Note that while the zero matrix can come in all different shapes and sizes, the

5Be careful: in compuƟng ABC together, we can first mulƟply AB or BC, but we cannot change the order
in which these matrices appear. We cannot mulƟply BA or AC, for instance.

6The following definiƟon uses a termwewon’t define unƟl DefiniƟon 20 on page 123: diagonal. In short,
a “diagonal matrix” is one in which the only nonzero entries are the “diagonal entries.” The examples given
here and in the exercises should suffice unƟl we meet the full definiƟon later.
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idenƟty matrix is always a square matrix. We show a few idenƟty matrices below.

I2 =
[
1 0
0 1

]
, I3 =

 1 0 0
0 1 0
0 0 1

 , I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


In our examples above, we have seen examples of things that do and do not work.

We should be careful about what examples prove, though. If someone were to claim
that AB = BA is always true, one would only need to show them one example where
they were false, and we would know the person was wrong. However, if someone
claims that A(B + C) = AB + AC is always true, we can’t prove this with just one
example. We need something more powerful; we need a true proof.

In this text, we forgo most proofs. The reader should know, though, that when
we state something in a theorem, there is a proof that backs up what we state. Our
jusƟficaƟon comes from something stronger than just examples.

Now we give the good news of what does work when dealing with matrix mulƟpli-
caƟon.

..
Theorem 3

.

.
ProperƟes of Matrix MulƟplicaƟon

Let A, B and C be matrices with dimensions so that the fol-
lowing operaƟons make sense, and let k be a scalar. The
following equaliƟes hold:

1. A(BC) = (AB)C (AssociaƟve Property)

2. A(B+ C) = AB+ AB and

(B+ C)A = BA+ CA (DistribuƟve Property)

3. k(AB) = (kA)B = A(kB)

4. AI = IA = A

The above box contains some very good news, and probably some very surprising
news. Matrix mulƟplicaƟon probably seems to us like a very odd operaƟon, so we
probably wouldn’t have been surprised if we were told that A(BC) ̸= (AB)C. It is a
very nice thing that the AssociaƟve Property does hold.

As we near the end of this secƟon, we raise one more issue of notaƟon. We define
A0 = I. If n is a posiƟve integer, we define

An = A · A · · · · · A︸ ︷︷ ︸
n Ɵmes

.

With numbers, we are used to a−n = 1
an . Do negaƟve exponents work with matri-

ces, too? The answer is yes, sort of. We’ll have to be careful, and we’ll cover the topic
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in detail once we define the inverse of a matrix. For now, though, we recognize the
fact that A−1 ̸= 1

A , for
1
A makes no sense; we don’t know how to “divide” by a matrix.

We end this secƟon with a reminder of some of the things that do not work with
matrix mulƟplicaƟon. The good news is that there are really only two things on this
list.

1. Matrix mulƟplicaƟon is not commutaƟve; that is, AB ̸= BA.

2. In general, just because AX = BX, we cannot conclude that A = B.

The bad news is that these ideas pop up in many places where we don’t expect them.
For instance, we are used to

(a+ b)2 = a2 + 2ab+ b2.

What about (A+ B)2? All we’ll say here is that

(A+ B)2 ̸= A2 + 2AB+ B2;

we leave it to the reader to figure out why.
The next secƟon is devoted to visualizing column vectors and “seeing” how some

of these arithmeƟc properƟes work together.

Exercises 2.2
In Exercises 1 – 12, row and column vectors u⃗
and v⃗ are defined. Find the product u⃗⃗v, where
possible.

1. u⃗ =
[
1 −4

]
v⃗ =

[
−2
5

]
2. u⃗ =

[
2 3

]
v⃗ =

[
7
−4

]
3. u⃗ =

[
1 −1

]
v⃗ =

[
3
3

]
4. u⃗ =

[
0.6 0.8

]
v⃗ =

[
0.6
0.8

]

5. u⃗ =
[
1 2 −1

]
v⃗ =

 2
1
−1


6. u⃗ =

[
3 2 −2

]
v⃗ =

−1
0
9


7. u⃗ =

[
8 −4 3

]
v⃗ =

 2
4
5



8. u⃗ =
[
−3 6 1

]
v⃗ =

 1
−1
1


9. u⃗ =

[
1 2 3 4

]
v⃗ =


1
−1
1
−1


10. u⃗ =

[
6 2 −1 2

]
v⃗ =


3
2
9
5


11. u⃗ =

[
1 2 3

]
v⃗ =

[
3
2

]

12. u⃗ =
[
2 −5

]
v⃗ =

 1
1
1


In Exercises 13 – 27, matrices A and B are de-
fined.
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(a) Give the dimensions of A and B. If the
dimensions properly match, give the
dimensions of AB and BA.

(b) Find the products AB and BA, if possi-
ble.

13. A =

[
1 2
−1 4

]
B =

[
2 5
3 −1

]

14. A =

[
3 7
2 5

]
B =

[
1 −1
3 −3

]

15. A =

[
3 −1
2 2

]
B =

[
1 0 7
4 2 9

]

16. A =

 0 1
1 −1
−2 −4


B =

[
−2 0
3 8

]

17. A =

[
9 4 3
9 −5 9

]
B =

[
−2 5
−2 −1

]

18. A =

−2 −1
9 −5
3 −1


B =

[
−5 6 −4
0 6 −3

]

19. A =

 2 6
6 2
5 −1


B =

[
−4 5 0
−4 4 −4

]

20. A =

−5 2
−5 −2
−5 −4


B =

[
0 −5 6
−5 −3 −1

]

21. A =

 8 −2
4 5
2 −5


B =

[
−5 1 −5
8 3 −2

]

22. A =

[
1 4
7 6

]
B =

[
1 −1 −5 5
−2 1 3 −5

]

23. A =

[
−1 5
6 7

]
B =

[
5 −3 −4 −4
−2 −5 −5 −1

]

24. A =

−1 2 1
−1 2 −1
0 0 −2


B =

 0 0 −2
1 2 −1
1 0 0



25. A =

−1 1 1
−1 −1 −2
1 1 −2


B =

−2 −2 −2
0 −2 0
−2 0 2



26. A =

−4 3 3
−5 −1 −5
−5 0 −1


B =

 0 5 0
−5 −4 3
5 −4 3



27. A =

−4 −1 3
2 −3 5
1 5 3


B =

−2 4 3
−1 1 −1
4 0 2


In Exercises 28 – 33, a diagonalmatrixD and a
matrix A are given. Find the products DA and
AD, where possible.

28. D =

[
3 0
0 −1

]
A =

[
2 4
6 8

]

29. D =

[
4 0
0 −3

]
A =

[
1 2
1 2

]
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30. D =

−1 0 0
0 2 0
0 0 3


A =

 1 2 3
4 5 6
7 8 9


31. D =

 1 1 1
2 2 2
−3 −3 −3


A =

 2 0 0
0 −3 0
0 0 5


32. D =

[
d1 0
0 d2

]
A =

[
a b
c d

]

33. D =

 d1 0 0
0 d2 0
0 0 d3


A =

 a b c
d e f
g h i


In Exercises 34 – 39, a matrix A and a vector x⃗
are given. Find the product A⃗x.

34. A =

[
2 3
1 −1

]
, x⃗ =

[
4
9

]
35. A =

[
−1 4
7 3

]
, x⃗ =

[
2
−1

]

36. A =

 2 0 3
1 1 1
3 −1 2

, x⃗ =

 1
4
2


37. A =

−2 0 3
1 1 −2
4 2 −1

, x⃗ =

 4
3
1


38. A =

[
2 −1
4 3

]
, x⃗ =

[
x1
x2

]

39. A =

 1 2 3
1 0 2
2 3 1

, x⃗ =

 x1
x2
x3


40. Let A =

[
0 1
1 0

]
. Find A2 and A3.

41. Let A =

[
2 0
0 3

]
. Find A2 and A3.

42. Let A =

−1 0 0
0 3 0
0 0 5

. Find A2 and

A3.

43. Let A =

 0 1 0
0 0 1
1 0 0

. Find A2 and A3.

44. Let A =

 0 0 1
0 0 0
0 1 0

. Find A2 and A3.

45. In the text we state that (A + B)2 ̸=
A2+2AB+B2. We invesƟgate that claim
here.

(a) Let A =

[
5 3
−3 −2

]
and let B =[

−5 −5
−2 1

]
. Compute A+ B.

(b) Find (A + B)2 by using your an-
swer from (a).

(c) Compute A2 + 2AB+ B2.

(d) Are the results from (a) and (b)
the same?

(e) Carefully expand the expression
(A + B)2 = (A + B)(A + B)
and show why this is not equal to
A2 + 2AB+ B2.
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2.3 Visualizing Matrix ArithmeƟc in 2D

...AS YOU READ . . .

1. T/F: Two vectors with the same length and direcƟon are equal even if they start
from different places.

2. One can visualize vector addiƟon using what law?

3. T/F: MulƟplying a vector by 2 doubles its length.

4. What do mathemaƟcians do?

5. T/F: MulƟplying a vector by a matrix always changes its length and direcƟon.

When we first learned about adding numbers together, it was useful to picture a
number line: 2+ 3 = 5 could be pictured by starƟng at 0, going out 2 Ɵck marks, then
another 3, and then realizing that wemoved 5 Ɵckmarks from 0. Similar visualizaƟons
helped us understand what 2− 3 meant and what 2× 3 meant.

We now invesƟgate a way to picture matrix arithmeƟc – in parƟcular, operaƟons
involving column vectors. This not only will help us beƩer understand the arithmeƟc
operaƟons, it will open the door to a great wealth of interesƟng study. Visualizing
matrix arithmeƟc has awide variety of applicaƟons, themost commonbeing computer
graphics. While we oŌen think of these graphics in terms of video games, there are
numerous other important applicaƟons. For example, chemists and biologists oŌen
use computermodels to “visualize” complexmolecules to “see” how they interactwith
other molecules.

We will start with vectors in two dimensions (2D) – that is, vectors with only two
entries. We assume the reader is familiar with the Cartesian plane, that is, ploƫng
points and graphing funcƟons on “the x–y plane.” We graph vectors in a manner very
similar to ploƫng points. Given the vector

x⃗ =

[
1
2

]
,

we draw x⃗ by drawing an arrow whose Ɵp is 1 unit to the right and 2 units up from its
origin.7

..
1

.
1

..Figure 2.1: Various drawings of x⃗

7To help reduce cluƩer, in all figures each Ɵck mark represents one unit.66
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When drawing vectors, we do not specify where you start drawing; all we specify
is where the Ɵp lies based on where we started. Figure 2.1 shows vector x⃗ drawn 3
ways. In some ways, the “most common” way to draw a vector has the arrow start at
the origin,but this is by no means the only way of drawing the vector.

Let’s pracƟce this concept by drawing various vectors from given starƟng points.

.. Example 31 Let

x⃗ =

[
1
−1

]
y⃗ =

[
2
3

]
and z⃗ =

[
−3
2

]
.

Draw x⃗ starƟng from the point (0,−1); draw y⃗ starƟng from the point (−1,−1), and
draw z⃗ starƟng from the point (2,−1).

SÊ½çã®ÊÄ To draw x⃗, start at the point (0,−1) as directed, then move to the
right one unit and down one unit and draw the Ɵp. Thus the arrow “points” from
(0,−1) to (1,−2).

To draw y⃗, we are told to start and the point (−1,−1). We draw the Ɵp by moving
to the right 2 units and up 3 units; hence y⃗ points from (−1,−1) to (1,2).

To draw z⃗, we start at (2,−1) and draw the Ɵp 3 units to the leŌ and 2 units up; z⃗
points from (2,−1) to (−1, 1).

Each vector is drawn as shown in Figure 2.2.

..
2

.
1
.

x⃗

.

y⃗

.

z⃗

..Figure 2.2: Drawing vectors x⃗, y⃗ and z⃗ in Example 31..

How does one draw the zero vector, 0⃗ =

[
0
0

]
?8 Following our basic procedure,

we start by going 0 units in the x direcƟon, followed by 0 units in the y direcƟon. In
other words, we don’t go anywhere. In general, we don’t actually draw 0⃗. At best,
one can draw a dark circle at the origin to convey the idea that 0⃗, when starƟng at the
origin, points to the origin.

In secƟon 2.1 we learned about matrix arithmeƟc operaƟons: matrix addiƟon and
scalar mulƟplicaƟon. Let’s invesƟgate how we can “draw” these operaƟons.

8Vectors are just special types of matrices. The zero vector, 0⃗, is a special type of zero matrix, 0. It helps
to disƟnguish the two by using different notaƟon.
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Vector AddiƟon

Given two vectors x⃗ and y⃗, how do we draw the vector x⃗ + y⃗? Let’s look at this in
the context of an example, then study the result.

.. Example 32 Let

x⃗ =

[
1
1

]
and y⃗ =

[
3
1

]
.

Sketch x⃗, y⃗ and x⃗ + y⃗.

SÊ½çã®ÊÄ A starƟng point for drawing each vector was not given; by default,

we’ll start at the origin. (This is in many ways nice; this means that the vector
[
3
1

]
“points” to the point (3,1).) We first compute x⃗ + y⃗:

x⃗ + y⃗ =
[
1
1

]
+

[
3
1

]
=

[
4
2

]
Sketching each gives the picture in Figure 2.3.

..
1

.

1

.

x⃗

.
y⃗

.

x⃗ + y⃗

..Figure 2.3: Adding vectors x⃗ and y⃗ in Example 32
..

This example is preƩy basic; wewere given two vectors, told to add them together,
then sketch all three vectors. Our job now is to go back and try to see a relaƟonship
between the drawings of x⃗, y⃗ and x⃗ + y⃗. Do you see any?

Here is one way of interpreƟng the adding of x⃗ to y⃗. Regardless of where we start,
we draw x⃗. Now, from the Ɵp of x⃗, draw y⃗. The vector x⃗ + y⃗ is the vector found
by drawing an arrow from the origin of x⃗ to the Ɵp of y⃗. Likewise, we could start by
drawing y⃗. Then, starƟng from the Ɵp of y⃗, we can draw x⃗. Finally, draw x⃗ + y⃗ by
drawing the vector that starts at the origin of y⃗ and ends at the Ɵp of x⃗.

The picture in Figure 2.4 illustrates this. The gray vectors demonstrate drawing the
second vector from the Ɵp of the first; we draw the vector x⃗ + y⃗ dashed to set it apart
from the rest. We also lightly filled the parallelogram whose opposing sides are the
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2.3 Visualizing Matrix ArithmeƟc in 2D

vectors x⃗ and y⃗. This highlights what is known as the Parallelogram Law.

..
1

.

1

.

x⃗

. y⃗.

x⃗

.

y⃗

.

x⃗ + y⃗

..Figure 2.4: Adding vectors graphically using the Parallelogram Law

..
Key Idea 5

.

.
Parallelogram Law

To draw the vector x⃗ + y⃗, one can draw the parallelogram
with x⃗ and y⃗ as its sides. The vector that points from the
vertex where x⃗ and y⃗ originate to the vertex where x⃗ and y⃗
meet is the vector x⃗ + y⃗.

Knowing all of this allows us to draw the sum of two vectors without knowing
specifically what the vectors are, as we demonstrate in the following example.

.. Example 33 Consider the vectors x⃗ and y⃗ as drawn in Figure 2.5. Sketch the
vector x⃗ + y⃗.

SÊ½çã®ÊÄ

..

x⃗

.

y⃗

..Figure 2.5: Vectors x⃗ and y⃗ in Example 33

We’ll apply the Parallelogram Law, as given in Key Idea 5. As before, we draw x⃗+ y⃗
dashed to set it apart. The result is given in Figure 2.6.

..

x⃗

.

y⃗

.

x⃗ + y⃗

..Figure 2.6: Vectors x⃗, y⃗ and x⃗ + y⃗ in Example 33

.. 69



Chapter 2 Matrix ArithmeƟc

Scalar MulƟplicaƟon

AŌer learning about matrix addiƟon, we learned about scalar mulƟplicaƟon. We
apply that concept now to vectors and see how this is represented graphically.

.. Example 34 Let

x⃗ =

[
1
1

]
and y⃗ =

[
−2
1

]
.

Sketch x⃗, y⃗, 3⃗x and−1⃗y.

SÊ½çã®ÊÄ We begin by compuƟng 3⃗x and−y⃗:

3⃗x =

[
3
3

]
and − y⃗ =

[
2
−1

]
.

All four vectors are sketched in Figure 2.7.

..
1

.

1

.

3⃗x

.

x⃗

.

y⃗

.

−y⃗

..Figure 2.7: Vectors x⃗, y⃗, 3⃗x and −y⃗ in Example 34..

As we oŌen do, let us look at the previous example and seewhat we can learn from
it. We can see that x⃗ and 3⃗x point in the same direcƟon (they lie on the same line), but
3⃗x is just longer than x⃗. (In fact, it looks like 3⃗x is 3 Ɵmes longer than x⃗. Is it? How do
we measure length?)

We also see that y⃗ and−y⃗ seem to have the same length and lie on the same line,
but point in the opposite direcƟon.

A vector inherently conveys two pieces of informaƟon: length and direcƟon. Mul-
Ɵplying a vector by a posiƟve scalar c stretches the vectors by a factor of c; mulƟplying
by a negaƟve scalar c both stretches the vector and makes it point in the opposite
direcƟon.

Knowing this, we can sketch scalar mulƟples of vectors without knowing specifi-
cally what they are, as we do in the following example.

.. Example 35 ..Let vectors x⃗ and y⃗ be as in Figure 2.8. Draw 3⃗x,−2⃗x, and 1
2 y⃗.
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2.3 Visualizing Matrix ArithmeƟc in 2D

..
x⃗

.

y⃗

..Figure 2.8: Vectors x⃗ and y⃗ in Example 35

SÊ½çã®ÊÄ To draw 3⃗x, we draw a vector in the same direcƟon as x⃗, but 3 Ɵmes
as long. To draw −2⃗x, we draw a vector twice as long as x⃗ in the opposite direcƟon;
to draw 1

2 y⃗, we draw a vector half the length of y⃗ in the same direcƟon as y⃗. We again
use the default of drawing all the vectors starƟng at the origin. All of this is shown in
Figure 2.9.

.. x⃗.

y⃗

.

3⃗x

.

−2⃗x

.

1
2 y⃗

..Figure 2.9: Vectors x⃗, y⃗, 3⃗x, −2x and 1
2 x⃗ in Example 35

...

Vector SubtracƟon

The final basic operaƟon to consider between two vectors is that of vector sub-
tracƟon: given vectors x⃗ and y⃗, how do we draw x⃗ − y⃗?

If we know explicitly what x⃗ and y⃗ are, we can simply compute what x⃗ − y⃗ is and
then draw it. We can also think in terms of vector addiƟon and scalar mulƟplicaƟon:
we can add the vectors x⃗+(−1)⃗y. That is, we can draw x⃗ and draw−y⃗, then add them
as we did in Example 33. This is especially useful we don’t know explicitly what x⃗ and
y⃗ are.

.. Example 36 ..Let vectors x⃗ and y⃗ be as in Figure 2.10. Draw x⃗ − y⃗.

.. x⃗.

y⃗

..Figure 2.10: Vectors x⃗ and y⃗ in Example 36
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SÊ½çã®ÊÄ To draw x⃗ − y⃗, we will first draw−y⃗ and then apply the Parallelogram
Law to add x⃗ to−y⃗. See Figure 2.11.

.. x⃗.

y⃗

.

−y⃗

.

x⃗ − y⃗

..Figure 2.11: Vectors x⃗, y⃗ and x⃗ − y⃗ in Example 36...

In Figure 2.12, we redraw Figure 2.11 from Example 36 but remove the gray vectors
that tend to add cluƩer, andwe redraw the vector x⃗− y⃗ doƩed so that it starts from the
Ɵp of y⃗.9 Note that the doƩed version of x⃗ − y⃗ points from y⃗ to x⃗. This is a “shortcut”
to drawing x⃗ − y⃗; simply draw the vector that starts at the Ɵp of y⃗ and ends at the Ɵp
of x⃗. This is important so we make it a Key Idea.

..
x⃗

.

y⃗

.

-⃗y

.

x⃗ − y⃗

.

x⃗ − y⃗

..Figure 2.12: Redrawing vector x⃗ − y⃗

..
Key Idea 6

.

.
Vector SubtracƟon

To draw the vector x⃗− y⃗, draw x⃗ and y⃗ so that they have the
same origin. The vector x⃗ − y⃗ is the vector that starts from
the Ɵp of y⃗ and points to the Ɵp of x⃗.

Let’s pracƟce this once more with a quick example.

.. Example 37 ..Let x⃗ and y⃗ be as in Figure ?? (a). Draw x⃗ − y⃗.

SÊ½çã®ÊÄ We simply apply Key Idea 6: we draw an arrow from y⃗ to x⃗. We do
so in Figure 2.13; x⃗ − y⃗ is dashed.

9Remember that we can draw vectors starƟng from anywhere.72
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..

y⃗

.

x⃗

.

(a)

.

y⃗

.

x⃗

.

x⃗ − y⃗

.

(b)

..Figure 2.13: Vectors x⃗, y⃗ and x⃗ − y⃗ in Example 37
...

Vector Length

When we discussed scalar mulƟplicaƟon, we made reference to a fundamental
quesƟon: How do we measure the length of a vector? Basic geometry gives us an
answer in the two dimensional case that we are dealing with right now, and later we
can extend these ideas to higher dimensions.

Consider Figure 2.14. A vector x⃗ is drawn in black, and dashed and doƩed lines
have been drawn to make it the hypotenuse of a right triangle.

..
1

.
1
.

x⃗

..Figure 2.14: Measuring the length of a vector

It is easy to see that the dashed line has length 4 and the doƩed line has length 3.
We’ll let c denote the length of x⃗; according to the Pythagorean Theorem, 42+32 = c2.
Thus c2 = 25 and we quickly deduce that c = 5.

NoƟce that in our figure, x⃗ goes to the right 4 units and then up 3 units. In other
words, we can write

x⃗ =

[
4
3

]
.

We learned above that the length of x⃗ is
√

42 + 32.10 This hints at a basic calculaƟon
that works for all vectors x⃗, and we define the length of a vector according to this rule.

10Remember that
√

42 + 32 ̸= 4+ 3!
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..
DefiniƟon 16

.

.
Vector Length

Let

x⃗ =

[
x1
x2

]
.

The length of x⃗, denoted ||⃗x||, is

||⃗x|| =
√

x21 + x22.

.. Example 38 Find the length of each of the vectors given below.

x⃗1 =
[
1
1

]
x⃗2 =

[
2
−3

]
x⃗3 =

[
.6
.8

]
x⃗4 =

[
3
0

]

SÊ½çã®ÊÄ We apply DefiniƟon 16 to each vector.

||x⃗1|| =
√

12 + 12 =
√
2.

||x⃗2|| =
√

22 + (−3)2 =
√
13.

||x⃗3|| =
√
.62 + .82 =

√
.36+ .64 = 1.

||x⃗4|| =
√

32 + 0 = 3.
..

Now that we know how to compute the length of a vector, let’s revisit a statement
wemade aswe explored Examples 34 and 35: “MulƟplying a vector by a posiƟve scalar
c stretches the vectors by a factor of c . . .” At that Ɵme, we did not know how to mea-
sure the length of a vector, so our statementwas unfounded. In the following example,
we will confirm the truth of our previous statement.

.. Example 39 ..Let x⃗ =

[
2
−1

]
. Compute ||⃗x||, ||3⃗x||, || − 2⃗x||, and ||c⃗x||, where c

is a scalar.

SÊ½çã®ÊÄ We apply DefiniƟon 16 to each of the vectors.

||⃗x|| =
√
4+ 1 =

√
5.

Before compuƟng the length of ||3⃗x||, we note that 3⃗x =

[
6
−3

]
.

||3⃗x|| =
√
36+ 9 =

√
45 = 3

√
5 = 3||⃗x||.

74



2.3 Visualizing Matrix ArithmeƟc in 2D

Before compuƟng the length of || − 2⃗x||, we note that−2⃗x =

[
−4
2

]
.

|| − 2⃗x|| =
√
16+ 4 =

√
20 = 2

√
5 = 2||⃗x||.

Finally, to compute ||c⃗x||, we note that c⃗x =

[
2c
−c

]
. Thus:

||c⃗x|| =
√

(2c)2 + (−c)2 =
√
4c2 + c2 =

√
5c2 = |c|

√
5.

This last line is true because the square root of any number squared is the absolute
value of that number (for example,

√
(−3)2 = 3). ...

The last computaƟon of our example is the most important one. It shows that,
in general, mulƟplying a vector x⃗ by a scalar c stretches x⃗ by a factor of |c| (and the
direcƟon will change if c is negaƟve). This is important so we’ll make it a Theorem.

..
Theorem 4

.

.
Vector Length and Scalar MulƟplicaƟon

Let x⃗ be a vector and let c be a scalar. Then the length of c⃗x
is

||c⃗x|| = |c| · ||⃗x||.

Matrix− Vector MulƟplicaƟon

The last arithmeƟcoperaƟon to consider visualizing ismatrixmulƟplicaƟon. Specif-
ically, we want to visualize the result of mulƟplying a vector by a matrix. In order to
mulƟply a 2D vector by amatrix and get a 2D vector back, ourmatrix must be a square,
2× 2 matrix.11

We’ll start with an example. Given a matrix A and several vectors, we’ll graph the
vectors before and aŌer they’ve been mulƟplied by A and see what we learn.

.. Example 40 ..Let A be a matrix, and x⃗, y⃗, and z⃗ be vectors as given below.

A =

[
1 4
2 3

]
, x⃗ =

[
1
1

]
, y⃗ =

[
−1
1

]
, z⃗ =

[
3
−1

]

Graph x⃗, y⃗ and z⃗, as well as Ax⃗, A⃗y and A⃗z.

SÊ½çã®ÊÄ

11We can mulƟply a 3× 2 matrix by a 2D vector and get a 3D vector back, and this gives very interesƟng
results. See secƟon 5.2.
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.. x.

y

.
x⃗

.

y⃗

.

z⃗

.

Ax⃗

.
A⃗y

.

A⃗z

..Figure 2.15: MulƟplying vectors by a matrix in Example 40.

It is straighƞorward to compute:

Ax⃗ =

[
5
5

]
, A⃗y =

[
3
1

]
, and A⃗z =

[
−1
3

]
.

The vectors are sketched in Figure 2.15 ...

There are several things to noƟce. When each vector is mulƟplied by A, the result
is a vector with a different length (in this example, always longer), and in two of the
cases (for y⃗ and z⃗), the resulƟng vector points in a different direcƟon.

This isn’t surprising. In the previous secƟon we learned about matrix mulƟplica-
Ɵon, which is a strange and seemingly unpredictable operaƟon. Would you expect to
see some sort of immediately recognizable paƩern appear from mulƟplying a matrix
and a vector?12 In fact, the surprising thing from the example is that x⃗ and Ax⃗ point
in the same direcƟon! Why does the direcƟon of x⃗ not change aŌer mulƟplicaƟon by
A? (We’ll answer this in SecƟon 4.1 when we learn about something called “eigenvec-
tors.”)

Different matrices act on vectors in different ways.13 Some always increase the
length of a vector through mulƟplicaƟon, others always decrease the length, others
increase the length of some vectors and decrease the length of others, and others sƟll
don’t change the length at all. A similar statement can be made about how matrices
affect the direcƟon of vectors through mulƟplicaƟon: some change every vector’s di-
recƟon, some change “most” vector’s direcƟon but leave some the same, and others
sƟll don’t change the direcƟon of any vector.

How dowe set about studying howmatrixmulƟplicaƟon affects vectors? We could
just create lots of different matrices and lots of different vectors, mulƟply, then graph,
but this would be a lot of work with very liƩle useful result. It would be too hard to
find a paƩern of behavior in this.14

12This is a rhetorical quesƟon; the expected answer is “No.”
13That’s one reason we call them “different.”
14Remember, that’s what mathemaƟcians do. We look for paƩerns.
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Instead, we’ll begin by using a technique we’ve employed oŌen in the past. We
have a “new” operaƟon; let’s explore how it behaves with “old” operaƟons. Specifi-
cally, we know how to sketch vector addiƟon. What happens when we throw matrix
mulƟplicaƟon into the mix? Let’s try an example.

.. Example 41 ..Let A be a matrix and x⃗ and y⃗ be vectors as given below.

A =

[
1 1
1 2

]
, x⃗ =

[
2
1

]
, y⃗ =

[
−1
1

]
Sketch x⃗ + y⃗, Ax⃗, A⃗y, and A(⃗x + y⃗).

SÊ½çã®ÊÄ It is preƩy straighƞorward to compute:

x⃗ + y⃗ =
[
1
2

]
; Ax⃗ =

[
3
4

]
; A⃗y =

[
0
1

]
, A(⃗x + y⃗) =

[
3
5

]
.

In Figure 2.16, we have graphed the above vectors and have included dashed gray
vectors to highlight the addiƟve nature of x⃗+ y⃗ and A(⃗x+ y⃗). Does anything strike you
as interesƟng?

.. x.

y

.

x⃗

.

y⃗

.

x⃗ + y⃗

.

Ax⃗

.

A⃗y

.

A(⃗x + y⃗)

..Figure 2.16: Vector addiƟon and matrix mulƟplicaƟon in Example 41.

Let’s not focus on things which don’t maƩer right now: let’s not focus on how long
certain vectors became, nor necessarily how their direcƟon changed. Rather, think
about how matrix mulƟplicaƟon interacted with the vector addiƟon.

In some sense, we started with three vectors, x⃗, y⃗, and x⃗ + y⃗. This last vector is
special; it is the sum of the previous two. Now, mulƟply all three by A. What happens?
We get three new vectors, but the significant thing is this: the last vector is sƟll the
sum of the previous two! (We emphasize this by drawing doƩed vectors to represent
part of the Parallelogram Law.)
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Of course, we knew this already: we already knew that Ax⃗ + A⃗y = A(⃗x + y⃗), for
this is just the DistribuƟve Property. However, now we get to see this graphically. ...

In SecƟon 5.1 we’ll study in greater depth how matrix mulƟplicaƟon affects vec-
tors and the whole Cartesian plane. For now, we’ll seƩle for simple pracƟce: given a
matrix and some vectors, we’ll mulƟply and graph. Let’s do one more example.

.. Example 42 Let A, x⃗, y⃗, and z⃗ be as given below.

A =

[
1 −1
1 −1

]
, x⃗ =

[
1
1

]
, y⃗ =

[
−1
1

]
, z⃗ =

[
4
1

]
Graph x⃗, y⃗ and z⃗, as well as Ax⃗, A⃗y and A⃗z.

SÊ½çã®ÊÄ

.. x.

y

.
x⃗

.

y⃗

.

z⃗

.
Ax⃗
.

A⃗y

.

A⃗z

..Figure 2.17: MulƟplying vectors by a matrix in Example 42.

It is straighƞorward to compute:

Ax⃗ =

[
0
0

]
, A⃗y =

[
−2
−2

]
, and A⃗z =

[
3
3

]
.

The vectors are sketched in Figure 2.17.
These results are interesƟng. While we won’t explore them in great detail here,

noƟce how x⃗ got sent to the zero vector. NoƟce also that Ax⃗, A⃗y and A⃗z are all in a
line (as well as x⃗!). Why is that? Are x⃗, y⃗ and z⃗ just special vectors, or would any other
vector get sent to the same line when mulƟplied by A?15 ..

This secƟon has focused on vectors in two dimensions. Later on in this book, we’ll
extend these ideas into three dimensions (3D).

In the next secƟon we’ll take a new idea (matrix mulƟplicaƟon) and apply it to an
old idea (solving systems of linear equaƟons). This will allow us to view an old idea in
a new way – and we’ll even get to “visualize” it.

15Don’t just sit there, try it out!
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Exercises 2.3
In Exercises 1 – 4, vectors x⃗ and y⃗ are given.
Sketch x⃗, y⃗, x⃗+ y⃗, and x⃗− y⃗ on the same Carte-
sian axes.

1. x⃗ =

[
1
1

]
, y⃗ =

[
−2
3

]
2. x⃗ =

[
3
1

]
, y⃗ =

[
1
−2

]
3. x⃗ =

[
−1
1

]
, y⃗ =

[
−2
2

]
4. x⃗ =

[
2
0

]
, y⃗ =

[
1
3

]
In Exercises 5 – 8, vectors x⃗ and y⃗ are drawn.
Sketch 2⃗x, −y⃗, x⃗ + y⃗, and x⃗ − y⃗ on the same
Cartesian axes.

5.
..

1
.

1
.

x⃗

.

y⃗

6.
..

1
.

1
.

x⃗
.

y⃗

7.
..

1
.

1
.

x⃗

.

y⃗

8.
..

1
.

1
.

x⃗

.

y⃗

In Exercises 9 – 12, a vector x⃗ and a scalar
a are given. Using DefiniƟon 16, compute

the lengths of x⃗ and a⃗x, then compare these
lengths.

9. x⃗ =

[
2
1

]
, a = 3.

10. x⃗ =

[
4
7

]
, a = −2.

11. x⃗ =

[
−3
5

]
, a = −1.

12. x⃗ =

[
3
−9

]
, a = 1

3 .

13. Four pairs of vectors x⃗ and y⃗ are given
below. For each pair, compute ||⃗x||,
||⃗y||, and ||⃗x + y⃗||. Use this informaƟon
to answer: Is it always, someƟmes, or
never true that ||⃗x||+ ||⃗y|| = ||⃗x + y⃗||?
If it always or never true, explain why.
If it is someƟmes true, explain when it
is true.

(a) x⃗ =

[
1
1

]
, y⃗ =

[
2
3

]
(b) x⃗ =

[
1
−2

]
, y⃗ =

[
3
−6

]
(c) x⃗ =

[
−1
3

]
, y⃗ =

[
2
5

]
(d) x⃗ =

[
2
1

]
, y⃗ =

[
−4
−2

]
In Exercises 14 – 17, a matrix A is given.
Sketch x⃗, y⃗, A⃗x and A⃗y on the same Cartesian
axes, where

x⃗ =

[
1
1

]
and y⃗ =

[
−1
2

]
.

14. A =

[
1 −1
2 3

]
15. A =

[
2 0
−1 3

]
16. A =

[
1 1
1 1

]
17. A =

[
1 2
−1 −2

]
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2.4 Vector SoluƟons to Linear Systems

...AS YOU READ . . .

1. T/F: The equaƟon Ax⃗ = b⃗ is just another way of wriƟng a system of linear equa-
Ɵons.

2. T/F: In solving Ax⃗ = 0⃗, if there are 3 free variables, then the soluƟon will be
“pulled apart” into 3 vectors.

3. T/F: A homogeneous system of linear equaƟons is one in which all of the coeffi-
cients are 0.

4. Whether or not the equaƟon Ax⃗ = b⃗ has a soluƟon depends on an intrinsic
property of .

The first chapter of this text was spent finding soluƟons to systems of linear equa-
Ɵons. We have spent the first two secƟons of this chapter learning operaƟons that
can be performed with matrices. One may have wondered “Are the ideas of the first
chapter related to what we have been doing recently?” The answer is yes, these ideas
are related. This secƟon begins to show that relaƟonship.

We have oŌen hearkened back to previous algebra experience to help understand
matrix algebra concepts. We do that again here. Consider the equaƟon ax = b, where
a = 3 and b = 6. If we asked one to “solve for x,” what exactly would we be asking?
We would want to find a number, which we call x, where a Ɵmes x gives b; in this case,
it is a number, when mulƟplied by 3, returns 6.

Now we consider matrix algebra expressions. We’ll eventually consider solving
equaƟons like AX = B, where we know what the matrices A and B are and we want to
find the matrix X. For now, we’ll only consider equaƟons of the type Ax⃗ = b⃗, where
we know the matrix A and the vector b⃗. We will want to find what vector x⃗ saƟsfies
this equaƟon; we want to “solve for x⃗.”

To help understand what this is asking, we’ll consider an example. Let

A =

 1 1 1
1 −1 2
2 0 1

 , b⃗ =

 2
−3
1

 and x⃗ =

 x1
x2
x3

 .

(We don’t know what x⃗ is, so we have to represent it’s entries with the variables x1, x2
and x3.) Let’s “solve for x⃗,” given the equaƟon Ax⃗ = b⃗.

We can mulƟply out the leŌ hand side of this equaƟon. We find that

Ax⃗ =

 x1 + x2 + x3
x1 − x2 + 2x3

2x1 + x3

 .

Be sure to note that the product is just a vector; it has just one column.
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Since Ax⃗ is equal to b⃗, we have x1 + x2 + x3
x1 − x2 + 2x3

2x1 + x3

 =

 2
−3
1

 .

Knowing that two vectors are equal only when their corresponding entries are equal,
we know

x1 + x2 + x3 = 2

x1 − x2 + 2x3 = −3

2x1 + x3 = 1.

This should look familiar; it is a system of linear equaƟons! Given thematrix-vector
equaƟon Ax⃗ = b⃗, we can recognize A as the coefficient matrix from a linear system
and b⃗ as the vector of the constants from the linear system. To solve a matrix–vector
equaƟon (and the corresponding linear system), we simply augment the matrix Awith
the vector b⃗, put this matrix into reduced row echelon form, and interpret the results.

We convert the above linear system into an augmentedmatrix andfind the reduced
row echelon form: 1 1 1 2

1 −1 2 −3
2 0 1 1

 −→
rref

 1 0 0 1
0 1 0 2
0 0 1 −1

 .

This tells us that x1 = 1, x2 = 2 and x3 = −1, so

x⃗ =

 1
2
−1

 .

We should check our work; mulƟply out Ax⃗ and verify that we indeed get b⃗: 1 1 1
1 −1 2
2 0 1

 1
2
−1

 does equal

 2
−3
1

 .

We should pracƟce.

.. Example 43 ..Solve the equaƟon Ax⃗ = b⃗ for x⃗ where

A =

 1 2 3
−1 2 1
1 1 0

 and

 5
−1
2

 .

SÊ½çã®ÊÄ The soluƟon is rather straighƞorward, even though we did a lot of
work before to find the answer. Form the augmented matrix

[
A b⃗

]
and interpret its

reduced row echelon form. 1 2 3 5
−1 2 1 −1
1 1 0 2

 −→
rref

 1 0 0 2
0 1 0 0
0 0 1 1


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In previous secƟons we were fine staƟng that the result as

x1 = 2, x2 = 0, x3 = 1,

but we were asked to find x⃗; therefore, we state the soluƟon as

x⃗ =

 2
0
1

 .
...

This probably seems all well and good. While asking one to solve the equaƟon
Ax⃗ = b⃗ for x⃗ seems like a new problem, in reality it is just asking that we solve a
system of linear equaƟons. Our variables x1, etc., appear not individually but as the
entries of our vector x⃗. We are simply wriƟng an old problem in a new way.

In line with this new way of wriƟng the problem, we have a new way of wriƟng
the soluƟon. Instead of lisƟng, individually, the values of the unknowns, we simply list
them as the elements of our vector x⃗.

These are important ideas, so we state the basic principle once more: solving the
equaƟon Ax⃗ = b⃗ for x⃗ is the same thing as solving a linear system of equaƟons. Equiv-
alently, any system of linear equaƟons can be wriƩen in the form Ax⃗ = b⃗ for some
matrix A and vector b⃗.

Since these ideas are equivalent, we’ll refer to Ax⃗ = b⃗ both as a matrix–vector
equaƟon and as a system of linear equaƟons: they are the same thing.

We’ve seen two examples illustraƟng this idea so far, and in both cases the linear
system had exactly one soluƟon. We know from Theorem 1 that any linear system has
either one soluƟon, infinite soluƟons, or no soluƟon. So how does our newmethod of
wriƟng a soluƟon work with infinite soluƟons and no soluƟons?

Certainly, if Ax⃗ = b⃗ has no soluƟon, we simply say that the linear system has no
soluƟon. There isn’t anything special to write. So the only other opƟon to consider is
the case where we have infinite soluƟons. We’ll learn how to handle these situaƟons
through examples.

.. Example 44 ..Solve the linear system Ax⃗ = 0⃗ for x⃗ and write the soluƟon in
vector form, where

A =

[
1 2
2 4

]
and 0⃗ =

[
0
0

]
.

SÊ½çã®ÊÄ (Note: we didn’t really need to specify that

0⃗ =

[
0
0

]
,

but we did just to eliminate any uncertainty.)
To solve this system, put the augmented matrix into reduced row echelon form,

which we do below. [
1 2 0
2 4 0

]
−→
rref

[
1 2 0
0 0 0

]
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We interpret the reduced row echelon form of this matrix to write the soluƟon as

x1 = −2x2
x2 is free.

We are not done; we need to write the soluƟon in vector form, for our soluƟon is the
vector x⃗. Recall that

x⃗ =

[
x1
x2

]
.

From above we know that x1 = −2x2, so we replace the x1 in x⃗ with −2x2. This gives
our soluƟon as

x⃗ =

[
−2x2
x2

]
.

Now we pull the x2 out of the vector (it is just a scalar) and write x⃗ as

x⃗ = x2

[
−2
1

]
.

For reasons that will become more clear later, set

v⃗ =
[
−2
1

]
.

Thus our soluƟon can be wriƩen as

x⃗ = x2⃗v.

..Recall that since our systemwas consistent and had a free variable, wehave infinite
soluƟons. This form of the soluƟon highlights this fact; pick any value for x2 and we
get a different soluƟon.

For instance, by seƫng x2 = −1, 0, and 5, we get the soluƟons

x⃗ =

[
2
−1

]
,

[
0
0

]
, and

[
−10
5

]
,

respecƟvely.
We should check our work; mulƟply each of the above vectors by A to see if we

indeed get 0⃗.
We have officially solved this problem; we have found the soluƟon to Ax⃗ = 0⃗ and

wriƩen it properly. One final thing wewill do here is graph the soluƟon, using our skills
learned in the previous secƟon.

Our soluƟon is

x⃗ = x2

[
−2
1

]
.

This means that any scalar mulƟply of the vector v⃗ =

[
−2
1

]
is a soluƟon; we know

how to sketch the scalar mulƟples of v⃗. This is done in Figure 2.18.
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.. x.

y

.

v⃗

..Figure 2.18: The soluƟon, as a line, to Ax⃗ = 0⃗ in Example 44.

Here vector v⃗ is drawn as well as the line that goes through the origin in the direc-
Ɵon of v⃗. Any vector along this line is a soluƟon. So in some sense, we can say that the
soluƟon to Ax⃗ = 0⃗ is a line. ...

Let’s pracƟce this again.

.. Example 45 ..Solve the linear system Ax⃗ = 0⃗ and write the soluƟon in vector
form, where

A =

[
2 −3
−2 3

]
.

SÊ½çã®ÊÄ Again, to solve this problem, we form the proper augmented ma-
trix and we put it into reduced row echelon form, which we do below.[

2 −3 0
−2 3 0

]
−→
rref

[
1 −3/2 0
0 0 0

]
We interpret the reduced row echelon form of this matrix to find that

x1 = 3/2x2
x2 is free.

As before,

x⃗ =

[
x1
x2

]
.

Since x1 = 3/2x2, we replace x1 in x⃗ with 3/2x2:

x⃗ =

[
3/2x2
x2

]
.

Now we pull out the x2 and write the soluƟon as

x⃗ = x2

[
3/2
1

]
.
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As before, let’s set

v⃗ =
[
3/2
1

]
so we can write our soluƟon as

x⃗ = x2⃗v.

Again, we have infinite soluƟons; any choice of x2 gives us one of these soluƟons.
For instance, picking x2 = 2 gives the soluƟon

x⃗ =

[
3
2

]
.

(This is a parƟcularly nice soluƟon, since there are no fracƟons. . .)
As in the previous example, our soluƟons are mulƟples of a vector, and hence we

can graph this, as done in Figure 2.19.

.. x.

y

.

v⃗

..Figure 2.19: The soluƟon, as a line, to Ax⃗ = 0⃗ in Example 45.

...

Let’s pracƟce some more; this Ɵme, we won’t solve a system of the form Ax⃗ = 0⃗,
but instead Ax⃗ = b⃗, for some vector b⃗.

.. Example 46 ..Solve the linear system Ax⃗ = b⃗, where

A =

[
1 2
2 4

]
and b⃗ =

[
3
6

]
.

SÊ½çã®ÊÄ (Note that this is the same matrix A that we used in Example 44.
This will be important later.)

Our methodology is the same as before; we form the augmented matrix and put it
into reduced row echelon form.[

1 2 3
2 4 6

]
−→
rref

[
1 2 3
0 0 0

]
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InterpreƟng this reduced row echelon form, we find that

x1 = 3− 2x2
x2 is free.

Again,

x⃗ =

[
x1
x2

]
,

and we replace x1 with 3− 2x2, giving

x⃗ =

[
3− 2x2

x2

]
.

..This soluƟon is different than what we’ve seen in the past two examples; we can’t
simply pull out a x2 since there is a 3 in the first entry. Using the properƟes of matrix
addiƟon, we can “pull apart” this vector and write it as the sum of two vectors: one
which contains only constants, and one that contains only “x2 stuff.” We do this below.

x⃗ =

[
3− 2x2

x2

]
=

[
3
0

]
+

[
−2x2
x2

]
=

[
3
0

]
+ x2

[
−2
1

]
.

Once again, let’s give names to the different component vectors of this soluƟon
(we are geƫng near the explanaƟon of why we are doing this). Let

x⃗p =
[
3
0

]
and v⃗ =

[
−2
1

]
.

We can then write our soluƟon in the form

x⃗ = x⃗p + x2⃗v.

We sƟll have infinite soluƟons; by picking a value for x2 we get one of these solu-
Ɵons. For instance, by leƫng x2 = −1, 0, or 2, we get the soluƟons[

5
−1

]
,

[
3
0

]
and

[
−1
2

]
.

We have officially solved the problem; we have solved the equaƟon Ax⃗ = b⃗ for x⃗
and have wriƩen the soluƟon in vector form. As an addiƟonal visual aid, we will graph
this soluƟon.

Each vector in the soluƟon can be wriƩen as the sum of two vectors: x⃗p and a
mulƟple of v⃗. In Figure 2.20, x⃗p is graphed and v⃗ is graphed with its origin starƟng at
the Ɵp of x⃗p. Finally, a line is drawn in the direcƟon of v⃗ from the Ɵp of x⃗p; any vector
poinƟng to any point on this line is a soluƟon to Ax⃗ = b⃗.
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.. x.

y

.
x⃗p

.

v⃗

..Figure 2.20: The soluƟon, as a line, to Ax⃗ = b⃗ in Example 46....

The previous examples illustrate some important concepts. One is that we can
“see” the soluƟon to a system of linear equaƟons in a new way. Before, when we had
infinite soluƟons, we knew we could arbitrarily pick values for our free variables and
get different soluƟons. We knew this to be true, and we even pracƟced it, but the
result was not very “tangible.” Now, we can view our soluƟon as a vector; by picking
different values for our free variables, we see this as mulƟplying certain important
vectors by a scalar which gives a different soluƟon.

Another important concept that these examples demonstrate comes from the fact
that Examples 44 and 46 were only “slightly different” and hence had only “slightly
different” answers. Both soluƟons had

x2

[
−2
1

]
in them; in Example 46 the soluƟon also had another vector added to this. Was this
coincidence, or is there a definite paƩern here?

Of course there is a paƩern! Now . . . what exactly is it? First, we define a term.

..
DefiniƟon 17

.

.
Homogeneous Linear System of EquaƟons

A system of linear equaƟons is homogeneous if the con-
stants in each equaƟon are zero.

Note: a homogeneous system of equaƟons can be wriƩen
in vector form as Ax⃗ = 0⃗.

The term homogeneous comes from two Greek words; homomeaning “same” and
genusmeaning “type.” A homogeneous system of equaƟons is a system in which each
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equaƟon is of the same type – all constants are 0. NoƟce that the system of equaƟons
in Examples 44 and 46 are homogeneous.

Note that A0⃗ = 0⃗; that is, if we set x⃗ = 0⃗, we have a soluƟon to a homogeneous set
of equaƟons. This fact is important; the zero vector is always a soluƟon to a homoge-
neous linear system. Therefore a homogeneous system is always consistent; we need
only to determine whether we have exactly one soluƟon (just 0⃗) or infinite soluƟons.
This idea is important so we give it it’s own box.

..
Key Idea 7

.
.

Homogeneous Systems and Consistency

All homogeneous linear systems are consistent.

How do we determine if we have exactly one or infinite soluƟons? Recall Key Idea
2: if the soluƟon has any free variables, then it will have infinite soluƟons. How can
we tell if the system has free variables? Form the augmented matrix

[
A 0⃗

]
, put it

into reduced row echelon form, and interpret the result.
It may seem that we’ve brought up a new quesƟon, “When does Ax⃗ = 0⃗ have ex-

actly one or infinite soluƟons?” only to answer with “Look at the reduced row echelon
form of A and interpret the results, just as always.” Why bring up a new quesƟon if the
answer is an old one?

While the new quesƟon has an old soluƟon, it does lead to a great idea. Let’s
refresh our memory; earlier we solved two linear systems,

Ax⃗ = 0⃗ and Ax⃗ = b⃗

where

A =

[
1 2
2 4

]
and b⃗ =

[
3
6

]
.

The soluƟon to the first system of equaƟons, Ax⃗ = 0⃗, is

x⃗ = x2

[
−2
1

]
and the soluƟon to the second set of equaƟons, Ax⃗ = b⃗, is

x⃗ =

[
3
0

]
+ x2

[
−2
1

]
,

for all values of x2.
Recalling our notaƟon used earlier, set

x⃗p =
[
3
0

]
and let v⃗ =

[
−2
1

]
.
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Thus our soluƟon to the linear system Ax⃗ = b⃗ is

x⃗ = x⃗p + x2⃗v.

Let us see how exactly this soluƟon works; let’s see why Ax⃗ equals b⃗. MulƟply Ax⃗:

Ax⃗ = A(x⃗p + x2⃗v)

= Ax⃗p + A(x2⃗v)

= Ax⃗p + x2(A⃗v)

= Ax⃗p + x20⃗

= Ax⃗p + 0⃗

= Ax⃗p

= b⃗

Weknow that the last line is true, thatAx⃗p = b⃗, sincewe know that x⃗was a soluƟon
to Ax⃗ = b⃗. The whole point is that x⃗p itself is a soluƟon to Ax⃗ = b⃗, and we could find
more soluƟons by adding vectors “that go to zero”whenmulƟplied byA. (The subscript
p of “x⃗p” is used to denote that this vector is a “parƟcular” soluƟon.)

Stated in a different way, let’s say that we know two things: that Ax⃗p = b⃗ and
A⃗v = 0⃗. What is A(x⃗p + v⃗)? We can mulƟply it out:

A(x⃗p + v⃗) = Ax⃗p + A⃗v

= b⃗+ 0⃗

= b⃗

and see that A(x⃗p + v⃗) also equals b⃗.

So we wonder: does this mean that Ax⃗ = b⃗ will have infinite soluƟons? AŌer all,
if x⃗p and x⃗p + v⃗ are both soluƟons, don’t we have infinite soluƟons?

No. If Ax⃗ = 0⃗ has exactly one soluƟon, then v⃗ = 0⃗, and x⃗p = x⃗p + v⃗; we only have
one soluƟon.

So here is the culminaƟon of all of our fun that started a few pages back. If v⃗ is
a soluƟon to Ax⃗ = 0⃗ and x⃗p is a soluƟon to Ax⃗ = b⃗, then x⃗p + v⃗ is also a soluƟon to
Ax⃗ = b⃗. If Ax⃗ = 0⃗ has infinite soluƟons, so does Ax⃗ = b⃗; if Ax⃗ = 0⃗ has only one
soluƟon, so does Ax⃗ = b⃗. This culminaƟng idea is of course important enough to be
stated again.
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..
Key Idea 8

.

.
SoluƟons of Consistent Systems

Let Ax⃗ = b⃗ be a consistent system of linear equaƟons.

1. If Ax⃗ = 0⃗ has exactly one soluƟon (⃗x = 0⃗), then Ax⃗ =

b⃗ has exactly one soluƟon.

2. If Ax⃗ = 0⃗ has infinite soluƟons, then Ax⃗ = b⃗ has infi-
nite soluƟons.

A key word in the above statement is consistent. If Ax⃗ = b⃗ is inconsistent (the
linear system has no soluƟon), then it doesn’t maƩer howmany soluƟons Ax⃗ = 0⃗ has;
Ax⃗ = b⃗ has no soluƟon.

Enough fun, enough theory. We need to pracƟce.

.. Example 47 ..Let

A =

[
1 −1 1 3
4 2 4 6

]
and b⃗ =

[
1
10

]
.

Solve the linear systems Ax⃗ = 0⃗ and Ax⃗ = b⃗ for x⃗, and write the soluƟons in vector
form.

SÊ½çã®ÊÄ We’ll tackle Ax⃗ = 0⃗ first. We form the associated augmented ma-
trix, put it into reduced row echelon form, and interpret the result.[

1 −1 1 3 0
4 2 4 6 0

]
−→
rref

[
1 0 1 2 0
0 1 0 −1 0

]

x1 = −x3 − 2x4
x2 = x4
x3 is free

x4 is free

To write our soluƟon in vector form, we rewrite x1 and x2 in x⃗ in terms of x3 and x4.

x⃗ =


x1
x2
x3
x4

 =


−x3 − 2x4

x4
x3
x4


Finally, we “pull apart” this vector into two vectors, onewith the “x3 stuff” and one
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with the “x4 stuff.”

x⃗ =


−x3 − 2x4

x4
x3
x4



=


−x3
0
x3
0

+


−2x4
x4
0
x4



= x3


−1
0
1
0

+ x4


−2
1
0
1


= x3u⃗+ x4⃗v

We use u⃗ and v⃗ simply to give these vectors names (and save some space).
It is easy to confirm that both u⃗ and v⃗ are soluƟons to the linear system Ax⃗ = 0⃗.

(Just mulƟply Au⃗ and A⃗v and see that both are 0⃗.) Since both are soluƟons to a ho-
mogeneous system of linear equaƟons, any linear combinaƟon of u⃗ and v⃗ will be a
soluƟon, too.

..
Now let’s tackle Ax⃗ = b⃗. Once again we put the associated augmented matrix into

reduced row echelon form and interpret the results.

[
1 −1 1 3 1
4 2 4 6 10

]
−→
rref

[
1 0 1 2 2
0 1 0 −1 1

]

x1 = 2− x3 − 2x4
x2 = 1+ x4
x3 is free

x4 is free

WriƟng this soluƟon in vector form gives

x⃗ =


x1
x2
x3
x4

 =


2− x3 − 2x4

1+ x4
x3
x4

 .

Again, we pull apart this vector, but this Ɵme we break it into three vectors: one with
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“x3” stuff, one with “x4” stuff, and one with just constants.

x⃗ =


2− x3 − 2x4

1+ x4
x3
x4



=


2
1
0
0

+


−x3
0
x3
0

+


−2x4
x4
0
x4



=


2
1
0
0

+ x3


−1
0
1
0

+ x4


−2
1
0
1


= x⃗p︸︷︷︸

parƟcular
soluƟon

+ x3u⃗+ x4⃗v︸ ︷︷ ︸
soluƟon to

homogeneous
equaƟons A⃗x = 0⃗

Note that Ax⃗p = b⃗; by itself, x⃗p is a soluƟon. To get infinite soluƟons, we add a bunch
of stuff that “goes to zero” when we mulƟply by A; we add the soluƟon to the homo-
geneous equaƟons.

Why don’t we graph this soluƟon as we did in the past? Before we had only two
variables, meaning the soluƟon could be graphed in 2D. Here we have four variables,
meaning that our soluƟon “lives” in 4D. You can draw this on paper, but it is very con-
fusing. ...

.. Example 48 ..Rewrite the linear system

x1 + 2x2 − 3x3 + 2x4 + 7x5 = 2
3x1 + 4x2 + 5x3 + 2x4 + 3x5 = −4

as a matrix–vector equaƟon, solve the system using vector notaƟon, and give the so-
luƟon to the related homogeneous equaƟons.

SÊ½çã®ÊÄ RewriƟng the linear system in the form of Ax⃗ = b⃗, we have that

A =

[
1 2 −3 2 7
3 4 5 2 3

]
, x⃗ =


x1
x2
x3
x4
x5

 and b⃗ =

[
2
−4

]
.

To solve the system, we put the associated augmented matrix into reduced row eche-
lon form and interpret the results.
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[
1 2 −3 2 7 2
3 4 5 2 3 −4

]
−→
rref

[
1 0 11 −2 −11 −8
0 1 −7 2 9 5

]

x1 = −8− 11x3 + 2x4 + 11x5
x2 = 5+ 7x3 − 2x4 − 9x5
x3 is free

x4 is free

x5 is free

We use this informaƟon to write x⃗, again pulling it apart. Since we have three free
variables and also constants, we’ll need to pull x⃗ apart into four separate vectors.

x⃗ =


x1
x2
x3
x4
x5



=


−8− 11x3 + 2x4 + 11x5
5+ 7x3 − 2x4 − 9x5

x3
x4
x5



=


−8
5
0
0
0

+


−11x3
7x3
x3
0
0

+


2x4
−2x4
0
x4
0

+


11x5
−9x5
0
0
x5



=


−8
5
0
0
0

+ x3


−11
7
1
0
0

+ x4


2
−2
0
1
0

+ x5


11
−9
0
0
1


= x⃗p︸︷︷︸

parƟcular
soluƟon

+ x3u⃗+ x4⃗v+ x5w⃗︸ ︷︷ ︸
soluƟon to homogeneous

equaƟons A⃗x = 0⃗

So x⃗p is a parƟcular soluƟon; Ax⃗p = b⃗. (MulƟply it out to verify that this is true.)
The other vectors, u⃗, v⃗ and w⃗, that are mulƟplied by our free variables x3, x4 and x5,
are each soluƟons to the homogeneous equaƟons, Ax⃗ = 0⃗. Any linear combinaƟon
of these three vectors, i.e., any vector found by choosing values for x3, x4 and x5 in
x3u⃗+ x4⃗v+ x5w⃗ is a soluƟon to Ax⃗ = 0⃗. ...
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.. Example 49 Let

A =

[
1 2
4 5

]
and b⃗ =

[
3
6

]
.

Find the soluƟons to Ax⃗ = b⃗ and Ax⃗ = 0⃗.

SÊ½çã®ÊÄ We go through the familiar work of finding the reduced row eche-
lon form of the appropriate augmented matrix and interpreƟng the soluƟon.[

1 2 3
4 5 6

]
−→
rref

[
1 0 −1
0 1 2

]

x1 = −1

x2 = 2

Thus

x⃗ =

[
x1
x2

]
=

[
−1
2

]
.

This may strike us as a bit odd; we are used to having lots of different vectors in the
soluƟon. However, in this case, the linear system Ax⃗ = b⃗ has exactly one soluƟon, and
we’ve found it. What is the soluƟon to Ax⃗ = 0⃗? Since we’ve only found one soluƟon to
Ax⃗ = b⃗, we can conclude from Key Idea 8 the related homogeneous equaƟons Ax⃗ = 0⃗
have only one soluƟon, namely x⃗ = 0⃗. We can write our soluƟon vector x⃗ in a form
similar to our previous examples to highlight this:

x⃗ =

[
−1
2

]
=

[
−1
2

]
+

[
0
0

]
= x⃗p︸︷︷︸

parƟcular
soluƟon

+ 0⃗︸︷︷︸
soluƟon to
A⃗x = 0⃗

.

..

.. Example 50 ..Let

A =

[
1 1
2 2

]
and b⃗ =

[
1
1

]
.

Find the soluƟons to Ax⃗ = b⃗ and Ax⃗ = 0⃗.

SÊ½çã®ÊÄ To solve Ax⃗ = b⃗, we put the appropriate augmented matrix into
reduced row echelon form and interpret the results.[

1 1 1
2 2 1

]
−→
rref

[
1 1 0
0 0 1

]
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We immediately have a problem; we see that the second row tells us that 0x1 +
0x2 = 1, the sign that our system does not have a soluƟon. Thus Ax⃗ = b⃗ has no
soluƟon. Of course, this does not mean that Ax⃗ = 0⃗ has no soluƟon; it always has a
soluƟon.

To find the soluƟon to Ax⃗ = 0⃗, we interpret the reduced row echelon form of the
appropriate augmented matrix.[

1 1 0
2 2 0

]
−→
rref

[
1 1 0
0 0 0

]

x1 = −x2
x2 is free

Thus

x⃗ =

[
x1
x2

]
=

[
−x2
x2

]
= x2

[
−1
1

]
= x2u⃗.

We have no soluƟon to Ax⃗ = b⃗, but infinite soluƟons to Ax⃗ = 0⃗. ...

The previous example may seem to violate the principle of Key Idea 8. AŌer all,
it seems that having infinite soluƟons to Ax⃗ = 0⃗ should imply infinite soluƟons to
Ax⃗ = b⃗. However, we remind ourselves of the key word in the idea that we observed
before: consistent. If Ax⃗ = b⃗ is consistent and Ax⃗ = 0⃗ has infinite soluƟons, then so
will Ax⃗ = b⃗. But if Ax⃗ = b⃗ is not consistent, it does not maƩer how many soluƟons
Ax⃗ = 0⃗ has; Ax⃗ = b⃗ is sƟll inconsistent.

This whole secƟon is highlighƟng a very important concept that we won’t fully un-
derstand unƟl aŌer two secƟons, but we get a glimpse of it here. When solving any
system of linear equaƟons (which we can write as Ax⃗ = b⃗), whether we have exactly
one soluƟon, infinite soluƟons, or no soluƟon depends on an intrinsic property of A.
We’ll find out what that property is soon; in the next secƟon we solve a problem we
introduced at the beginning of this secƟon, how to solve matrix equaƟons AX = B.

Exercises 2.4
In Exercises 1 – 6, a matrix A and vectors b⃗, u⃗
and v⃗ are given. Verify that u⃗ and v⃗ are both
soluƟons to the equaƟon A⃗x = b⃗; that is,
show that Au⃗ = A⃗v = b⃗.

1. A =

[
1 −2
−3 6

]
,

b⃗ =

[
0
0

]
, u⃗ =

[
2
1

]
, v⃗ =

[
−10
−5

]
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2. A =

[
1 −2
−3 6

]
,

b⃗ =

[
2
−6

]
, u⃗ =

[
0
−1

]
, v⃗ =

[
2
0

]
3. A =

[
1 0
2 0

]
,

b⃗ =

[
0
0

]
, u⃗ =

[
0
−1

]
, v⃗ =

[
0
59

]
4. A =

[
1 0
2 0

]
,

b⃗ =

[
−3
−6

]
, u⃗ =

[
−3
−1

]
, v⃗ =

[
−3
59

]
5. A =

[
0 −3 −1 −3
−4 2 −3 5

]
,

b⃗ =

[
0
0

]
, u⃗ =


11
4

−12
0

,

v⃗ =


9

−12
0
12


6. A =

[
0 −3 −1 −3
−4 2 −3 5

]
,

b⃗ =

[
48
36

]
, u⃗ =


−17
−16
0
0

,

v⃗ =


−8
−28
0
12


In Exercises 7 – 9, a matrix A and vectors b⃗, u⃗
and v⃗ are given. Verify that Au⃗ = 0⃗, A⃗v = b⃗
and A(⃗u+ v⃗) = b⃗.

7. A =

 2 −2 −1
−1 1 −1
−2 2 −1

,
b⃗ =

 1
1
1

, u⃗ =

 1
1
0

, v⃗ =
 1

1
−1


8. A =

 1 −1 3
3 −3 −3
−1 1 1

,

b⃗ =

−1
−3
1

, u⃗ =

 2
2
0

, v⃗ =
 2
3
0


9. A =

 2 0 0
0 1 −3
3 1 −3

,
b⃗ =

 2
−4
−1

, u⃗ =

 0
6
2

, v⃗ =
 1
−1
1


In Exercises 10 – 24, a matrix A and vector b⃗
are given.

(a) Solve the equaƟon A⃗x = 0⃗.

(b) Solve the equaƟon A⃗x = b⃗.

In each of the above, be sure towrite your an-
swer in vector format. Also, when possible,
give 2 parƟcular soluƟons to each equaƟon.

10. A =

[
0 2
−1 3

]
, b⃗ =

[
−2
−1

]
11. A =

[
−4 −1
−3 −2

]
, b⃗ =

[
1
4

]
12. A =

[
1 −2
0 1

]
, b⃗ =

[
0
−5

]
13. A =

[
1 0
5 −4

]
, b⃗ =

[
−2
−1

]
14. A =

[
2 −3
−4 6

]
, b⃗ =

[
1
−1

]
15. A =

[
−4 3 2
−4 5 0

]
, b⃗ =

[
−4
−4

]
16. A =

[
1 5 −2
1 4 5

]
, b⃗ =

[
0
1

]
17. A =

[
−1 −2 −2
3 4 −2

]
, b⃗ =

[
−4
−4

]
18. A =

[
2 2 2
5 5 −3

]
, b⃗ =

[
3
−3

]
19. A =

[
1 5 −4 −1
1 0 −2 1

]
,

b⃗ =

[
0
−2

]
20. A =

[
−4 2 −5 4
0 1 −1 5

]
,

b⃗ =

[
−3
−2

]
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21. A =

[
0 0 2 1 4
−2 −1 −4 −1 5

]
,

b⃗ =

[
3
4

]

22. A =

 3 0 −2 −4 5
2 3 2 0 2
−5 0 4 0 5

,
b⃗ =

−1
−5
4


23. A =

−1 3 1 −3 4
3 −3 −1 1 −4
−2 3 −2 −3 1

,
b⃗ =

 1
1
−5


24. A =

−4 −2 −1 4 0
5 −4 3 −1 1
4 −5 3 1 −4

,

b⃗ =

 3
2
1


In Exercises 25 – 28, a matrix A and vector b⃗
are given. Solve the equaƟon A⃗x = b⃗, write
the soluƟon in vector format, and sketch the
soluƟon as the appropriate line on the Carte-
sian plane.

25. A =

[
2 4
−1 −2

]
, b⃗ =

[
0
0

]

26. A =

[
2 4
−1 −2

]
, b⃗ =

[
−6
3

]

27. A =

[
2 −5
−4 −10

]
, b⃗ =

[
1
2

]

28. A =

[
2 −5
−4 −10

]
, b⃗ =

[
0
0

]

2.5 Solving Matrix EquaƟons AX = B

...AS YOU READ . . .

1. T/F: To solve the matrix equaƟon AX = B, put the matrix
[
A X

]
into reduced

row echelon form and interpret the result properly.

2. T/F: The first column of a matrix product AB is A Ɵmes the first column of B.

3. Give two reasons why onemight solve for the columns of X in the equaƟon AX=B
separately.

We began last secƟon talking about solving numerical equaƟons like ax = b for x.
We menƟoned that solving matrix equaƟons of the form AX = B is of interest, but we
first learned how to solve the related, but simpler, equaƟons Ax⃗ = b⃗. In this secƟon
we will learn how to solve the general matrix equaƟon AX = B for X.

We will start by considering the best case scenario when solving Ax⃗ = b⃗; that is,
when A is square and we have exactly one soluƟon. For instance, suppose we want to
solve Ax⃗ = b⃗ where

A =

[
1 1
2 1

]
and b⃗ =

[
0
1

]
.
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We know how to solve this; put the appropriate matrix into reduced row echelon form
and interpret the result. [

1 1 0
2 1 1

]
−→
rref

[
1 0 1
0 1 −1

]
We read from this that

x⃗ =

[
1
−1

]
.

WriƩen in a more general form, we found our soluƟon by forming the augmented
matrix [

A b⃗
]

and interpreƟng its reduced row echelon form:[
A b⃗

] −→
rref

[
I x⃗

]
NoƟce that when the reduced row echelon form of A is the idenƟty matrix I we have
exactly one soluƟon. This, again, is the best case scenario.

We apply the same general technique to solving the matrix equaƟon AX = B for X.
We’ll assume that A is a square matrix (B need not be) and we’ll form the augmented
matrix [

A B
]
.

Puƫng this matrix into reduced row echelon form will give us X, much like we found x⃗
before. [

A B
] −→

rref
[
I X

]
As long as the reduced row echelon form of A is the idenƟty matrix, this technique

works great. AŌer a few examples, we’ll discuss why this technique works, and we’ll
also talk just a liƩle bit about what happens when the reduced row echelon form of A
is not the idenƟty matrix.

First, some examples.

.. Example 51 ..Solve the matrix equaƟon AX = B where

A =

[
1 −1
5 3

]
and B =

[
−8 −13 1
32 −17 21

]
.

SÊ½çã®ÊÄ To solve AX = B for X, we form the proper augmented matrix, put
it into reduced row echelon form, and interpret the result.[

1 −1 −8 −13 1
5 3 32 −17 21

]
−→
rref

[
1 0 1 −7 3
0 1 9 6 2

]
We read from the reduced row echelon form of the matrix that

X =

[
1 −7 3
9 6 2

]
.
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We can easily check to see if our answer is correct by mulƟplying AX. ...

.. Example 52 Solve the matrix equaƟon AX = B where

A =

 1 0 2
0 −1 −2
2 −1 0

 and B =

−1 2
2 −6
2 −4

 .

SÊ½çã®ÊÄ To solve, let’s again form the augmented matrix[
A B

]
,

put it into reduced row echelon form, and interpret the result. 1 0 2 −1 2
0 −1 −2 2 −6
2 −1 0 2 −4

 −→
rref

 1 0 0 1 0
0 1 0 0 4
0 0 1 −1 1


We see from this that

X =

 1 0
0 4
−1 1

 .

..

Why does this work? To see the answer, let’s define five matrices.

A =

[
1 2
3 4

]
, u⃗ =

[
1
1

]
, v⃗ =

[
−1
1

]
, w⃗ =

[
5
6

]
and X =

[
1 −1 5
1 1 6

]
NoƟce that u⃗, v⃗ and w⃗ are the first, second and third columns of X, respecƟvely.

Now consider this list of matrix products: Au⃗, A⃗v, Aw⃗ and AX.

Au⃗ =

[
1 2
3 4

] [
1
1

]
=

[
3
7

]

Aw⃗ =

[
1 2
3 4

] [
5
6

]
=

[
17
39

]

A⃗v =
[
1 2
3 4

] [
−1
1

]
=

[
1
1

]

AX =

[
1 2
3 4

] [
1 −1 5
1 1 6

]
=

[
3 1 17
7 1 39

]
So again note that the columns of X are u⃗, v⃗ and w⃗; that is, we can write

X =
[
u⃗ v⃗ w⃗

]
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NoƟce also that the columns of AX are Au⃗, A⃗v and Aw⃗, respecƟvely. Thus we can write

AX = A
[
u⃗ v⃗ w⃗

]
=

[
Au⃗ A⃗v Aw⃗

]
=

[ [
3
7

] [
1
1

] [
17
39

] ]
=

[
3 1 17
7 1 39

]
We summarize what we saw above in the following statement:

The columns of a matrix product AX are A Ɵmes the columns of X.

How does this help us solve the matrix equaƟon AX = B for X? Assume that A is a
square matrix (that forces X and B to be the same size). We’ll let x⃗1, x⃗2, · · · x⃗n denote
the columns of the (unknown) matrix X, and we’ll let b⃗1, b⃗2, · · · b⃗n denote the columns
of B. We want to solve AX = B for X. That is, we want X where

AX = B

A
[
x⃗1 x⃗2 · · · x⃗n

]
=

[
b⃗1 b⃗2 · · · b⃗n

][
Ax⃗1 Ax⃗2 · · · Ax⃗n

]
=

[
b⃗1 b⃗2 · · · b⃗n

]
If the matrix on the leŌ hand side is equal to the matrix on the right, then their

respecƟve columns must be equal. This means we need to solve n equaƟons:

Ax⃗1 = b⃗1

Ax⃗2 = b⃗2
... =

...

Ax⃗n = b⃗n

We already know how to do this; this is what we learned in the previous secƟon.
Let’s do this in a concrete example. In our above work we defined matrices A and X,
and looked at the product AX. Let’s call the product B; that is, set B= AX. Now, let’s
pretend that we don’t know what X is, and let’s try to find the matrix X that saƟsfies
the equaƟon AX = B. As a refresher, recall that

A =

[
1 2
3 4

]
and B =

[
3 1 17
7 1 39

]
.

Since A is a 2× 2 matrix and B is a 2× 3 matrix, what dimensions must X be in the
equaƟon AX = B? The number of rows of Xmust match the number of columns of A;
the number of columns of X must match the number of columns of B. Therefore we
know that Xmust be a 2× 3 matrix.
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We’ll call the three columns of X x⃗1, x⃗2 and x⃗3. Our previous explanaƟon tells us
that if AX = B, then:

AX = B

A
[
x⃗1 x⃗2 x⃗3

]
=

[
3 1 17
7 1 39

]
[
Ax⃗1 Ax⃗2 Ax⃗3

]
=

[
3 1 17
7 1 39

]
.

Hence

Ax⃗1 =
[
3
7

]
Ax⃗2 =

[
1
1

]
Ax⃗3 =

[
17
39

]

To find x⃗1, we form the proper augmented matrix and put it into reduced row ech-
elon form and interpret the results.[

1 2 3
3 4 7

]
−→
rref

[
1 0 1
0 1 1

]
This shows us that

x⃗1 =
[
1
1

]
.

To find x⃗2, we again form an augmented matrix and interpret its reduced row ech-
elon form. [

1 2 1
3 4 1

]
−→
rref

[
1 0 −1
0 1 1

]
Thus

x⃗2 =
[
−1
1

]
which matches with what we already knew from above.

Before conƟnuing on in this manner to find x⃗3, we should stop and think. If the
matrix vector equaƟon Ax⃗ = b⃗ is consistent, then the steps involved in puƫng[

A b⃗
]

into reduced row echelon form depend only on A; it does not maƩer what b⃗ is. So
when we put the two matrices[

1 2 3
3 4 7

]
and

[
1 2 1
3 4 1

]
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from above into reduced row echelon form, we performed exactly the same steps! (In
fact, those steps are: −3R1 + R2 → R2;− 1

2R2 → R2;−2R2 + R1 → R1.)
Instead of solving for each column of X separately, performing the same steps to

put the necessary matrices into reduced row echelon form three different Ɵmes, why
don’t we just do it all at once?16 Instead of individually puƫng[

1 2 3
3 4 7

]
,

[
1 2 1
3 4 1

]
and

[
1 2 17
3 4 39

]
into reduced row echelon form, let’s just put[

1 2 3 1 17
3 4 7 1 39

]
into reduced row echelon form.[

1 2 3 1 17
3 4 7 1 39

]
−→
rref

[
1 0 1 −1 5
0 1 1 1 6

]
By looking at the last three columns, we see X:

X =

[
1 −1 5
1 1 6

]
.

Now that we’ve jusƟfied the technique we’ve been using in this secƟon to solve
AX = B for X, we reinfornce its importance by restaƟng it as a Key Idea.

..
Key Idea 9

.

.
Solving AX = B

Let A be an n × n matrix, where the reduced row echelon
form of A is I. To solve the matrix equaƟon AX = B for X,

1. Form the augmented matrix
[
A B

]
.

2. Put this matrix into reduced row echelon form. It
will be of the form

[
I X

]
, where X appears in the

columns where B once was.

These simple steps cause us to ask certain quesƟons. First, we specify above that A
should be a square matrix. What happens if A isn’t square? Is a soluƟon sƟll possible?
Secondly, we only considered cases where the reduced row echelon form of A was I
(and stated that as a requirement in our Key Idea). What if the reduced row echelon
form of A isn’t I? Would we sƟll be able to find a soluƟon? (Instead of having exactly
one soluƟon, could we have no soluƟon? Infinite soluƟons? How would we be able to
tell?)

16One reason to do it three different Ɵmes is that we enjoy doing unnecessary work. Another reason
could be that we are stupid.
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These quesƟons are good to ask, and we leave it to the reader to discover their
answers. Instead of tackling these quesƟons, we instead tackle the problem of “Why
do we care about solving AX = B?” The simple answer is that, for now, we only care
about the special case when B = I. By solving AX = I for X, we find a matrix X that,
when mulƟplied by A, gives the idenƟty I. That will be very useful.

Exercises 2.5

In Exercises 1 – 12, matrices A and B are
given. Solve the matrix equaƟon AX = B.

1. A =

[
4 −1
−7 5

]
,

B =

[
8 −31

−27 38

]
2. A =

[
1 −3
−3 6

]
,

B =

[
12 −10
−27 27

]
3. A =

[
3 3
6 4

]
,

B =

[
15 −39
16 −66

]
4. A =

[
−3 −6
4 0

]
,

B =

[
48 −30
0 −8

]
5. A =

[
−1 −2
−2 −3

]
,

B =

[
13 4 7
22 5 12

]
6. A =

[
−4 1
−1 −2

]
,

B =

[
−2 −10 19
13 2 −2

]

7. A =

[
1 0
3 −1

]
, B = I2

8. A =

[
2 2
3 1

]
, B = I2

9. A =

−2 0 4
−5 −4 5
−3 5 −3

,
B =

−18 2 −14
−38 18 −13
10 2 −18



10. A =

−5 −4 −1
8 −2 −3
6 1 −8

,
B =

−21 −8 −19
65 −11 −10
75 −51 33



11. A =

 0 −2 1
0 2 2
1 2 −3

, B = I3

12. A =

−3 3 −2
1 −3 2
−1 −1 2

, B = I3

2.6 The Matrix Inverse
...AS YOU READ . . .

1. T/F: If A and B are square matrices where AB = I, then BA = I.

2. T/F: A matrix A has exactly one inverse, infinite inverses, or no inverse.

3. T/F: Everyone is special.
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4. T/F: If A is inverƟble, then Ax⃗ = 0⃗ has exactly 1 soluƟon.

5. What is a corollary?

6. Fill in the blanks: a matrix is inverƟble is useful; compuƟng the inverse
is .

Once again we visit the old algebra equaƟon, ax = b. How do we solve for x? We
know that, as long as a ̸= 0,

x =
b
a
, or, stated in another way, x = a−1b.

What is a−1? It is the number that, when mulƟplied by a, returns 1. That is,

a−1a = 1.

Let us now think in terms of matrices. We have learned of the idenƟtymatrix I that
“acts like the number 1.” That is, if A is a square matrix, then

IA = AI = A.

If wehad amatrix, whichwe’ll callA−1, whereA−1A = I, thenby analogy to our algebra
example above it seems like we might be able to solve the linear system Ax⃗ = b⃗ for x⃗
by mulƟplying both sides of the equaƟon by A−1. That is, perhaps

x⃗ = A−1b⃗.

Of course, there is a lot of speculaƟon here. We don’t know that such a matrix like
A−1 exists. However, we do know how to solve the matrix equaƟon AX = B, so we
can use that technique to solve the equaƟon AX = I for X. This seems like it will get us
close to what we want. Let’s pracƟce this once and then study our results.

.. Example 53 ..Let

A =

[
2 1
1 1

]
.

Find a matrix X such that AX = I.

SÊ½çã®ÊÄ We know how to solve this from the previous secƟon: we form
the proper augmented matrix, put it into reduced row echelon form and interpret the
results. [

2 1 1 0
1 1 0 1

]
−→
rref

[
1 0 1 −1
0 1 −1 2

]
We read from our matrix that

X =

[
1 −1
−1 2

]
.
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Let’s check our work:

AX =

[
2 1
1 1

] [
1 −1
−1 2

]
=

[
1 0
0 1

]
= I

Sure enough, it works. ...

Looking at our previous example, we are tempted to jump in and call the matrix X
that we found “A−1.” However, there are two obstacles in the way of us doing this.

First, we know that in general AB ̸= BA. So while we found that AX = I, we can’t
automaƟcally assume that XA = I.

Secondly, we have seen examples of matrices where AB = AC, but B ̸= C. So just
because AX = I, it is possible that another matrix Y exists where AY = I. If this is the
case, using the notaƟon A−1 would be misleading, since it could refer to more than
one matrix.

These obstacles that we face are not insurmountable. The first obstacle was that
we know that AX = I but didn’t know that XA = I. That’s easy enough to check,
though. Let’s look at A and X from our previous example.

XA =

[
1 −1
−1 2

] [
2 1
1 1

]
=

[
1 0
0 1

]
= I

Perhaps this first obstacle isn’t much of an obstacle aŌer all. Of course, we only
have one example where it worked, so this doesn’t mean that it always works. We
have good news, though: it always does work. The only “bad” news to come with this
is that this is a bit harder to prove. We won’t worry about proving it always works, but
state formally that it does in the following theorem.

..
Theorem 5

.

.
Special CommuƟng Matrix Products

Let A be an n× nmatrix.

1. If there is a matrix X such that AX = In, then XA = In.

2. If there is a matrix X such that XA = In, then AX = In.

The second obstacle is easier to address. We want to know if another matrix Y
exists where AY = I = YA. Let’s suppose that it does. Consider the expression XAY.
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Since matrix mulƟplicaƟon is associaƟve, we can group this any way we choose. We
could group this as (XA)Y; this results in

(XA)Y = IY

= Y.

We could also group XAY as X(AY). This tells us

X(AY) = XI

= X

Combining the two ideas above, we see that X = XAY = Y; that is, X = Y. We
conclude that there is only one matrix X where XA = I = AX. (Even if we think we
have two, we can do the above exercise and see that we really just have one.)

We have just proved the following theorem.

..
Theorem 6

.

.
Uniqueness of SoluƟons to AX = In

Let A be an n × n matrix and let X be a matrix where AX =
In. Then X is unique; it is the only matrix that saƟsfies this
equaƟon.

So given a square matrix A, if we can find a matrix X where AX = I, then we know
that XA = I and that X is the only matrix that does this. This makes X special, so we
give it a special name.

..
DefiniƟon 18

.

.
InverƟble Matrices and the Inverse of A

Let A and X be n× nmatrices where AX = I = XA. Then:

1. A is inverƟble.

2. X is the inverse of A, denoted by A−1.

Let’s do an example.

.. Example 54 ..Find the inverse of A =

[
1 2
2 4

]
.

SÊ½çã®ÊÄ By solving the equaƟon AX = I for X will give us the inverse of A.
Forming the appropriate augmented matrix and finding its reduced row echelon form
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gives us [
1 2 1 0
2 4 0 1

]
−→
rref

[
1 2 0 1/2
0 0 1 −1/2

]
Yikes! We were expecƟng to find that the reduced row echelon form of this matrix
would look like [

I A−1
]
.

However, we don’t have the idenƟty on the leŌ hand side. Our conclusion: A is not
inverƟble. ...

We have just seen that not all matrices are inverƟble.17 With this thought in mind,
let’s complete the array of boxes we started before the example. We’ve discovered
that if a matrix has an inverse, it has only one. Therefore, we gave that special matrix
a name, “the inverse.” Finally, we describe the most general way to find the inverse of
a matrix, and a way to tell if it does not have one.

..
Key Idea 10

.

.
Finding A−1

Let A be an n × n matrix. To find A−1, put the augmented
matrix [

A In
]

into reduced row echelon form. If the result is of the form[
In X

]
,

then A−1 = X. If not, (that is, if the first n columns of the re-
duced row echelon form are not In), then A is not inverƟble.

Let’s try again.

.. Example 55 ..Find the inverse, if it exists, of A =

 1 1 −1
1 −1 1
1 2 3

.
SÊ½çã®ÊÄ We’ll try to solve AX = I for X and see what happens. 1 1 −1 1 0 0

1 −1 1 0 1 0
1 2 3 0 0 1

 −→
rref

 1 0 0 0.5 0.5 0
0 1 0 0.2 −0.4 0.2
0 0 1 −0.3 0.1 0.2


17Hence our previous definiƟon; why bother calling A “inverƟble” if every square matrix is? If everyone

is special, then no one is. Then again, everyone is special.
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We have a soluƟon, so

A =

 0.5 0.5 0
0.2 −0.4 0.2
−0.3 0.1 0.2

 .

MulƟply AA−1 to verify that it is indeed the inverse of A. ...

In general, given a matrix A, to find A−1 we need to form the augmented matrix[
A I

]
and put it into reduced row echelon form and interpret the result. In the case

of a 2 × 2 matrix, though, there is a shortcut. We give the shortcut in terms of a
theorem.18

..
Theorem 7

.

.
The Inverse of a 2×2 Matrix

Let

A =

[
a b
c d

]
.

A is inverƟble if and only if ad− bc ̸= 0.

If ad− bc ̸= 0, then

A−1 =
1

ad− bc

[
d −b
−c a

]
.

We can’t divide by 0, so if ad− bc = 0, we don’t have an inverse. Recall Example
54, where

A =

[
1 2
2 4

]
.

Here, ad− bc = 1(4)− 2(2) = 0, which is why A didn’t have an inverse.
Although this idea is simple, we should pracƟce it.

.. Example 56 ..Use Theorem 7 to find the inverse of

A =

[
3 2
−1 9

]
if it exists.

18We don’t prove this theorem here, but it really isn’t hard to do. Put the matrix[
a b 1 0
c d 0 1

]
into reduced row echelon form and you’ll discover the result of the theorem. AlternaƟvely, mulƟply A by
what we propose is the inverse and see that we indeed get I.108
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SÊ½çã®ÊÄ Since ad− bc = 29 ̸= 0, A−1 exists. By the Theorem,

A−1 =
1

3(9)− 2(−1)

[
9 −2
1 3

]
=

1
29

[
9 −2
1 3

]

We can leave our answer in this form, or we could “simplify” it as

A−1 =
1
29

[
9 −2
1 3

]
=

[
9/29 −2/29
1/29 3/29

]
.

...

We started this secƟon out by speculaƟng that just as we solved algebraic equa-
Ɵons of the form ax = b by compuƟng x = a−1b, we might be able to solve matrix
equaƟons of the form Ax⃗ = b⃗ by compuƟng x⃗ = A−1b⃗. If A−1 does exist, then we can
solve the equaƟon Ax⃗ = b⃗ this way. Consider:

Ax⃗ = b⃗ (original equaƟon)

A−1Ax⃗ = A−1b⃗ (mulƟply both sides on the leŌ by A−1)

I⃗x = A−1b⃗ (since A−1A = I)

x⃗ = A−1b⃗ (since I⃗x = x⃗)

Let’s step back and think about this for a moment. The only thing we know about
the equaƟon Ax⃗ = b⃗ is that A is inverƟble. We also know that soluƟons to Ax⃗ = b⃗
come in three forms: exactly one soluƟon, infinite soluƟons, and no soluƟon. We just
showed that if A is inverƟble, then Ax⃗ = b⃗ has at least one soluƟon. We showed that
by seƫng x⃗ equal to A−1b⃗, we have a soluƟon. Is it possible that more soluƟons exist?

No. Supposewe are told that a known vector v⃗ is a soluƟon to the equaƟonAx⃗ = b⃗;
that is, we know that A⃗v = b⃗. We can repeat the above steps:

A⃗v = b⃗

A−1A⃗v = A−1b⃗

I⃗v = A−1b⃗

v⃗ = A−1b⃗.

This shows that all soluƟons to Ax⃗ = b⃗ are exactly x⃗ = A−1b⃗ when A is inverƟble. We
have just proved the following theorem.
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..
Theorem 8

.

.
InverƟble Matrices and SoluƟons to Ax⃗ = b⃗

Let A be an inverƟble n × n matrix, and let b⃗ be any n × 1
column vector. Then the equaƟon Ax⃗ = b⃗ has exactly one
soluƟon, namely

x⃗ = A−1b⃗.

A corollary19 to this theorem is: If A is not inverƟble, then Ax⃗ = b⃗ does not have
exactly one soluƟon. It may have infinite soluƟons and it may have no soluƟon, and
we would need to examine the reduced row echelon form of the augmented matrix[
A b⃗

]
to see which case applies.

We demonstrate our theorem with an example.

.. Example 57 Solve Ax⃗ = b⃗ by compuƟng x⃗ = A−1b⃗, where

A =

 1 0 −3
−3 −4 10
4 −5 −11

 and b⃗ =

 −15
57
−46

 .

SÊ½çã®ÊÄ Without showing our steps, we compute

A−1 =

 94 15 −12
7 1 −1
31 5 −4

 .

We then find the soluƟon to Ax⃗ = b⃗ by compuƟng A−1b⃗:

x⃗ = A−1b⃗

=

 94 15 −12
7 1 −1
31 5 −4

 −15
57
−46


=

 −3
−2
4

 .

We can easily check our answer: 1 0 −3
−3 −4 10
4 −5 −11

 −3
−2
4

 =

 −15
57
−46

 .

..

19a corollary is an idea that follows directly from a theorem
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Knowing a matrix is inverƟble is incredibly useful.20 Among many other reasons, if
you know A is inverƟble, then you know for sure that Ax⃗ = b⃗ has a soluƟon (as we just
stated in Theorem 8). In the next secƟon we’ll demonstrate many different properƟes
of inverƟble matrices, including staƟng several different ways in which we know that
a matrix is inverƟble.

Exercises 2.6
In Exercises 1 – 8, A matrix A is given. Find
A−1 using Theorem 7, if it exists.

1.
[

1 5
−5 −24

]
2.

[
1 −4
1 −3

]
3.

[
3 0
0 7

]
4.

[
2 5
3 4

]
5.

[
1 −3
−2 6

]
6.

[
3 7
2 4

]
7.

[
1 0
0 1

]
8.

[
0 1
1 0

]
In Exercises 9 – 28, a matrix A is given. Find
A−1 using Key Idea 10, if it exists.

9.
[
−2 3
1 5

]
10.

[
−5 −2
9 2

]
11.

[
1 2
3 4

]
12.

[
5 7

5/3 7/3

]

13.

 25 −10 −4
−18 7 3
−6 2 1



14.

 2 3 4
−3 6 9
−1 9 13


15.

 1 0 0
4 1 −7
20 7 −48


16.

 −4 1 5
−5 1 9
−10 2 19


17.

 5 −1 0
7 7 1
−2 −8 −1


18.

 1 −5 0
−2 15 4
4 −19 1


19.

 25 −8 0
−78 25 0
48 −15 1


20.

 1 0 0
7 5 8
−2 −2 −3


21.

 0 0 1
1 0 0
0 1 0


22.

 0 1 0
1 0 0
0 0 1



23.


1 0 0 0

−19 −9 0 4
33 4 1 −7
4 2 0 −1



24.


1 0 0 0
27 1 0 4
18 0 1 4
4 0 0 1


20As odd as it may sound, knowing a matrix is inverƟble is useful; actually compuƟng the inverse isn’t.

This is discussed at the end of the next secƟon.
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25.


−15 45 −3 4
55 −164 15 −15

−215 640 −62 59
−4 12 0 1



26.


1 0 2 8
0 1 0 0
0 −4 −29 −110
0 −3 −5 −19



27.


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



28.


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 −4


In Exercises 29 – 36, a matrix A and a vector
b⃗ are given. Solve the equaƟon A⃗x = b⃗ using
Theorem 8.

29. A =

[
3 5
2 3

]
, b⃗ =

[
21
13

]

30. A =

[
1 −4
4 −15

]
, b⃗ =

[
21
77

]

31. A =

[
9 70
−4 −31

]
, b⃗ =

[
−2
1

]

32. A =

[
10 −57
3 −17

]
, b⃗ =

[
−14
−4

]

33. A =

 1 2 12
0 1 6
−3 0 1

 ,

b⃗ =

−17
−5
20


34. A =

 1 0 −3
8 −2 −13
12 −3 −20

 ,

b⃗ =

 −34
−159
−243


35. A =

 5 0 −2
−8 1 5
−2 0 1

 ,

b⃗ =

 33
−70
−15


36. A =

 1 −6 0
0 1 0
2 −8 1

 ,

b⃗ =

 −69
10

−102



2.7 ProperƟes of the Matrix Inverse

...AS YOU READ . . .

1. What does it mean to say that two statements are “equivalent?”

2. T/F: If A is not inverƟble, then Ax⃗ = 0⃗ could have no soluƟons.

3. T/F: If A is not inverƟble, then Ax⃗ = b⃗ could have infinite soluƟons.

4. What is the inverse of the inverse of A?

5. T/F: Solving Ax⃗ = b⃗ using Gaussian eliminaƟon is faster than using the inverse
of A.

We ended the previous secƟon by staƟng that inverƟble matrices are important.
Since they are, in this secƟon we study inverƟble matrices in two ways. First, we look
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at ways to tell whether or not a matrix is inverƟble, and second, we study properƟes
of inverƟble matrices (that is, how they interact with other matrix operaƟons).

We start with collecƟng ways in which we know that a matrix is inverƟble. We
actually already know the truth of this theorem from our work in the previous secƟon,
but it is good to list the following statements in one place. As we move through other
secƟons, we’ll add on to this theorem.

..
Theorem 9

.

.
InverƟble Matrix Theorem

LetA be an n×nmatrix. The following statements are equiv-
alent.

(a) A is inverƟble.

(b) There exists a matrix B such that BA = I.

(c) There exists a matrix C such that AC = I.

(d) The reduced row echelon form of A is I.

(e) The equaƟon Ax⃗ = b⃗ has exactly one soluƟon for ev-
ery n× 1 vector b⃗.

(f) The equaƟon Ax⃗ = 0⃗ has exactly one soluƟon
(namely, x⃗ = 0⃗).

Let’s make note of a few things about the InverƟble Matrix Theorem.

1. First, note that the theoremuses the phrase “the following statements are equiv-
alent.” When two or more statements are equivalent, it means that the truth of
any one of them implies that the rest are also true; if any one of the statements
is false, then they are all false. So, for example, if we determined that the equa-
Ɵon Ax⃗ = 0⃗ had exactly one soluƟon (and Awas an n×nmatrix) then we would
know that Awas inverƟble, that Ax⃗ = b⃗ had only one soluƟon, that the reduced
row echelon form of A was I, etc.

2. Let’s go through each of the statements and see why we already knew they all
said essenƟally the same thing.

(a) This simply states that A is inverƟble – that is, that there exists a matrix
A−1 such that A−1A = AA−1 = I. We’ll go on to show why all the other
statements basically tell us “A is inverƟble.”

(b) If we know that A is inverƟble, then we already know that there is a matrix
B where BA = I. That is part of the definiƟon of inverƟble. However, we
can also “go the otherway.” Recall from Theorem5 that even if all we know
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is that there is a matrix B where BA = I, then we also know that AB = I.
That is, we know that B is the inverse of A (and hence A is inverƟble).

(c) We use the same logic as in the previous statement to showwhy this is the
same as “A is inverƟble.”

(d) If A is inverƟble, we can find the inverse by using Key Idea 10 (which in turn
depends on Theorem 5). The crux of Key Idea 10 is that the reduced row
echelon form of A is I; if it is something else, we can’t find A−1 (it doesn’t
exist). Knowing that A is inverƟble means that the reduced row echelon
form of A is I. We can go the other way; if we know that the reduced row
echelon form of A is I, then we can employ Key Idea 10 to find A−1, so A is
inverƟble.

(e) We know from Theorem 8 that if A is inverƟble, then given any vector b⃗,
Ax⃗ = b⃗ has always has exactly one soluƟon, namely x⃗ = A−1b⃗. However,
we can go the other way; let’s say we know that Ax⃗ = b⃗ always has exactly
soluƟon. How can we conclude that A is inverƟble?

Think about how we, up to this point, determined the soluƟon to Ax⃗ =
b⃗. We set up the augmented matrix

[
A b⃗

]
and put it into reduced row

echelon form. We know that geƫng the idenƟty matrix on the leŌ means
thatwehad aunique soluƟon (andnot geƫng the idenƟtymeansweeither
have no soluƟon or infinite soluƟons). So geƫng I on the leŌmeans having
a unique soluƟon; having I on the leŌmeans that the reduced row echelon
form of A is I, which we know from above is the same as A being inverƟble.

(f) This is the same as the above; simply replace the vector b⃗ with the vector
0⃗.

So we came up with a list of statements that are all equivalent to the statement
“A is inverƟble.” Again, if we know that if any one of them is true (or false), then
they are all true (or all false).

Theorem 9 states formally that if A is inverƟble, then Ax⃗ = b⃗ has exactly one solu-
Ɵon, namely A−1b⃗. What if A is not inverƟble? What are the possibiliƟes for soluƟons
to Ax⃗ = b⃗?

We know that Ax⃗ = b⃗ cannot have exactly one soluƟon; if it did, then by our the-
orem it would be inverƟble. Recalling that linear equaƟons have either one soluƟon,
infinite soluƟons, or no soluƟon, we are leŌ with the laƩer opƟons when A is not in-
verƟble. This idea is important and so we’ll state it again as a Key Idea.
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..
Key Idea 11

.

.
SoluƟons to Ax⃗ = b⃗ and the InverƟbility of A

Consider the system of linear equaƟons Ax⃗ = b⃗.

1. IfA is inverƟble, then Ax⃗ = b⃗ has exactly one soluƟon,
namely A−1b⃗.

2. If A is not inverƟble, then Ax⃗ = b⃗ has either infinite
soluƟons or no soluƟon.

In Theorem 9 we’ve come up with a list of ways in which we can tell whether or
not a matrix is inverƟble. At the same Ɵme, we have come up with a list of properƟes
of inverƟble matrices – things we know that are true about them. (For instance, if we
know that A is inverƟble, then we know that Ax⃗ = b⃗ has only one soluƟon.)

We now go on to discover other properƟes of inverƟble matrices. Specifically, we
want to find out how inverƟbility interacts with other matrix operaƟons. For instance,
if we know that A and B are inverƟble, what is the inverse of A+B? What is the inverse
of AB? What is “the inverse of the inverse?” We’ll explore these quesƟons through an
example.

.. Example 58 ..Let

A =

[
3 2
0 1

]
and B =

[
−2 0
1 1

]
.

Find:

1. A−1

2. B−1

3. (AB)−1

4. (A−1)−1

5. (A+ B)−1

6. (5A)−1

In addiƟon, try to find connecƟons between each of the above.

SÊ½çã®ÊÄ

1. CompuƟng A−1 is straighƞorward; we’ll use Theorem 7.

A−1 =
1
3

[
1 −2
0 3

]
=

[
1/3 −2/3
0 1

]
2. We compute B−1 in the same way as above.

B−1 =
1
−2

[
1 0
−1 −2

]
=

[
−1/2 0
1/2 1

]
3. To compute (AB)−1, we first compute AB:

AB =

[
3 2
0 1

] [
−2 0
1 1

]
=

[
−4 2
1 1

]
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We now apply Theorem 7 to find (AB)−1.

(AB)−1 =
1
−6

[
1 −2
−1 −4

]
=

[
−1/6 1/3
1/6 2/3

]

4. To compute (A−1)−1, we simply apply Theorem 7 to A−1:

(A−1)−1 =
1

1/3

[
1 2/3
0 1/3

]
=

[
3 2
0 1

]
.

5. To compute (A+ B)−1, we first compute A+ B then apply Theorem 7:

A+ B =

[
3 2
0 1

]
+

[
−2 0
1 1

]
=

[
1 2
1 2

]
.

Hence

(A+ B)−1 =
1
0

[
2 −2
−1 1

]
= !

Our last expression is really nonsense; we know that if ad − bc = 0, then the
given matrix is not inverƟble. That is the case with A + B, so we conclude that
A+ B is not inverƟble.

6. To compute (5A)−1, we compute 5A and then apply Theorem 7.

(5A)−1 =

([
15 10
0 5

])−1

=
1
75

[
5 −10
0 15

]
=

[
1/15 −2/15
0 1/5

]

We now look for connecƟons between A−1, B−1, (AB)−1, (A−1)−1 and (A+ B)−1.
..

3. Is there some sort of relaƟonship between (AB)−1 and A−1 and B−1? A first
guess that seems plausible is (AB)−1 = A−1B−1. Is this true? Using our work
from above, we have

A−1B−1 =

[
1/3 −2/3
0 1

] [
−1/2 0
1/2 1

]
=

[
−1/2 −2/3
1/2 1

]
.

Obviously, this is not equal to (AB)−1. Before we do some further guessing, let’s
think about what the inverse of AB is supposed to do. The inverse – let’s call it
C – is supposed to be a matrix such that

(AB)C = C(AB) = I.

In examining the expression (AB)C, we see that we want B to somehow “cancel”
with C. What “cancels” B? An obvious answer is B−1. This gives us a thought:
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perhaps we got the order of A−1 and B−1 wrong before. AŌer all, we were hop-
ing to find that

ABA−1B−1 ?
= I,

but algebraically speaking, it is hard to cancel out these terms.21 However,
switching the order of A−1 and B−1 gives us some hope. Is (AB)−1 = B−1A−1?
Let’s see.

(AB)(B−1A−1) = A(BB−1)A−1 (regrouping by the associaƟve property)

= AIA−1 (BB−1 = I)

= AA−1 (AI = A)

= I (AA−1 = I)

Thus it seems that (AB)−1 = B−1A−1. Let’s confirm this with our example ma-
trices.

B−1A−1 =

[
−1/2 0
1/2 1

] [
1/3 −2/3
0 1

]
=

[
−1/6 1/3
1/6 2/3

]
= (AB)−1.

It worked!

4. Is there some sort of connecƟon between (A−1)−1 and A? The answer is preƩy
obvious: they are equal. The “inverse of the inverse” returns one to the original
matrix.

5. Is there some sort of relaƟonship between (A+B)−1, A−1 and B−1? Certainly, if
we were forced tomake a guess without working any examples, we would guess
that

(A+ B)−1 ?
= A−1 + B−1.

However, we saw that in our example, the matrix (A + B) isn’t even inverƟble.
This preƩy much kills any hope of a connecƟon.

6. Is there a connecƟon between (5A)−1 and A−1? Consider:

(5A)−1 =

[
1/15 −2/15
0 1/5

]
=

1
5

[
1/3 −2/3
0 1/5

]
=

1
5
A−1

Yes, there is a connecƟon!

...

Let’s summarize the results of this example. If A and B are both inverƟblematrices,
then so is their product, AB. We demonstrated this with our example, and there is

21Recall that matrix mulƟplicaƟon is not commutaƟve. 117
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more to be said. Let’s suppose that A and B are n× nmatrices, but we don’t yet know
if they are inverƟble. If AB is inverƟble, then each of A and B are; if AB is not inverƟble,
then A or B is also not inverƟble.

In short, inverƟbility “works well” with matrix mulƟplicaƟon. However, we saw
that it doesn’t work well with matrix addiƟon. Knowing that A and B are inverƟble
does not help us find the inverse of (A+ B); in fact, the laƩer matrix may not even be
inverƟble.22

Let’s do one more example, then we’ll summarize the results of this secƟon in a
theorem.

.. Example 59 Find the inverse of A =

 2 0 0
0 3 0
0 0 −7

.
SÊ½çã®ÊÄ We’ll find A−1 using Key Idea 10.

 2 0 0 1 0 0
0 3 0 0 1 0
0 0 −7 0 0 1

 −→
rref

 1 0 0 1/2 0 0
0 1 0 0 1/3 0
0 0 1 0 0 −1/7



Therefore

A−1 =

 1/2 0 0
0 1/3 0
0 0 −1/7

 .

..

ThematrixA in the previous example is a diagonalmatrix: the only nonzero entries
of A lie on the diagonal.23 The relaƟonship between A and A−1 in the above example
seems preƩy strong, and it holds true in general. We’ll state this and summarize the
results of this secƟon with the following theorem.

22The fact that inverƟbility works well with matrix mulƟplicaƟon should not come as a surprise. AŌer
all, saying that A is inverƟble makes a statement about the muliƟplicaƟve properƟes of A. It says that I can
mulƟply A with a special matrix to get I. InverƟbility, in and of itself, says nothing about matrix addiƟon,
therefore we should not be too surprised that it doesn’t work well with it.

23We sƟll haven’t formally defined diagonal, but the definiƟon is rather visual so we risk it. See DefiniƟon
20 on page 123 for more details.
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..
Theorem 10

.

.
ProperƟes of InverƟble Matrices

Let A and B be n× n inverƟble matrices. Then:

1. AB is inverƟble; (AB)−1 = B−1A−1.

2. A−1 is inverƟble; (A−1)−1 = A.

3. nA is inverƟble for any nonzero scalar n; (nA)−1 =
1
nA

−1.

4. If A is a diagonal matrix, with diagonal entries
d1, d2, · · · , dn, where none of the diagonal en-
tries are 0, then A−1 exists and is a diagonal ma-
trix. Furthermore, the diagonal entries of A−1 are
1/d1, 1/d2, · · · , 1/dn.

Furthermore,

1. If a product AB is not inverƟble, then A or B is not in-
verƟble.

2. If A or B are not inverƟble, then AB is not inverƟble.

We end this secƟon with a comment about solving systems of equaƟons “in real
life.”24 Solving a system Ax⃗ = b⃗ by compuƟng A−1b⃗ seems preƩy slick, so it would
make sense that this is the way it is normally done. However, in pracƟce, this is rarely
done. There are two main reasons why this is the case.

First, compuƟng A−1 and A−1b⃗ is “expensive” in the sense that it takes up a lot of
compuƟng Ɵme. Certainly, our calculators have no trouble dealing with the 3×3 cases
we oŌen consider in this textbook, but in real life the matrices being considered are
very large (as in, hundreds of thousand rows and columns). CompuƟng A−1 alone is
rather impracƟcal, and we waste a lot of Ɵme if we come to find out that A−1 does
not exist. Even if we already know what A−1 is, compuƟng A−1b⃗ is computaƟonally
expensive – Gaussian eliminaƟon is faster.

Secondly, compuƟng A−1 using the method we’ve described oŌen gives rise to
numerical roundoff errors. Even though computers oŌen do computaƟons with an
accuracy to more than 8 decimal places, aŌer thousands of computaƟons, roundoffs

24Yes, real people do solve linear equaƟons in real life. Not just mathemaƟcians, but economists, engi-
neers, and scienƟsts of all flavors regularly need to solve linear equaƟons, and the matrices they use are
oŌen huge.

Most people see matrices at work without thinking about it. Digital pictures are simply “rectangular
arrays” of numbers represenƟng colors – they arematrices of colors. Many of the standard image processing
operaƟons involve matrix operaƟons. The author’s wife has a “7 megapixel” camera which creates pictures
that are 3072 × 2304 in size, giving over 7 million pixels, and that isn’t even considered a “large” picture
these days.
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can cause big errors. (A “small” 1, 000 × 1, 000 matrix has 1, 000, 000 entries! That’s
a lot of places to have roundoff errors accumulate!) It is not unheard of to have a
computer computeA−1 for a largematrix, and then immediately have it computeAA−1

and not get the idenƟty matrix.25

Therefore, in real life, soluƟons to Ax⃗ = b⃗ are usually found using the methods we
learned in SecƟon 2.4. It turns out that even with all of our advances in mathemaƟcs,
it is hard to beat the basic method that Gauss introduced a long Ɵme ago.

Exercises 2.7
In Exercises 1 – 4, matrices A and B are given.
Compute (AB)−1 and B−1A−1.

1. A =

[
1 2
1 1

]
, B =

[
3 5
2 5

]
2. A =

[
1 2
3 4

]
, B =

[
7 1
2 1

]
3. A =

[
2 5
3 8

]
, B =

[
1 −1
1 4

]
4. A =

[
2 4
2 5

]
, B =

[
2 2
6 5

]
In Exercises 5 – 8, a 2 × 2 matrix A is given.
Compute A−1 and (A−1)−1 using Theorem 7.

5. A =

[
−3 5
1 −2

]
6. A =

[
3 5
2 4

]
7. A =

[
2 7
1 3

]

8. A =

[
9 0
7 9

]
9. Find 2×2matricesA andB that are each

inverƟble, but A+ B is not.

10. Create a random 6 × 6 matrix A, then
have a calculator or computer compute
AA−1. Was the idenƟtymatrix returned
exactly? Comment on your results.

11. Use a calculator or computer to com-
pute AA−1, where

A =


1 2 3 4
1 4 9 16
1 8 27 64
1 16 81 256

 .

Was the idenƟty matrix returned ex-
actly? Comment on your results.

25The result is usually very close, with the numbers on the diagonal close to 1 and the other entries near
0. But it isn’t exactly the idenƟty matrix.
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In the previous chapter we learned about matrix arithmeƟc: adding, subtracƟng, and
mulƟplying matrices, finding inverses, and mulƟplying by scalars. In this chapter we
learn about some operaƟons that we perform on matrices. We can think of them as
funcƟons: you input a matrix, and you get something back. One of these operaƟons,
the transpose, will return another matrix. With the other operaƟons, the trace and
the determinant, we inputmatrices and get numbers in return, an idea that is different
than what we have seen before.

3.1 The Matrix Transpose

...AS YOU READ . . .

1. T/F: If A is a 3× 5 matrix, then AT will be a 5× 3 matrix.

2. Where are there zeros in an upper triangular matrix?

3. T/F: A matrix is symmetric if it doesn’t change when you take its transpose.

4. What is the transpose of the transpose of A?

5. Give 2 other terms to describe symmetric matrices besides “interesƟng.”

We jump right in with a definiƟon.
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..
DefiniƟon 19

.

.
Transpose

Let A be an m × n matrix. The tranpsose of A, denoted AT,
is the n×mmatrix whose columns are the respecƟve rows
of A.

Examples will make this definiƟon clear.

.. Example 60 Find the transpose of A =

[
1 2 3
4 5 6

]
.

SÊ½çã®ÊÄ Note that A is a 2 × 3 matrix, so AT will be a 3 × 2 matrix. By the
definiƟon, the first column of AT is the first row of A; the second column of AT is the
second row of A. Therefore,

AT =

 1 4
2 5
3 6

 .
..

.. Example 61 Find the transpose of the following matrices.

A =

 7 2 9 1
2 −1 3 0
−5 3 0 11

 B =

 1 10 −2
3 −5 7
4 2 −3

 C =
[
1 −1 7 8 3

]

SÊ½çã®ÊÄ We find each transpose using the definiƟon without explanaƟon.
Makenote of the dimensions of the originalmatrix and the dimensions of its transpose.

AT =


7 2 −5
2 −1 3
9 3 0
1 0 11

 BT =

 1 3 4
10 −5 2
−2 7 −3

 CT =


1
−1
7
8
3


..

NoƟce thatwithmatrixB, whenwe took the transpose, thediagonal did not change.
We can see what the diagonal is belowwhere we rewrite B and BT with the diagonal in
bold. We’ll follow this by a definiƟon of what we mean by “the diagonal of a matrix,”
along with a few other related definiƟons.

B =

 1 10 −2
3 –5 7
4 2 –3

 BT =

 1 3 4
10 –5 2
−2 7 –3


It is probably preƩy clear why we call those entries “the diagonal.” Here is the

formal definiƟon.
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..
DefiniƟon 20

.

.
The Diagonal, a Diagonal Matrix, Triangular Matrices

Let A be anm× nmatrix. The diagonal of A consists of the
entries a11, a22, . . . of A.

A diagonal matrix is an n × n matrix in which the only
nonzero entries lie on the diagonal.

An upper (lower) triangular matrix is a matrix in which any
nonzero entries lie on or above (below) the diagonal.

.. Example 62 Consider the matrices A, B, C and I4, as well as their transposes,
where

A =

 1 2 3
0 4 5
0 0 6

 B =

 3 0 0
0 7 0
0 0 −1

 C =


1 2 3
0 4 5
0 0 6
0 0 0

 .

IdenƟfy the diagonal of each matrix, and state whether each matrix is diagonal, upper
triangular, lower triangular, or none of the above.

SÊ½çã®ÊÄ We first compute the transpose of each matrix.

AT =

 1 0 0
2 4 0
3 5 6

 BT =

 3 0 0
0 7 0
0 0 −1

 CT =

 1 0 0 0
2 4 0 0
3 5 6 0


Note that IT4 = I4.

The diagonals of A and AT are the same, consisƟng of the entries 1, 4 and 6. The
diagonals of B and BT are also the same, consisƟng of the entries 3, 7 and−1. Finally,
the diagonals of C and CT are the same, consisƟng of the entries 1, 4 and 6.

The matrix A is upper triangular; the only nonzero entries lie on or above the diag-
onal. Likewise, AT is lower triangular.

The matrix B is diagonal. By their definiƟons, we can also see that B is both upper
and lower triangular. Likewise, I4 is diagonal, as well as upper and lower triangular.

Finally, C is upper triangular, with CT being lower triangular. ..

Make note of the definiƟons of diagonal and triangular matrices. We specify that
a diagonal matrix must be square, but triangular matrices don’t have to be. (“Most”
of the Ɵme, however, the ones we study are.) Also, as we menƟoned before in the
example, by definiƟon a diagonal matrix is also both upper and lower triangular. Fi-
nally, noƟce that by definiƟon, the transpose of an upper triangular matrix is a lower
triangular matrix, and vice-versa.
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There are many quesƟons to probe concerning the transpose operaƟons.1 The
first set of quesƟons we’ll invesƟgate involve the matrix arithmeƟc we learned from
last chapter. We do this invesƟgaƟon by way of examples, and then summarize what
we have learned at the end.

.. Example 63 Let

A =

[
1 2 3
4 5 6

]
and B =

[
1 2 1
3 −1 0

]
.

Find AT + BT and (A+ B)T.

SÊ½çã®ÊÄ We note that

AT =

 1 4
2 5
3 6

 and BT =

 1 3
2 −1
1 0

 .

Therefore

AT + BT =

 1 4
2 5
3 6

+

 1 3
2 −1
1 0


=

 2 7
4 4
4 6

 .

Also,

(A+ B)T =
([

1 2 3
4 5 6

]
+

[
1 2 1
3 −1 0

])T

=

([
2 4 4
7 4 6

])T

=

 2 7
4 4
4 6

 .

..

It looks like “the sum of the transposes is the transpose of the sum.”2 This should
lead us to wonder how the transpose works with mulƟplicaƟon.

.. Example 64 ..Let

A =

[
1 2
3 4

]
and B =

[
1 2 −1
1 0 1

]
.

1Remember, this is whatmathemaƟcians do. We learn something new, and thenwe ask lots of quesƟons
about it. OŌen the first quesƟons we ask are along the lines of “How does this new thing relate to the old
things I already know about?”

2This is kind of fun to say, especially when said fast. Regardless of how fast we say it, we should think
about this statement. The “is” represents “equals.” The stuff before “is” equals the stuff aŌerwards.
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Find (AB)T, ATBT and BTAT.

SÊ½çã®ÊÄ We first note that

AT =

[
1 3
2 4

]
and BT =

 1 1
2 0
−1 1

 .

Find (AB)T:

(AB)T =
([

1 2
3 4

] [
1 2 −1
1 0 1

])T

=

([
3 2 1
7 6 1

])T

=

 3 7
2 6
1 1


Now find ATBT:

ATBT =

[
1 3
2 4

] 1 1
2 0
−1 1


= Not defined!

So we can’t compute ATBT. Let’s finish by compuƟng BTAT:

BTAT =

 1 1
2 0
−1 1

[
1 3
2 4

]

=

 3 7
2 6
1 1


...

We may have suspected that (AB)T = ATBT. We saw that this wasn’t the case,
though – and not onlywas it not equal, the second productwasn’t even defined! Oddly
enough, though, we saw that (AB)T = BTAT. 3 To help understand why this is true,
look back at the work above and confirm the steps of each mulƟplicaƟon.

We have one more arithmeƟc operaƟon to look at: the inverse.

.. Example 65 ..Let

A =

[
2 7
1 4

]
.

3Then again, maybe this isn’t all that “odd.” It is reminiscent of the fact that, when inverƟble, (AB)−1 =
B−1A−1.
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Find (A−1)T and (AT)−1.

SÊ½çã®ÊÄ We first find A−1 and AT:

A−1 =

[
4 −7
−1 2

]
and AT =

[
2 1
7 4

]
.

Finding (A−1)T:

(A−1)T =

[
4 −7
−1 2

]T
=

[
4 −1
−7 2

]
Finding (AT)−1:

(AT)−1 =

[
2 1
7 4

]−1

=

[
4 −1
−7 2

]
...

It seems that “the inverse of the transpose is the transpose of the inverse.”4

We have just looked at some examples of how the transpose operaƟon interacts
with matrix arithmeƟc operaƟons.5 We now give a theorem that tells us that what we
saw wasn’t a coincidence, but rather is always true.

..
Theorem 11

.

.
ProperƟes of the Matrix Transpose

Let A and B be matrices where the following operaƟons are
defined. Then:

1. (A+ B)T = AT + BT and (A− B)T = AT − BT

2. (kA)T = kAT

3. (AB)T = BTAT

4. (A−1)T = (AT)−1

5. (AT)T = A

We included in the theorem two ideas we didn’t discuss already. First, that (kA)T =

4Again, we should think about this statement. The part before “is” states that we take the transpose of
a matrix, then find the inverse. The part aŌer “is” states that we find the inverse of the matrix, then take
the transpose. Since these two statements are linked by an “is,” they are equal.

5These examples don’t prove anything, other than it worked in specific examples.
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kAT. This is probably obvious. It doesn’t maƩer when you mulƟply a matrix by a scalar
when dealing with transposes.

The second “new” item is that (AT)T = A. That is, if we take the transpose of a
matrix, then take its transpose again, what do we have? The original matrix.

Now that we know some properƟes of the transpose operaƟon, we are tempted
to play around with it and see what happens. For instance, if A is anm× nmatrix, we
know that AT is an n × m matrix. So no maƩer what matrix A we start with, we can
always perform themulƟplicaƟon AAT (and also ATA) and the result is a square matrix!

Another thing to ask ourselves as we “play around” with the transpose: suppose A
is a square matrix. Is there anything special about A+ AT? The following example has
us try out these ideas.

.. Example 66 Let

A =

 2 1 3
2 −1 1
1 0 1

 .

Find AAT, A+ AT and A− AT.

SÊ½çã®ÊÄ Finding AAT:

AAT =

 2 1 3
2 −1 1
1 0 1

 2 2 1
1 −1 0
3 1 1


=

 14 6 5
6 4 3
5 3 2


Finding A+ AT:

A+ AT =

 2 1 3
2 −1 1
1 0 1

+

 2 2 1
1 −1 0
3 1 1


=

 2 3 4
3 −2 1
4 1 2


Finding A− AT:

A− AT =

 2 1 3
2 −1 1
1 0 1

−

 2 2 1
1 −1 0
3 1 1


=

 0 −1 2
1 0 1
−2 −1 0


..
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Let’s look at thematrices we’ve formed in this example. First, consider AAT. Some-
thing seems to be nice about this matrix – look at the locaƟon of the 6’s, the 5’s and
the 3’s. More precisely, let’s look at the transpose of AAT. We should noƟce that if we
take the transpose of this matrix, we have the very same matrix. That is, 14 6 5

6 4 3
5 3 2

T

=

 14 6 5
6 4 3
5 3 2

 !

We’ll formally define this in a moment, but a matrix that is equal to its transpose
is called symmetric.

Look at the next part of the example; what do we noƟce about A+AT? We should
see that it, too, is symmetric. Finally, consider the last part of the example: do we
noƟce anything about A− AT?

We should immediately noƟce that it is not symmetric, although it does seem
“close.” Instead of it being equal to its transpose, we noƟce that this matrix is the
opposite of its transpose. We call this type of matrix skew symmetric.6 We formally
define these matrices here.

..
DefiniƟon 21

.

.
Symmetric and Skew Symmetric Matrices

A matrix A is symmetric if AT = A.

A matrix A is skew symmetric if AT = −A.

Note that in order for a matrix to be either symmetric or skew symmetric, it must
be square.

So why was AAT symmetric in our previous example? Did we just luck out?7 Let’s
take the transpose of AAT and see what happens.

(AAT)T = (AT)T(A)T transpose mulƟplicaƟon rule

= AAT
(AT

)
T
= A

Wehave just proved that nomaƩerwhatmatrixAwe start with, thematrixAAT will
be symmetric. Nothing in our string of equaliƟes even demanded that A be a square
matrix; it is always true.

We can do a similar proof to show that as long as A is square, A+AT is a symmetric
matrix.8 We’ll instead show here that if A is a square matrix, then A − AT is skew

6Some mathemaƟcians use the term anƟsymmetric
7Of course not.
8Why do we say that A has to be square?
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symmetric.

(A− AT)T = AT − (AT)T transpose subtracƟon rule

= AT − A

= −(A− AT)

So we took the transpose of A− AT and we got−(A− AT); this is the definiƟon of
being skew symmetric.

We’ll take what we learned from Example 66 and put it in a box. (We’ve already
proved most of this is true; the rest we leave to solve in the Exercises.)

..
Theorem 12

.

.
Symmetric and Skew Symmetric Matrices

1. Given anymatrixA, thematricesAAT andATA are sym-
metric.

2. Let A be a square matrix. The matrix A + AT is sym-
metric.

3. Let A be a square matrix. The matrix A − AT is skew
symmetric.

Why dowe care about the transpose of amatrix? Why dowe care about symmetric
matrices?

There are two answers that each answer both of these quesƟons. First, we are
interested in the tranpose of a matrix and symmetric matrices because they are in-
teresƟng.9 One parƟcularly interesƟng thing about symmetric and skew symmetric
matrices is this: consider the sum of (A+ AT) and (A− AT):

(A+ AT) + (A− AT) = 2A.

This gives us an idea: if we were to mulƟply both sides of this equaƟon by 1
2 , then the

right hand side would just be A. This means that

A =
1
2
(A+ AT)︸ ︷︷ ︸
symmetric

+
1
2
(A− AT)︸ ︷︷ ︸

skew symmetric

.

That is, any matrix A can be wriƩen as the sum of a symmetric and skew symmetric
matrix. That’s interesƟng.

The second reasonwe care about them is that they are very useful and important in
various areas of mathemaƟcs. The transpose of a matrix turns out to be an important

9Or: “neat,” “cool,” “bad,” “wicked,” “phat,” “fo-shizzle.”
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operaƟon; symmetric matrices have many nice properƟes that make solving certain
types of problems possible.

Most of this text focuses on the preliminaries ofmatrix algebra, and the actual uses
are beyond our current scope. One easy to describe example is curve fiƫng. Suppose
we are given a large set of data points that, when ploƩed, look roughly quadraƟc. How
do we find the quadraƟc that “best fits” this data? The soluƟon can be found using
matrix algebra, and specifically a matrix called the pseudoinverse. If A is a matrix, the
pseudoinverse of A is the matrix A† = (ATA)−1AT (assuming that the inverse exists).
We aren’t going to worry about what all the abovemeans; just noƟce that it has a cool
sounding name and the transpose appears twice.

In the next secƟon we’ll learn about the trace, another operaƟon that can be per-
formed on a matrix that is relaƟvely simple to compute but can lead to some deep
results.

Exercises 3.1
In Exercises 1 – 24, a matrix A is given. Find
AT; make note if A is upper/lower triangular,
diagonal, symmetric and/or skew symmetric.

1.
[
−7 4
4 −6

]
2.

[
3 1
−7 8

]
3.

[
1 0
0 9

]
4.

[
13 −3
−3 1

]

5.

 −5 −9
3 1

−10 −8



6.

−2 10
1 −7
9 −2


7.

[
4 −7 −4 −9
−9 6 3 −9

]
8.

[
3 −10 0 6

−10 −2 −3 1

]
9.

[
−7 −8 2 −3

]
10.

[
−9 8 2 −7

]
11.

−9 4 10
6 −3 −7
−8 1 −1



12.

 4 −5 2
1 5 9
9 2 3



13.

 4 0 −2
0 2 3
−2 3 6



14.

 0 3 −2
3 −4 1
−2 1 0



15.

 2 −5 −3
5 5 −6
7 −4 −10



16.

 0 −6 1
6 0 4
−1 −4 0



17.

 4 2 −9
5 −4 −10
−6 6 9



18.

 4 0 0
−2 −7 0
4 −2 5



19.

−3 −4 −5
0 −3 5
0 0 −3



20.

 6 −7 2 6
0 −8 −1 0
0 0 1 −7


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21.

 1 0 0
0 2 0
0 0 −1


22.

 6 −4 −5
−4 0 2
−5 2 −2


23.

 0 1 −2
−1 0 4
2 −4 0


24.

 0 0 0
0 0 0
0 0 0



3.2 The Matrix Trace
...AS YOU READ . . .

1. T/F: We only compute the trace of square matrices.

2. T/F: One can tell if a matrix is inverƟble by compuƟng the trace.

In the previous secƟon, we learned about an operaƟonwe can peformonmatrices,
namely the transpose. Given a matrix A, we can “find the transpose of A,” which is
another matrix. In this secƟon we learn about a new operaƟon called the trace. It is
a different type of operaƟon than the transpose. Given a matrix A, we can “find the
trace of A,” which is not a matrix but rather a number. We formally define it here.

..
DefiniƟon 22

.

.
The Trace

Let A be an n × n matrix. The trace of A, denoted tr(A), is
the sum of the diagonal elements of A. That is,

tr(A) = a11 + a22 + · · ·+ ann.

This seems like a simple definiƟon, and it really is. Just to make sure it is clear, let’s
pracƟce.

.. Example 67 ..Find the trace of A, B, C and I4, where

A =

[
1 2
3 4

]
, B =

 1 2 0
3 8 1
−2 7 −5

 and C =

[
1 2 3
4 5 6

]
.

SÊ½çã®ÊÄ To find the trace of A, note that the diagonal elements of A are 1
and 4. Therefore, tr(A) = 1+ 4 = 5.

We see that the diagonal elements of B are 1, 8 and -5, so tr(B)= 1+ 8− 5 = 4.
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The matrix C is not a square matrix, and our definiƟon states that we must start
with a square matrix. Therefore tr(C) is not defined.

Finally, the diagonal of I4 consists of four 1s. Therefore tr(I4) = 4. ...

Now that we have defined the trace of a matrix, we should think like mathemaƟ-
cians and ask some quesƟons. The first quesƟons that should pop into our minds
should be along the lines of “Howdoes the traceworkwith othermatrix operaƟons?”10

We should think about how the trace works withmatrix addiƟon, scalar mulƟplicaƟon,
matrix mulƟplicaƟon, matrix inverses, and the transpose.

We’ll give a theorem that will formally tell us what is true in a moment, but first
let’s play with two sample matrices and see if we can see what will happen. Let

A =

 2 1 3
2 0 −1
3 −1 3

 and B =

 2 0 1
−1 2 0
0 2 −1

 .

It should be clear that tr(A) = 5 and tr(B) = 3. What is tr(A+ B)?

tr(A+ B) = tr

 2 1 3
2 0 −1
3 −1 3

+

 2 0 1
−1 2 0
0 2 −1


= tr

 4 1 4
1 2 −1
3 1 2


= 8

So we noƟce that tr(A+ B) = tr(A) + tr(B). This probably isn’t a coincidence.

How does the trace work with scalar mulƟplicaƟon? If wemulƟply A by 4, then the
diagonal elements will be 8, 0 and 12, so tr(4A) = 20. Is it a coincidence that this is 4
Ɵmes the trace of A?

Let’s move on tomatrix mulƟplicaƟon. Howwill the trace of AB relate to the traces
of A and B? Let’s see:

tr(AB) = tr

 2 1 3
2 0 −1
3 −1 3

 2 0 1
−1 2 0
0 2 −1


= tr

 3 8 −1
4 −2 3
7 4 0


= 1

10Recall that we asked a similar quesƟon once we learned about the transpose.
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It isn’t exactly clear what the relaƟonship is among tr(A), tr(B) and tr(AB). Before
moving on, let’s find tr(BA):

tr(BA) = tr

 2 0 1
−1 2 0
0 2 −1

 2 1 3
2 0 −1
3 −1 3


= tr

 7 1 9
2 −1 −5
1 1 −5


= 1

We noƟce that tr(AB) = tr(BA). Is this coincidental?
How are the traces of A and A−1 related? We compute A−1 and find that

A−1 =

 1/17 6/17 1/17
9/17 3/17 −8/17
2/17 −5/17 2/17

 .

Therefore tr(A−1) = 6/17. Again, the relaƟonship isn’t clear.11

Finally, let’s see how the trace is related to the transpose. We actually don’t have
to formally compute anything. Recall from the previous secƟon that the diagonals
of A and AT are idenƟcal; therefore, tr(A) = tr(AT). That, we know for sure, isn’t a
coincidence.

We now formally state what equaliƟes are true when considering the interacƟon
of the trace with other matrix operaƟons.

..
Theorem 13

.

.
ProperƟes of the Matrix Trace

Let A and B be n× nmatrices. Then:

1. tr(A+ B) = tr(A) + tr(B)

2. tr(A− B) = tr(A)− tr(B)

3. tr(kA) = k·tr(A)

4. tr(AB) = tr(BA)

5. tr(AT) = tr(A)

One of the key things to note here iswhat this theoremdoes not say. It says nothing
about how the trace relates to inverses. The reason for the silence in these areas is
that there simply is not a relaƟonship.

11Something to think about: we know that not all square matrices are inverƟble. Would we be able to
tell just by the trace? That seems unlikely.
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We end this secƟon by again wondering why anyone would care about the trace of
matrix. One reason mathemaƟcians are interested in it is that it can give a measure-
ment of the “size”12 of a matrix.

Consider the following 2× 2 matrices:

A =

[
1 −2
1 1

]
and B =

[
6 7
11 −4

]
.

Thesematrices have the same trace, yet B clearly has bigger elements in it. So how
can we use the trace to determine a “size” of these matrices? We can consider tr(ATA)
and tr(BTB).

tr(ATA) = tr
([

1 1
−2 1

] [
1 −2
1 1

])
= tr

([
2 −1
−1 5

])
= 7

tr(BTB) = tr
([

6 11
7 −4

] [
6 7
11 −4

])
= tr

([
157 −2
−2 65

])
= 222

Our concern is not how to interpret what this “size” measurement means, but
rather to demonstrate that the trace (along with the transpose) can be used to give
(perhaps useful) informaƟon about a matrix.13

12There are many different measurements of a matrix size. In this text, we just refer to its dimensions.
Some measurements of size refer the magnitude of the elements in the matrix. The next secƟon describes
yet another measurement of matrix size.

13This example brings to light many interesƟng ideas that we’ll flesh out just a liƩle bit here.

1. NoƟce that the elements of A are 1,−2, 1 and 1. Add the squares of these numbers: 12 +(−2)2 +
12 + 12 = 7 = tr(ATA).
NoƟce that the elements of B are 6, 7, 11 and -4. Add the squares of these numbers: 62 + 72 +
112 + (−4)2 = 222 = tr(BTB).
Can you see why this is true? When looking at mulƟplying ATA, focus only on where the elements
on the diagonal come from since they are the only ones that maƩer when taking the trace.

2. You can confirm on your own that regardless of the dimensions of A, tr(ATA) = tr(AAT). To see why
this is true, consider the previous point. (Recall also that ATA and AAT are always square, regardless
of the dimensions of A.)

3. MathemaƟcians are actually more interested in
√

tr(ATA) than just tr(ATA). The reason for this is a
bit complicated; the short answer is that “it works beƩer.” The reason “it works beƩer” is related to
the Pythagorean Theorem, all of all things. If we know that the legs of a right triangle have length
a and b, we are more interested in

√
a2 + b2 than just a2 + b2. Of course, this explanaƟon raises

more quesƟons than it answers; our goal here is just to whet your appeƟte and get you to do some
more reading. A Numerical Linear Algebra book would be a good place to start.
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Exercises 3.2
In Exercises 1 – 15, find the trace of the given
matrix.

1.
[
1 −5
9 5

]
2.

[
−3 −10
−6 4

]
3.

[
7 5
−5 −4

]
4.

[
−6 0
−10 9

]

5.

−4 1 1
−2 0 0
−1 −2 −5


6.

 0 −3 1
5 −5 5
−4 1 0


7.

−2 −3 5
5 2 0
−1 −3 1


8.

 4 2 −1
−4 1 4
0 −5 5


9.

[
2 6 4
−1 8 −10

]

10.

 6 5
2 10
3 3



11.


−10 6 −7 −9
−2 1 6 −9
0 4 −4 0
−3 −9 3 −10



12.


5 2 2 2
−7 4 −7 −3
9 −9 −7 2
−4 8 −8 −2


13. I4

14. In

15. A matrix A that is skew symmetric.

In Exercises 16 – 19, verify Theorem 13 by:

1. Showing that tr(A)+tr(B) = tr(A + B)
and

2. Showing that tr(AB) = tr(BA).

16. A =

[
1 −1
9 −6

]
, B =

[
−1 0
−6 3

]

17. A =

[
0 −8
1 8

]
, B =

[
−4 5
−4 2

]

18. A =

 −8 −10 10
10 5 −6
−10 1 3


B =

−10 −4 −3
−4 −5 4
3 7 3



19. A =

−10 7 5
7 7 −5
8 −9 2


B =

−3 −4 9
4 −1 −9
−7 −8 10



3.3 The Determinant
...AS YOU READ . . .

1. T/F: The determinant of a matrix is always posiƟve.

2. T/F: To compute the determinant of a 3 × 3 matrix, one needs to compute the
determinants of 3 2× 2 matrices.

3. Give an example of a 2× 2 matrix with a determinant of 3.
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In this chapter so far we’ve learned about the transpose (an operaƟon on a ma-
trix that returns another matrix) and the trace (an operaƟon on a square matrix that
returns a number). In this secƟon we’ll learn another operaƟon on square matrices
that returns a number, called the determinant. We give a pseudo-definiƟon of the
determinant here.

The determinant of an n× nmatrix A is a number, denoted
det(A), that is determined by A.

That definiƟon isn’t meant to explain everything; it just gets us started by making
us realize that the determinant is a number. The determinant is kind of a tricky thing
to define. Once you know and understand it, it isn’t that hard, but geƫng started is a
bit complicated.14 We start simply; we define the determinant for 2× 2 matrices.

..
DefiniƟon 23

.

.
Determinant of 2× 2Matrices

Let

A =

[
a b
c d

]
.

The determinant of A, denoted by

det (A) or

∣∣∣∣ a b
c d

∣∣∣∣ ,
is ad− bc.

We’ve seen the expression ad− bc before. In SecƟon 2.6, we saw that a 2× 2 matrix
A has inverse

1
ad− bc

[
d −b
−c a

]
as long as ad − bc ̸= 0; otherwise, the inverse does not exist. We can rephrase the
above statement now: If det(A) ̸= 0, then

A−1 =
1

det (A)

[
d −b
−c a

]
.

A brief word about the notaƟon: noƟce that we can refer to the determinant by us-
ing what looks like absolute value bars around the entries of a matrix. We discussed at
the end of the last secƟon the idea of measuring the “size” of a matrix, andmenƟoned
that there are many different ways to measure size. The determinant is one such way.
Just as the absolute value of a number measures its size (and ignores its sign), the de-
terminant of a matrix is a measurement of the size of the matrix. (Be careful, though:
det(A) can be negaƟve!)

Let’s pracƟce.

14It’s similar to learning to ride a bike. The riding itself isn’t hard, it is geƫng started that’s difficult.
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.. Example 68 Find the determinant of A, B and C where

A =

[
1 2
3 4

]
, B =

[
3 −1
2 7

]
and C =

[
1 −3
−2 6

]
.

SÊ½çã®ÊÄ Finding the determinant of A:

det (A) =

∣∣∣∣ 1 2
3 4

∣∣∣∣
= 1(4)− 2(3)

= −2.

Similar computaƟons show that det (B) = 3(7) − (−1)(2) = 23 and det (C) =
1(6)− (−3)(−2) = 0. ..

Finding the determinant of a 2× 2 matrix is preƩy straighƞorward. It is natural to
ask next “How do we compute the determinant of matrices that are not 2 × 2?” We
first need to define some terms.15

..
DefiniƟon 24

.

.
Matrix Minor, Cofactor

Let A be an n× nmatrix. The i, j minor of A, denoted Ai,j, is
the determinant of the (n− 1)× (n− 1)matrix formed by
deleƟng the ith row and jth column of A.

The i, j-cofactor of A is the number

Cij = (−1)i+jAi,j.

NoƟce that this definiƟonmakes reference to taking the determinant of amatrix, while
we haven’t yet defined what the determinant is beyond 2× 2 matrices. We recognize
this problem, and we’ll see how far we can go before it becomes an issue.

Examples will help.

.. Example 69 ..Let

A =

 1 2 3
4 5 6
7 8 9

 and B =


1 2 0 8
−3 5 7 2
−1 9 −4 6
1 1 1 1

 .

Find A1,3, A3,2, B2,1, B4,3 and their respecƟve cofactors.

15This is the standard definiƟon of these two terms, although slight variaƟons exist.
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SÊ½çã®ÊÄ To compute the minor A1,3, we remove the first row and third col-
umn of A then take the determinant.

A =

 1 2 3
4 5 6
7 8 9

 ⇒

 1 2 3
4 5 6
7 8 9

 ⇒
[
4 5
7 8

]

A1,3 =

∣∣∣∣ 4 5
7 8

∣∣∣∣ = 32− 35 = −3.

The corresponding cofactor, C1,3, is

C1,3 = (−1)1+3A1,3 = (−1)4(−3) = −3.

The minor A3,2 is found by removing the third row and second column of A then
taking the determinant.

A =

 1 2 3
4 5 6
7 8 9

 ⇒

 1 2 3
4 5 6
7 8 9

 ⇒
[
1 3
4 6

]

A3,2 =

∣∣∣∣ 1 3
4 6

∣∣∣∣ = 6− 12 = −6.

The corresponding cofactor, C3,2, is

C3,2 = (−1)3+2A3,2 = (−1)5(−6) = 6.

..
The minor B2,1 is found by removing the second row and first column of B then

taking the determinant.

B =


1 2 0 8
−3 5 7 2
−1 9 −4 6
1 1 1 1

 ⇒


1 2 0 8
-3 5 7 2
-1 9 −4 6
1 1 1 1

 ⇒

 2 0 8
9 −4 6
1 1 1



B2,1 =

∣∣∣∣∣∣
2 0 8
9 −4 6
1 1 1

∣∣∣∣∣∣ !
= ?

We’re a bit stuck. We don’t know how to find the determinate of this 3 × 3 matrix.
We’ll come back to this later. The corresponding cofactor is

C2,1 = (−1)2+1B2,1 = −B2,1,

whatever this number happens to be.
The minor B4,3 is found by removing the fourth row and third column of B then

taking the determinant.

B =


1 2 0 8
−3 5 7 2
−1 9 −4 6
1 1 1 1

 ⇒


1 2 0 8
−3 5 7 2
−1 9 -4 6
1 1 1 1

 ⇒

 1 2 8
−3 5 2
−1 9 6


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B4,3 =

∣∣∣∣∣∣
1 2 8
−3 5 2
−1 9 6

∣∣∣∣∣∣ !
= ?

Again, we’re stuck. We won’t be able to fully compute C4,3; all we know so far is that

C4,3 = (−1)4+3B4,3 = (−1)B4,3.

Once we learn how to compute determinates for matrices larger than 2 × 2 we can
come back and finish this exercise. ...

In our previous example we ran into a bit of trouble. By our definiƟon, in order
to compute a minor of an n × n matrix we needed to compute the determinant of a
(n− 1)× (n− 1)matrix. This was fine when we started with a 3× 3 matrix, but when
we got up to a 4× 4 matrix (and larger) we run into trouble.

We are almost ready to define the determinant for any square matrix; we need
one last definiƟon.

..
DefiniƟon 25

.

.
Cofactor Expansion

Let A be an n× nmatrix.

The cofactor expansion of A along the ith row is the sum

ai,1Ci,1 + ai,2Ci,2 + · · ·+ ai,nCi,n.

The cofactor expansion of A down the jth column is the sum

a1,jC1,j + a2,jC2,j + · · ·+ an,jCn,j.

The notaƟon of this definiƟon might be a liƩle inƟmidaƟng, so let’s look at an ex-
ample.

.. Example 70 ..Let

A =

 1 2 3
4 5 6
7 8 9

 .

Find the cofactor expansions along the second row and down the first column.

SÊ½çã®ÊÄ By the definiƟon, the cofactor expansion along the second row is
the sum

a2,1C2,1 + a2,2C2,2 + a2,3C2,3.

(Be sure to compare the above line to the definiƟon of cofactor expansion, and see
how the “i” in the definiƟon is replaced by “2” here.)
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We’ll find each cofactor and then compute the sum.

C2,1 = (−1)2+1

∣∣∣∣ 2 3
8 9

∣∣∣∣ = (−1)(−6) = 6
(

we removed the second row and
first column of A to compute the

minor

)

C2,2 = (−1)2+2

∣∣∣∣ 1 3
7 9

∣∣∣∣ = (1)(−12) = −12
(

we removed the second row and
second column of A to compute

the minor

)

C2,3 = (−1)2+3

∣∣∣∣ 1 2
7 8

∣∣∣∣ = (−1)(−6) = 6
(

we removed the second row and
third column of A to compute the

minor

)
Thus the cofactor expansion along the second row is

a2,1C2,1 + a2,2C2,2 + a2,3C2,3 = 4(6) + 5(−12) + 6(6)

= 24− 60+ 36

= 0

At themoment, we don’t knowwhat to do with this cofactor expansion; we’ve just
successfully found it.

We move on to find the cofactor expansion down the first column. By the defini-
Ɵon, this sum is

a1,1C1,1 + a2,1C2,1 + a3,1C3,1.

(Again, compare this to the above definiƟon and see howwe replaced the “j” with “1.”)
We find each cofactor:

C1,1 = (−1)1+1

∣∣∣∣ 5 6
8 9

∣∣∣∣ = (1)(−3) = −3
(

we removed the first row and first
column of A to compute the minor

)

C2,1 = (−1)2+1

∣∣∣∣ 2 3
8 9

∣∣∣∣ = (−1)(−6) = 6 ( we computed this cofactor above )

C3,1 = (−1)3+1

∣∣∣∣ 2 3
5 6

∣∣∣∣ = (1)(−3) = −3
(
we removed the third row and first
column of A to compute the minor

)
The cofactor expansion down the first column is

a1,1C1,1 + a2,1C2,1 + a3,1C3,1 = 1(−3) + 4(6) + 7(−3)

= −3+ 24− 21

= 0
...

Is it a coincidence that both cofactor expansions were 0? We’ll answer that in a
while.
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This secƟon is enƟtled “The Determinant,” yet we don’t know how to compute it
yet except for 2× 2 matrices. We finally define it now.

..
DefiniƟon 26

.

.
The Determinant

The determinant of an n×nmatrix A, denoted det(A) or |A|,
is a number given by the following:

• if A is a 1× 1 matrix A = [a], then det (A) = a.

• if A is a 2× 2 matrix

A =

[
a b
c d

]
,

then det (A) = ad− bc.

• if A is an n×nmatrix, where n ≥ 2, then det(A) is the
number found by taking the cofactor expansion along
the first row of A. That is,

det (A) = a1,1C1,1 + a1,2C1,2 + · · ·+ a1,nC1,n.

NoƟce that in order to compute the determinant of an n× nmatrix, we need to com-
pute the determinants of n (n− 1)× (n− 1)matrices. This can be a lot of work. We’ll
later learn how to shorten some of this. First, let’s pracƟce.

.. Example 71 ..Find the determinant of

A =

 1 2 3
4 5 6
7 8 9

 .

SÊ½çã®ÊÄ NoƟce that this is the matrix from Example 70. The cofactor ex-
pansion along the first row is

det (A) = a1,1C1,1 + a1,2C1,2 + a1,3C1,3.

We’ll compute each cofactor first then take the appropriate sum.
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C1,1 = (−1)1+1A1,1

= 1 ·
∣∣∣∣ 5 6
8 9

∣∣∣∣
= 45− 48

= −3

C1,2 = (−1)1+2A1,2

= (−1) ·
∣∣∣∣ 4 6
7 9

∣∣∣∣
= (−1)(36− 42)

= 6

C1,3 = (−1)1+3A1,3

= 1 ·
∣∣∣∣ 4 5
7 8

∣∣∣∣
= 32− 35

= −3

Therefore the determinant of A is

det (A) = 1(−3) + 2(6) + 3(−3) = 0.
...

.. Example 72 Find the determinant of

A =

 3 6 7
0 2 −1
3 −1 1

 .

SÊ½çã®ÊÄ We’ll compute each cofactor first then find the determinant.

C1,1 = (−1)1+1A1,1

= 1 ·
∣∣∣∣ 2 −1
−1 1

∣∣∣∣
= 2− 1

= 1

C1,2 = (−1)1+2A1,2

= (−1) ·
∣∣∣∣ 0 −1
3 1

∣∣∣∣
= (−1)(0+ 3)

= −3

C1,3 = (−1)1+3A1,3

= 1 ·
∣∣∣∣ 0 2
3 −1

∣∣∣∣
= 0− 6

= −6

Thus the determinant is

det (A) = 3(1) + 6(−3) + 7(−6) = −57.
..

.. Example 73 ..Find the determinant of

A =


1 2 1 2
−1 2 3 4
8 5 −3 1
5 9 −6 3

 .

SÊ½çã®ÊÄ This, quite frankly, will take quite a bit ofwork. In order to compute
this determinant, we need to compute 4 minors, each of which requires finding the
determinant of a 3× 3 matrix! Complaining won’t get us any closer to the soluƟon,16

16But it might make us feel a liƩle beƩer. Glance ahead: do you see how much work we have to do?!?
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so let’s get started. We first compute the cofactors:

C1,1 = (−1)1+1A1,1

= 1 ·

∣∣∣∣∣∣
2 3 4
5 −3 1
9 −6 3

∣∣∣∣∣∣ (
we must compute the determinant
of this 3 × 3 matrix

)
= 2 · (−1)1+1

∣∣∣∣ −3 1
−6 3

∣∣∣∣+ 3 · (−1)1+2

∣∣∣∣ 5 1
9 3

∣∣∣∣+ 4 · (−1)1+3

∣∣∣∣ 5 −3
9 −6

∣∣∣∣
= 2(−3) + 3(−6) + 4(−3)

= −36

C1,2 = (−1)1+2A1,2

= (−1) ·

∣∣∣∣∣∣
−1 3 4
8 −3 1
5 −6 3

∣∣∣∣∣∣ (
we must compute the determinant
of this 3 × 3 matrix

)
= (−1)

[
(−1) · (−1)1+1

∣∣∣∣ −3 1
−6 3

∣∣∣∣+ 3 · (−1)1+2

∣∣∣∣ 8 1
5 3

∣∣∣∣+ 4 · (−1)1+3

∣∣∣∣ 8 −3
5 −6

∣∣∣∣]︸ ︷︷ ︸
the determinate of the 3 × 3 matrix

= (−1) [(−1)(−3) + 3(−19) + 4(−33)]

= 186

..

C1,3 = (−1)1+3A1,3

= 1 ·

∣∣∣∣∣∣
−1 2 4
8 5 1
5 9 3

∣∣∣∣∣∣ (
we must compute the determinant
of this 3 × 3 matrix

)
= (−1) · (−1)1+1

∣∣∣∣ 5 1
9 3

∣∣∣∣+ 2 · (−1)1+2

∣∣∣∣ 8 1
5 3

∣∣∣∣+ 4 · (−1)1+3

∣∣∣∣ 8 5
5 9

∣∣∣∣
= (−1)(6) + 2(−19) + 4(47)

= 144
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C1,4 = (−1)1+4A1,4

= (−1) ·

∣∣∣∣∣∣
−1 2 3
8 5 −3
5 9 −6

∣∣∣∣∣∣ (
we must compute the determinant
of this 3 × 3 matrix

)
= (−1)

[
(−1) · (−1)1+1

∣∣∣∣ 5 −3
9 −6

∣∣∣∣+ 2 · (−1)1+2

∣∣∣∣ 8 −3
5 −6

∣∣∣∣+ 3 · (−1)1+3

∣∣∣∣ 8 5
5 9

∣∣∣∣]︸ ︷︷ ︸
the determinate of the 3 × 3 matrix

= (−1) [(−1)(−3) + 2(33) + 3(47)]

= −210

We’ve computed our four cofactors. All that is leŌ is to compute the cofactor ex-
pansion.

det (A) = 1(−36) + 2(186) + 1(144) + 2(−210) = 60.

As a way of “visualizing” this, let’s write out the cofactor expansion again but in-
cluding the matrices in their place.

det (A) = a1,1C1,1 + a1,2C1,2 + a1,3C1,3 + a1,4C1,4

= 1(−1)2

∣∣∣∣∣∣
2 3 4
5 −3 1
9 −6 3

∣∣∣∣∣∣︸ ︷︷ ︸
= −36

+ 2(−1)3

∣∣∣∣∣∣
−1 3 4
8 −3 1
5 −6 3

∣∣∣∣∣∣︸ ︷︷ ︸
= −186

+

1(−1)4

∣∣∣∣∣∣
−1 2 4
8 5 1
5 9 3

∣∣∣∣∣∣︸ ︷︷ ︸
= 144

+ 2(−1)5

∣∣∣∣∣∣
−1 2 3
8 5 −3
5 9 −6

∣∣∣∣∣∣︸ ︷︷ ︸
= 210

= 60
...

That certainly took a while; it required more than 50 mulƟplicaƟons (we didn’t
count the addiƟons). To compute the determinant of a 5 × 5 matrix, we’ll need to
compute the determinants of five 4 × 4 matrices, meaning that we’ll need over 250
mulƟplicaƟons! Not only is this a lot of work, but there are just toomanyways tomake
silly mistakes.17 There are some tricks to make this job easier, but regardless we see
the need to employ technology. Even then, technology quickly bogs down. A 25× 25
matrix is considered “small” by today’s standards,18 but it is essenƟally impossible for
a computer to compute its determinant by only using cofactor expansion; it too needs
to employ “tricks.”

17The author made three when the above example was originally typed.
18It is common for mathemaƟcians, scienƟsts and engineers to consider linear systems with thousands

of equaƟons and variables.
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In the next secƟon we will learn some of these tricks as we learn some of the
properƟes of the determinant. Right now, let’s review the essenƟals of what we have
learned.

1. The determinant of a squarematrix is a number that is determinedby thematrix.

2. We find the determinant by compuƟng the cofactor expansion along the first
row.

3. To compute the determinant of an n × n matrix, we need to compute n deter-
minants of (n− 1)× (n− 1)matrices.

Exercises 3.3
In Exercises 1 – 8, find the determinant of the
2× 2matrix.

1.
[
10 7
8 9

]

2.
[

6 −1
−7 8

]

3.
[
−1 −7
−5 9

]

4.
[
−10 −1
−4 7

]

5.
[
8 10
2 −3

]

6.
[

10 −10
−10 0

]

7.
[
1 −3
7 7

]

8.
[
−4 −5
−1 −4

]
In Exercises 9 – 12, a matrix A is given.

(a) Construct the submatrices used to
compute theminors A1,1, A1,2 and A1,3.

(b) Find the cofactors C1,1, C1,2, and C1,3.

9.

−7 −3 10
3 7 6
1 6 10



10.

 −2 −9 6
−10 −6 8
0 −3 −2



11.

−5 −3 3
−3 3 10
−9 3 9


12.

 −6 −4 6
−8 0 0
−10 8 −1


In Exercises 13 – 24, find the determinant
of the given matrix using cofactor expansion
along the first row.

13.

 3 2 3
−6 1 −10
−8 −9 −9


14.

 8 −9 −2
−9 9 −7
5 −1 9


15.

−4 3 −4
−4 −5 3
3 −4 5


16.

 1 −2 1
5 5 4
4 0 0


17.

 1 −4 1
0 3 0
1 2 2


18.

 3 −1 0
−3 0 −4
0 −1 −4


19.

−5 0 −4
2 4 −1
−5 0 −4


20.

 1 0 0
0 1 0
−1 1 1


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21.


0 0 −1 −1
1 1 0 1
1 1 −1 0
−1 0 1 0



22.


−1 0 0 −1
−1 0 0 1
1 1 1 0
1 0 −1 −1



23.


−5 1 0 0
−3 −5 2 5
−2 4 −3 4
5 4 −3 3



24.


2 −1 4 4
3 −3 3 2
0 4 −5 1
−2 −5 −2 −5


25. Let A be a 2× 2 matrix;

A =

[
a b
c d

]
.

Showwhy det(A) = ad−bc by comput-
ing the cofactor expansion of A along
the first row.

3.4 ProperƟes of the Determinant

...AS YOU READ . . .

1. Having the choice to compute the determinant of amatrix using cofactor expan-
sion along any row or column is most useful when there are lots of what in a row
or column?

2. Which elementary row operaƟon does not change the determinant of a matrix?

3. Why do mathemaƟcians rarely smile?

4. T/F:When computers are used to compute the determinant of amatrix, cofactor
expansion is rarely used.

In the previous secƟon we learned how to compute the determinant. In this sec-
Ɵon we learn some of the properƟes of the determinant, and this will allow us to
compute determinants more easily. In the next secƟon we will see one applicaƟon
of determinants.

We start with a theorem that gives us more freedom when compuƟng determi-
nants.

..
Theorem 14

.

.
Cofactor Expansion Along Any Row or Column

Let A be an n× nmatrix. The determinant of A can be com-
puted using cofactor expansion along any row or column of
A.
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We alluded to this fact way back aŌer Example 70. We had just learnedwhat cofac-
tor expansion was and we pracƟced along the second row and down the third column.
Later, we found the determinant of this matrix by compuƟng the cofactor expansion
along the first row. In all three cases, we got the number 0. This wasn’t a coincidence.
The above theorem states that all three expansions were actually compuƟng the de-
terminant.

How does this help us? By giving us freedom to choose any row or column to use
for the expansion, we can choose a row or column that looks “most appealing.” This
usually means “it has lots of zeros.” We demonstrate this principle below.

.. Example 74 Find the determinant of

A =


1 2 0 9
2 −3 0 5
7 2 3 8
−4 1 0 2

 .

SÊ½çã®ÊÄ Our first reacƟon may well be “Oh no! Not another 4 × 4 deter-
minant!” However, we can use cofactor expansion along any row or column that we
choose. The third column looks great; it has lots of zeros in it. The cofactor expansion
along this column is

det (A) = a1,3C1,3 + a2,3C2,3 + a3,3C3,3 + a4,3C4,3
= 0 · C1,3 + 0 · C2,3 + 3 · C3,3 + 0 · C4,3

The wonderful thing here is that three of our cofactors are mulƟplied by 0. We
won’t bother compuƟng them since they will not contribute to the determinant. Thus

det (A) = 3 · C3,3

= 3 · (−1)3+3 ·

∣∣∣∣∣∣
1 2 9
2 −3 5
−4 1 2

∣∣∣∣∣∣
= 3 · (−147)

( we computed the determinant of the 3 × 3 matrix
without showing our work; it is−147

)
= −447

..

Wow. That was a lot simpler than compuƟng all that we did in Example 73. Of
course, in that example, we didn’t really have any shortcuts that we could have em-
ployed.

.. Example 75 ..Find the determinant of

A =


1 2 3 4 5
0 6 7 8 9
0 0 10 11 12
0 0 0 13 14
0 0 0 0 15

 .
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SÊ½çã®ÊÄ At first glance, we think “I don’t want to find the determinant of
a 5× 5 matrix!” However, using our newfound knowledge, we see that things are not
that bad. In fact, this problem is very easy.

What row or column should we choose to find the determinant along? There are
two obvious choices: the first column or the last row. Both have 4 zeros in them. We
choose the first column.19 We omit most of the cofactor expansion, since most of it is
just 0:

det (A) = 1 · (−1)1+1 ·

∣∣∣∣∣∣∣∣
6 7 8 9
0 10 11 12
0 0 13 14
0 0 0 15

∣∣∣∣∣∣∣∣ .
Similarly, this determinant is not bad to compute; we again choose to use cofac-

tor expansion along the first column. Note: technically, this cofactor expansion is
6 · (−1)1+1A1,1; we are going to drop the (−1)1+1 terms from here on out in this
example (it will show up a lot...).

det (A) = 1 · 6 ·

∣∣∣∣∣∣
10 11 12
0 13 14
0 0 15

∣∣∣∣∣∣ .
You can probably can see a trend. We’ll finish out the steps without explaining

each one.

det (A) = 1 · 6 · 10 ·
∣∣∣∣ 13 14

0 15

∣∣∣∣
= 1 · 6 · 10 · 13 · 15
= 11700

...

We see that the final determinant is the product of the diagonal entries. This works
for any triangular matrix (and since diagonal matrices are triangular, it works for diag-
onal matrices as well). This is an important enough idea that we’ll put it into a box.

..
Key Idea 12

.

.
The Determinant of Triangular Matrices

The determinant of a triangular matrix is the product of its
diagonal elements.

It is now again Ɵme to start thinking like a mathemaƟcian. Remember, mathe-
maƟcians see something new and oŌen ask “How does this relate to things I already

19We do not choose this because it is the beƩer choice; both opƟons are good. We simply had to make
a choice.
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know?” So now we ask, “If we change a matrix in some way, how is it’s determinant
changed?”

The standard way that we change matrices is through elementary row operaƟons.
If we perform an elementary row operaƟon on a matrix, how will the determinant of
the new matrix compare to the determinant of the original matrix?

Let’s experiment first and then we’ll officially state what happens.

.. Example 76 Let

A =

[
1 2
3 4

]
.

Let B be formed from A by doing one of the following elementary row operaƟons:

1. 2R1 + R2 → R2

2. 5R1 → R1

3. R1 ↔ R2

Find det(A) as well as det(B) for each of the row operaƟons above.

SÊ½çã®ÊÄ It is straighƞorward to compute det (A) = −2.
Let B be formed by performing the row operaƟon in 1) on A; thus

B =

[
1 2
5 8

]
.

It is clear that det (B) = −2, the same as det(A).
Now let B be formed by performing the elementary row operaƟon in 2) on A; that

is,

B =

[
5 10
3 4

]
.

We can see that det (B) = −10, which is 5 · det (A).
Finally, let B be formed by the third row operaƟon given; swap the two rows of A.

We see that

B =

[
3 4
1 2

]
and that det (B) = 2, which is (−1) · det (A). ..

We’ve seen in the above example that there seems to be a relaƟonship between
the determinants of matrices “before and aŌer” being changed by elementary row
operaƟons. Certainly, one example isn’t enough to base a theory on, and we have not
proved anything yet. Regardless, the following theorem is true.
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..
Theorem 15

.

.
The Determinant and Elementary Row OperaƟons

Let A be an n× nmatrix and let B be formed by performing
one elementary row operaƟon on A.

1. If B is formed from A by adding a scalar mulƟple of
one row to another, then det (B) = det (A).

2. If B is formed from A by mulƟplying one row of A by a
scalar k, then det (B) = k · det (A).

3. If B is formed from A by interchanging two rows of A,
then det (B) = −det (A).

Let’s put this theorem to use in an example.

.. Example 77 Let

A =

 1 2 1
0 1 1
1 1 1

 .

Compute det(A), then find the determinants of the following matrices by inspecƟon
using Theorem 15.

B =

 1 1 1
1 2 1
0 1 1

 C =

 1 2 1
0 1 1
7 7 7

 D =

 1 −1 −2
0 1 1
1 1 1



SÊ½çã®ÊÄ CompuƟng det(A) by cofactor expansion down the first column or
along the second row seems like the best choice, uƟlizing the one zero in the matrix.
We can quickly confirm that det (A) = 1.

To compute det(B), noƟce that the rows of Awere rearranged to form B. There are
different ways to describe what happened; saying R1 ↔ R2 was followed by R1 ↔ R3
produces B from A. Since there were two row swaps, det (B) = (−1)(−1)det (A) =
det (A) = 1.

NoƟce that C is formed from A by mulƟplying the third row by 7. Thus det (C) =
7 · det (A) = 7.

It takes a liƩle thought, butwe can formD fromAby the operaƟon−3R2+R1 → R1.
This type of elementary row operaƟon does not change determinants, so det (D) =
det (A). ..
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Let’s conƟnue to think like mathemaƟcians; mathemaƟcians tend to remember
“problems” they’ve encountered in the past,20 and when they learn something new,
in the backs of their minds they try to apply their new knowledge to solve their old
problem.

What “problem” did we recently uncover? We stated in the last chapter that even
computers could not compute the determinant of large matrices with cofactor expan-
sion. How then can we compute the determinant of large matrices?

We just learned two interesƟng and useful facts about matrix determinants. First,
the determinant of a triangular matrix is easy to compute: just mulƟply the diagonal
elements. Secondly, we know how elementary row operaƟons affect the determinant.
Put these two ideas together: given any squarematrix, we can use elementary row op-
eraƟons to put the matrix in triangular form,21 find the determinant of the newmatrix
(which is easy), and then adjust that number by recalling what elementary operaƟons
we performed. Let’s pracƟce this.

.. Example 78 ..Find the determinant of A by first puƫng A into a triangular form,
where

A =

 2 4 −2
−1 −2 5
3 2 1

 .

SÊ½çã®ÊÄ In puƫng A into a triangular form, we need not worry about get-
Ɵng leading 1s, but it does tend to make our life easier as we work out a problem by
hand. So let’s scale the first row by 1/2:

1
2R1 → R1

 1 2 −1
−1 −2 5
3 2 1

 .

Now let’s get 0s below this leading 1:

R1 + R2 → R2

−3R1 + R3 → R3

 1 2 −1
0 0 4
0 −4 4

 .

We can finish in one step; by interchanging rows 2 and 3 we’ll have our matrix in
triangular form.

R2 ↔ R3

 1 2 −1
0 −4 4
0 0 4

 .

Let’s name this last matrix B. The determinant of B is easy to compute as it is
triangular; det (B) = −16. We can use this to find det(A).

Recall the steps we used to transform A into B. They are:

20which is why mathemaƟcians rarely smile: they are remembering their problems
21or echelon form
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1
2R1 → R1

R1 + R2 → R2
−3R1 + R3 → R3

R2 ↔ R3

The first operaƟonmulƟplied a row of A by 1
2 . This means that the resulƟng matrix

had a determinant that was 1
2 the determinant of A.

The next two operaƟons did not affect the determinant at all. The last operaƟon,
the row swap, changed the sign. Combining these effects, we know that

−16 = det (B) = (−1)
1
2
det (A) .

Solving for det (A) we have that det (A) = 32. ...

In pracƟce, we don’t need to keep track of operaƟons where we add mulƟples
of one row to another; they simply do not affect the determinant. Also, in pracƟce,
these steps are carried out by a computer, and computers don’t care about leading 1s.
Therefore, row scaling operaƟons are rarely used. The only things to keep track of are
row swaps, and even then all we care about are the number of row swaps. An odd
number of row swaps means that the original determinant has the opposite sign of
the triangular form matrix; an even number of row swaps means they have the same
determinant.

Let’s pracƟce this again.

.. Example 79 The matrix B was formed from A using the following elementary
row operaƟons, though not necessarily in this order. Find det(A).

B =

 1 2 3
0 4 5
0 0 6

 2R1 → R1
1
3R3 → R3
R1 ↔ R2
6R1 + R2 → R2

SÊ½çã®ÊÄ It is easy to compute det (B) = 24. In looking at our list of elemen-
tary row operaƟons, we see that only the first three have an effect on the determinant.
Therefore

24 = det (B) = 2 · 1
3
· (−1) · det (A)

and hence
det (A) = −36...

In the previous example, we may have been tempted to “rebuild” A using the ele-
mentary row operaƟons and then compuƟng the determinant. This can be done, but
in general it is a bad idea; it takes too much work and it is too easy to make a mistake.

Let’s think somemore like a mathemaƟcian. How does the determinant work with
other matrix operaƟons that we know? Specifically, how does the determinant in-
teract with matrix addiƟon, scalar mulƟplicaƟon, matrix mulƟplicaƟon, the transpose
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and the trace? We’ll again do an example to get an idea of what is going on, then give
a theorem to state what is true.

.. Example 80 ..Let

A =

[
1 2
3 4

]
and B =

[
2 1
3 5

]
.

Find the determinants of the matrices A, B, A + B, 3A, AB, AT, A−1, and compare the
determinant of these matrices to their trace.

SÊ½çã®ÊÄ We can quickly compute that det (A) = −2 and that det (B) = 7.

det (A− B) = det
([

1 2
3 4

]
−

[
2 1
3 5

])
=

∣∣∣∣ −1 1
0 −1

∣∣∣∣
= 1

It’s tough to find a connecƟon between det(A− B), det(A) and det(B).

det (3A) =

∣∣∣∣ 3 6
9 12

∣∣∣∣
= −18

We can figure this one out; mulƟplying one rowofA by 3 increases the determinant
by a factor of 3; doing it again (and hence mulƟplying both rows by 3) increases the
determinant again by a factor of 3. Therefore det (3A) = 3 · 3 · det (A), or 32 · A.

det (AB) = det
([

1 2
3 4

] [
2 1
3 5

])
=

∣∣∣∣ 8 11
18 23

∣∣∣∣
= −14

This one seems clear; det (AB) = det (A) det (B).

det
(
AT) = ∣∣∣∣ 1 3

2 4

∣∣∣∣
= −2

153



Chapter 3 OperaƟons on Matrices

Obviously det
(
AT
)
= det (A); is this always going to be the case? If we think about

it, we can see that the cofactor expansion along the first row of Awill give us the same
result as the cofactor expansion along the first column of AT.22

det
(
A−1) = ∣∣∣∣ −2 1

3/2 −1/2

∣∣∣∣
= 1− 3/2

= −1/2

It seems as though

det
(
A−1) = 1

det (A)
.

We end by remarking that there seems to be no connecƟon whatsoever between
the trace of a matrix and its determinant. We leave it to the reader to compute the
trace for some of the above matrices and confirm this statement.
...

We now state a theorem which will confirm our conjectures from the previous
example.

..
Theorem 16

.

.
Determinant ProperƟes

Let A and B be n × n matrices and let k be a scalar. The
following are true:

1. det (kA) = kn · det (A)

2. det
(
AT
)
= det (A)

3. det (AB) = det (A) det (B)

4. If A is inverƟble, then

det
(
A−1) = 1

det (A)
.

5. A matrix A is inverƟble if and only if det (A) ̸= 0.

This last statement of the above theorem is significant: what happens if det (A) =
0? It seems that det

(
A−1

)
=“1/0”, which is undefined. There actually isn’t a problem

here; it turns out that if det (A) = 0, then A is not inverƟble (hence part 5 of Theorem
16). This allows us to add on to our InverƟble Matrix Theorem.

22This can be a bit tricky to think out in your head. Try it with a 3×3 matrix A and see how it works. All
the 2×2 submatrices that are created in AT are the transpose of those found in A; this doesn’t maƩer since
it is easy to see that the determinant isn’t affected by the transpose in a 2× 2 matrix.
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..
Theorem 17

.

.
InverƟble Matrix Theorem

LetA be an n×nmatrix. The following statements are equiv-
alent.

(a) A is inverƟble.

(g) det (A) ̸= 0.

This new addiƟon to the InverƟble Matrix Theorem is very useful; we’ll refer back
to it in Chapter 4 when we discuss eigenvalues.

We end this secƟon with a shortcut for compuƟng the determinants of 3× 3 ma-
trices. Consider the matrix A:  1 2 3

4 5 6
7 8 9

 .

We can compute its determinant using cofactor expansion as we did in Example 71.
Once one becomes proficient at this method, compuƟng the determinant of a 3 × 3
isn’t all that hard. A method many find easier, though, starts with rewriƟng the matrix
without the brackets, and repeaƟng the first and second columns at the end as shown
below.

1 2 3 1 2
4 5 6 4 5
7 8 9 7 8

In this 3 × 5 array of numbers, there are 3 full “upper leŌ to lower right” diagonals,
and 3 full “upper right to lower leŌ” diagonals, as shown below with the arrows.

..
1 2 3 1 2
4 5 6 4 5
7 8 9 7 8

.

45

.

84

.

96

.

105

.

48

.

72

The numbers that appear at the ends of each of the arrows are computed by mul-
Ɵplying the numbers found along the arrows. For instance, the 105 comes from mul-
Ɵplying 3 · 5 · 7 = 105. The determinant is found by adding the numbers on the right,
and subtracƟng the sum of the numbers on the leŌ. That is,

det (A) = (45+ 84+ 96)− (105+ 48+ 72) = 0.

To help remind ourselves of this shortcut, we’ll make it into a Key Idea.
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..
Key Idea 13

.

.
3× 3 Determinant Shortcut

Let A be a 3 × 3 matrix. Create a 3 × 5 array by repeaƟng
the first 2 columns and consider the products of the 3 “right
hand” diagonals and 3 “leŌ hand” diagonals as shown pre-
viously. Then

det (A) = “(the sum of the right hand numbers)

− (the sum of the leŌ hand numbers)”.

We’ll pracƟce once more in the context of an example.

.. Example 81 Find the determinant of A using the previously described shortcut,
where

A =

 1 3 9
−2 3 4
−5 7 2

 .

SÊ½çã®ÊÄ RewriƟng the first 2 columns, drawing the proper diagonals, and
mulƟplying, we get:

..
1 3 9 1 3
−2 3 4 −2 3
−5 7 2 −5 7

.

6

.

−60

.

−126

.

−135

.

28

.

−12

Summing the numbers on the right and subtracƟng the sum of the numbers on the
leŌ, we get

det (A) = (6− 60− 126)− (−135+ 28− 12) = −61.

..
In the next secƟon we’ll see how the determinant can be used to solve systems of

linear equaƟons.

Exercises 3.4
In Exercises 1 – 14, find the determinant
of the given matrix using cofactor expansion
along any row or column you choose.

1.

 1 2 3
−5 0 3
4 0 6



2.

−4 4 −4
0 0 −3
−2 −2 −1



3.

−4 1 1
0 0 0
−1 −2 −5


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4.

 0 −3 1
0 0 5
−4 1 0



5.

−2 −3 5
5 2 0
−1 0 0



6.

−2 −2 0
2 −5 −3
−5 1 0



7.

−3 0 −5
−2 −3 3
−1 0 1



8.

 0 4 −4
3 1 −3
−3 −4 0



9.


5 −5 0 1
2 4 −1 −1
5 0 0 4
−1 −2 0 5



10.


−1 3 3 4
0 0 0 0
4 −5 −2 0
0 0 2 0



11.


−5 −5 0 −2
0 0 5 0
1 3 3 1
−4 −2 −1 −5



12.


−1 0 −2 5
3 −5 1 −2
−5 −2 −1 −3
−1 0 0 0



13.


4 0 5 1 0
1 0 3 1 5
2 2 0 2 2
1 0 0 0 0
4 4 2 5 3



14.


2 1 1 1 1
4 1 2 0 2
0 0 1 0 0
1 3 2 0 3
5 0 5 0 4


In Exercises 15 – 18, a matrix M and det(M)
are given. Matrices A, B and C are formed by

performing operaƟons on M. Determine the
determinants of A, B and C using Theorems
15 and 16, and indicate the operaƟons used
to form A, B and C.

15. M =

 0 3 5
3 1 0
−2 −4 −1

,
det(M) = −41.

(a) A =

 0 3 5
−2 −4 −1
3 1 0


(b) B =

 0 3 5
3 1 0
8 16 4


(c) C =

 3 4 5
3 1 0
−2 −4 −1



16. M =

 9 7 8
1 3 7
6 3 3

,
det(M) = 45.

(a) A =

 18 14 16
1 3 7
6 3 3


(b) B =

 9 7 8
1 3 7
96 73 83


(c) C =

 9 1 6
7 3 3
8 7 3



17. M =

 5 1 5
4 0 2
0 0 4

,
det(M) = −16.

(a) A =

 0 0 4
5 1 5
4 0 2


(b) B =

−5 −1 −5
−4 0 −2
0 0 4


(c) C =

 15 3 15
12 0 6
0 0 12


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18. M =

 5 4 0
7 9 3
1 3 9

,
det(M) = 120.

(a) A =

 1 3 9
7 9 3
5 4 0


(b) B =

 5 4 0
14 18 6
3 9 27


(c) C =

−5 −4 0
−7 −9 −3
−1 −3 −9


In Exercises 19 – 22, matrices A and B are
given. Verify part 3 of Theorem 16 by com-
puƟng det(A), det(B) and det(AB).

19. A =

[
2 0
1 2

]
,

B =

[
0 −4
1 3

]
20. A =

[
3 −1
4 1

]
,

B =

[
−4 −1
−5 3

]
21. A =

[
−4 4
5 −2

]
,

B =

[
−3 −4
5 −3

]
22. A =

[
−3 −1
2 −3

]
,

B =

[
0 0
4 −4

]
In Exercises 23 – 30, find the determinant of
the given matrix using Key Idea 13.

23.

 3 2 3
−6 1 −10
−8 −9 −9



24.

 8 −9 −2
−9 9 −7
5 −1 9



25.

−4 3 −4
−4 −5 3
3 −4 5



26.

 1 −2 1
5 5 4
4 0 0



27.

 1 −4 1
0 3 0
1 2 2



28.

 3 −1 0
−3 0 −4
0 −1 −4



29.

−5 0 −4
2 4 −1
−5 0 −4



30.

 1 0 0
0 1 0
−1 1 1



158



3.5 Cramer’s Rule

3.5 Cramer’s Rule

...AS YOU READ . . .

1. T/F: Cramer’s Rule is another method to compute the determinant of a matrix.

2. T/F: Cramer’s Rule is oŌen used because it is more efficient than Gaussian elim-
inaƟon.

3. MathemaƟcians use what word to describe the connecƟons between seemingly
unrelated ideas?

In the previous secƟons we have learned about the determinant, but we haven’t
given a really good reasonwhywewouldwant to compute it.23 This secƟon shows one
applicaƟon of the determinant: solving systems of linear equaƟons. We introduce this
idea in terms of a theorem, then we will pracƟce.

..
Theorem 18

.

.
Cramer’s Rule

Let A be an n × n matrix with det (A) ̸= 0 and let b⃗ be an
n× 1 column vector. Then the linear system

Ax⃗ = b⃗

has soluƟon

xi =
det

(
Ai(⃗b)

)
det (A)

,

where Ai(⃗b) is thematrix formed by replacing the ith column
of A with b⃗.

Let’s do an example.

.. Example 82 ..Use Cramer’s Rule to solve the linear system Ax⃗ = b⃗ where

A =

 1 5 −3
1 4 2
2 −1 0

 and b⃗ =

−36
−11
7

 .

23The closest we came to moƟvaƟon is that if det (A) = 0, then we know that A is not inverƟble. But it
seems that there may be easier ways to check.
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SÊ½çã®ÊÄ Wefirst compute thedeterminant ofA to see ifwe can apply Cramer’s
Rule.

det (A) =

∣∣∣∣∣∣
1 5 −3
1 4 2
2 −1 0

∣∣∣∣∣∣ = 49.

Since det (A) ̸= 0, we can apply Cramer’s Rule. Following Theorem 18, we com-

pute det
(
A1(⃗b)

)
, det

(
A2(⃗b)

)
and det

(
A3(⃗b)

)
.

det
(
A1(⃗b)

)
=

∣∣∣∣∣∣
− 36 5 −3
−11 4 2
7 −1 0

∣∣∣∣∣∣ = 49.

(We used a bold font to show where b⃗ replaced the first column of A.)

det
(
A2(⃗b)

)
=

∣∣∣∣∣∣
1 −36 −3
1 −11 2
2 7 0

∣∣∣∣∣∣ = −245.

det
(
A3(⃗b)

)
=

∣∣∣∣∣∣
1 5 −36
1 4 −11
2 −1 7

∣∣∣∣∣∣ = 196.

Therefore we can compute x⃗:

x1 =
det

(
A1(⃗b)

)
det (A)

=
49
49

= 1

x2 =
det

(
A2(⃗b)

)
det (A)

=
−245
49

= −5

x3 =
det

(
A3(⃗b)

)
det (A)

=
196
49

= 4

Therefore

x⃗ =

 x1
x2
x3

 =

 1
−5
4

 .

...

Let’s do another example.

.. Example 83 ..Use Cramer’s Rule to solve the linear system Ax⃗ = b⃗ where

A =

[
1 2
3 4

]
and b⃗ =

[
−1
1

]
.
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3.5 Cramer’s Rule

SÊ½çã®ÊÄ The determinant of A is−2, so we can apply Cramer’s Rule.

det
(
A1(⃗b)

)
=

∣∣∣∣ −1 2
1 4

∣∣∣∣ = −6.

det
(
A2(⃗b)

)
=

∣∣∣∣ 1 −1
3 1

∣∣∣∣ = 4.

Therefore

x1 =
det

(
A1(⃗b)

)
det (A)

=
−6
−2

= 3

x2 =
det

(
A2(⃗b)

)
det (A)

=
4
−2

= −2

and

x⃗ =

[
x1
x2

]
=

[
3
−2

]
.

...

We learned in SecƟon 3.4 that when considering a linear system Ax⃗ = b⃗ where A
is square, if det (A) ̸= 0 then A is inverƟble and Ax⃗ = b⃗ has exactly one soluƟon. We
also stated in Key Idea 11 that if det (A) = 0, then A is not inverƟble and so therefore
either Ax⃗ = b⃗ has no soluƟon or infinite soluƟons. Our method of figuring out which
of these cases applied was to form the augmented matrix

[
A b⃗

]
, put it into reduced

row echelon form, and then interpret the results.
Cramer’s Rule specifies that det (A) ̸= 0 (so we are guaranteed a soluƟon). When

det (A) = 0 we are not able to discern whether infinite soluƟons or no soluƟon exists
for a given vector b⃗. Cramer’s Rule is only applicable to the case when exactly one
soluƟon exists.

We end this secƟon with a pracƟcal consideraƟon. We have menƟoned before
that finding determinants is a computaƟonally intensive operaƟon. To solve a linear
system with 3 equaƟons and 3 unknowns, we need to compute 4 determinants. Just
think: with 10 equaƟons and 10 unknowns, we’d need to compute 11 really hard de-
terminants of 10× 10 matrices! That is a lot of work!

The upshot of this is that Cramer’s Rule makes for a poor choice in solving nu-
merical linear systems. It simply is not done in pracƟce; it is hard to beat Gaussian
eliminaƟon.24

So why include it? Because its truth is amazing. The determinant is a very strange
operaƟon; it produces a number in a very odd way. It should seem incredible to the

24A version of Cramer’s Rule is oŌen taught in introductory differenƟal equaƟons courses as it can be
used to find soluƟons to certain linear differenƟal equaƟons. In this situaƟon, the entries of the matrices
are funcƟons, not numbers, and hence compuƟng determinants is easier than using Gaussian eliminaƟon.
Again, though, as the matrices get large, other soluƟon methods are resorted to.
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Chapter 3 OperaƟons on Matrices

reader that by manipulaƟng determinants in a parƟcular way, we can solve linear sys-
tems.

In the next chapter we’ll see another use for the determinant. Meanwhile, try to
develop a deeper appreciaƟon ofmath: odd, complicated things that seem completely
unrelated oŌen are intricately Ɵed together. MathemaƟcians see these connecƟons
and describe them as “beauƟful.”

Exercises 3.5
In Exercises 1 – 12,matricesA and b⃗ are given.

(a) Give det(A) and det(Ai) for all i.

(b) Use Cramer’s Rule to solve A⃗x = b⃗. If
Cramer’s Rule cannot be used to find
the soluƟon, then statewhether or not
a soluƟon exists.

1. A =

[
7 −7
−7 9

]
, b⃗ =

[
28
−26

]
2. A =

[
9 5
−4 −7

]
, b⃗ =

[
−45
20

]
3. A =

[
−8 16
10 −20

]
, b⃗ =

[
−48
60

]
4. A =

[
0 −6
9 −10

]
, b⃗ =

[
6

−17

]
5. A =

[
2 10
−1 3

]
, b⃗ =

[
42
19

]
6. A =

[
7 14
−2 −4

]
, b⃗ =

[
−1
4

]

7. A =

 3 0 −3
5 4 4
5 5 −4

, b⃗ =

 24
0
31


8. A =

 4 9 3
−5 −2 −13
−1 10 −13

,

b⃗ =

−28
35
7



9. A =

 4 −4 0
5 1 −1
3 −1 2

, b⃗ =

 16
22
8



10. A =

 1 0 −10
4 −3 −10
−9 6 −2

,
b⃗ =

−40
−94
132



11. A =

 7 −4 25
−2 1 −7
9 −7 34

,
b⃗ =

−1
−3
5



12. A =

−6 −7 −7
5 4 1
5 4 8

,
b⃗ =

 58
−35
−49


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We have oŌen explored new ideas in matrix algebra by making connecƟons to our
previous algebraic experience. Adding two numbers, x + y, led us to adding vectors
x⃗ + y⃗ and adding matrices A + B. We explored mulƟplicaƟon, which then led us to
solving the matrix equaƟon Ax⃗ = b⃗, which was reminiscent of solving the algebra
equaƟon ax = b.

This chapter is moƟvated by another analogy. Consider: when we mulƟply an un-
known number x by another number such as 5, what do we know about the result?
Unless, x = 0, we know that in some sense 5xwill be “5 Ɵmes bigger than x.” Applying
this to vectors, we would readily agree that 5⃗x gives a vector that is “5 Ɵmes bigger
than x⃗.” Each entry in x⃗ is mulƟplied by 5.

Within the matrix algebra context, though, we have two types of mulƟplicaƟon:
scalar and matrix mulƟplicaƟon. What happens to x⃗ when we mulƟply it by a matrix
A? Our first response is likely along the lines of “You just get another vector. There is
no definable relaƟonship.” We might wonder if there is ever the case where a matrix
– vector mulƟplicaƟon is very similar to a scalar – vector mulƟplicaƟon. That is, do we
ever have the case where Ax⃗ = a⃗x, where a is some scalar? That is the moƟvaƟng
quesƟon of this chapter.

4.1 Eigenvalues and Eigenvectors

...AS YOU READ . . .

1. T/F: Given any matrix A, we can always find a vector x⃗ where Ax⃗ = x⃗.

2. When is the zero vector an eigenvector for a matrix?

3. If v⃗ is an eigenvector of a matrix A with eigenvalue of 2, then what is A⃗v?

4. T/F: If A is a 5×5matrix, to find the eigenvalues of A, we would need to find the
roots of a 5th degree polynomial.



Chapter 4 Eigenvalues and Eigenvectors

We start by considering the matrix A and vector x⃗ as given below.1

A =

[
1 4
2 3

]
x⃗ =

[
1
1

]
MulƟplying Ax⃗ gives:

Ax⃗ =

[
1 4
2 3

] [
1
1

]
=

[
5
5

]
= 5

[
1
1

]
!

Wow! It looks like mulƟplying Ax⃗ is the same as 5⃗x! This makes us wonder lots
of things: Is this the only case in the world where something like this happens?2 Is A
somehow a special matrix, and Ax⃗ = 5⃗x for any vector x⃗ we pick?3 Or maybe x⃗ was a
special vector, and nomaƩer what 2×2matrix Awe picked, wewould have Ax⃗ = 5⃗x.4

A more likely explanaƟon is this: given the matrix A, the number 5 and the vector
x⃗ formed a special pair that happened to work together in a nice way. It is then natural
to wonder if other “special” pairs exist. For instance, could we find a vector x⃗ where
Ax⃗ = 3⃗x?

This equaƟon is hard to solve at first; we are not used to matrix equaƟons where
x⃗ appears on both sides of “=.” Therefore we put off solving this for just a moment to
state a definiƟon and make a few comments.

..
DefiniƟon 27

.

.
Eigenvalues and Eigenvectors

Let A be an n × n matrix, x⃗ a nonzero n × 1 column vector
and λ a scalar. If

Ax⃗ = λx⃗,

then x⃗ is an eigenvector of A and λ is an eigenvalue of A.

The word “eigen” is German for “proper” or “characterisƟc.” Therefore, an eigen-
vector of A is a “characterisƟc vector of A.” This vector tells us something about A.

Why do we use the Greek leƩer λ (lambda)? It is pure tradiƟon. Above, we used a
to represent the unknown scalar, since we are used to that notaƟon. We now switch
to λ because that is how everyone else does it.5 Don’t get hung up on this; λ is just a
number.

1Recall this matrix and vector were used in Example 40 on page 75.
2Probably not.
3Probably not.
4See footnote 2.
5An example of mathemaƟcal peer pressure.
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4.1 Eigenvalues and Eigenvectors

Note that our definiƟon requires that A be a square matrix. If A isn’t square then
Ax⃗ and λx⃗ will have different sizes, and so they cannot be equal. Also note that x⃗ must
be nonzero. Why? What if x⃗ = 0⃗? Then no maƩer what λ is, Ax⃗ = λx⃗. This would
then imply that every number is an eigenvalue; if every number is an eigenvalue, then
we wouldn’t need a definiƟon for it.6 Therefore we specify that x⃗ ̸= 0⃗.

Our last comment before trying to find eigenvalues and eigenvectors for given ma-
trices deals with “why we care.” Did we stumble upon a mathemaƟcal curiosity, or
does this somehow help us build beƩer bridges, heal the sick, send astronauts into
orbit, design opƟcal equipment, and understand quantummechanics? The answer, of
course, is “Yes.”7 This is a wonderful topic in and of itself: we need no external applica-
Ɵon to appreciate its worth. At the same Ɵme, it has many, many applicaƟons to “the
real world.” A simple Internet seach on “applicaƟons of eigenvalues”with confirm this.

Back to our math. Given a square matrix A, we want to find a nonzero vector x⃗
and a scalar λ such that Ax⃗ = λx⃗. We will solve this using the skills we developed in
Chapter 2.

Ax⃗ = λx⃗ original equaƟon

Ax⃗ − λx⃗ = 0⃗ subtract λ⃗x from both sides

(A− λI)⃗x = 0⃗ factor out x⃗

Think about this last factorizaƟon. We are likely tempted to say

Ax⃗ − λx⃗ = (A− λ)⃗x,

but this really doesn’t make sense. AŌer all, what does “a matrix minus a number”
mean? We need the idenƟty matrix in order for this to be logical.

Let us now think about the equaƟon (A− λI)⃗x = 0⃗. While it looks complicated, it
really is just matrix equaƟon of the type we solved in SecƟon 2.4. We are just trying
to solve B⃗x = 0⃗, where B = (A− λI).

We know from our previous work that this type of equaƟon8 always has a soluƟon,
namely, x⃗ = 0⃗. However, we want x⃗ to be an eigenvector and, by the definiƟon,
eigenvectors cannot be 0⃗.

This means that we want soluƟons to (A − λI)⃗x = 0⃗ other than x⃗ = 0⃗. Recall
that Theorem 8 says that if the matrix (A− λI) is inverƟble, then the only soluƟon to
(A− λI)⃗x = 0⃗ is x⃗ = 0⃗. Therefore, in order to have other soluƟons, we need (A− λI)
to not be inverƟble.

Finally, recall from Theorem 16 that noninverƟble matrices all have a determi-
nant of 0. Therefore, if we want to find eigenvalues λ and eigenvectors x⃗, we need
det (A− λI) = 0.

Let’s start our pracƟce of this theory by finding λ such that det (A− λI) = 0; that
is, let’s find the eigenvalues of a matrix.

6Recall footnote 17 on page 107.
7Except for the “understand quantum mechanics” part. Nobody truly understands that stuff; they just

probably understand it.
8Recall this is a homogeneous system of equaƟons.
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Chapter 4 Eigenvalues and Eigenvectors

.. Example 84 Find the eigenvalues ofA, that is, findλ such that det (A− λI) = 0,
where

A =

[
1 4
2 3

]
.

SÊ½çã®ÊÄ (Note that this is the matrix we used at the beginning of this sec-
Ɵon.) First, we write out what A− λI is:

A− λI =
[
1 4
2 3

]
− λ

[
1 0
0 1

]
=

[
1 4
2 3

]
−
[
λ 0
0 λ

]
=

[
1− λ 4
2 3− λ

]
Therefore,

det (A− λI) =

∣∣∣∣ 1− λ 4
2 3− λ

∣∣∣∣
= (1− λ)(3− λ)− 8

= λ2 − 4λ− 5

Since we want det (A− λI) = 0, we want λ2 − 4λ − 5 = 0. This is a simple
quadraƟc equaƟon that is easy to factor:

λ2 − 4λ− 5 = 0

(λ− 5)(λ+ 1) = 0

λ = −1, 5

According to our above work, det (A− λI) = 0 when λ = −1, 5. Thus, the eigen-
values of A are−1 and 5. ..

Earlier, when looking at the same matrix as used in our example, we wondered if
we could find a vector x⃗ such that Ax⃗ = 3⃗x. According to this example, the answer is
“No.” With this matrix A, the only values of λ that work are−1 and 5.

Let’s restate the above in a different way: It is pointless to try to find x⃗ where
Ax⃗ = 3⃗x, for there is no such x⃗. There are only 2 equaƟons of this form that have a
soluƟon, namely

Ax⃗ = −x⃗ and Ax⃗ = 5⃗x.

As we introduced this secƟon, we gave a vector x⃗ such that Ax⃗ = 5⃗x. Is this the
only one? Let’s find out while calling our work an example; this will amount to finding
the eigenvectors of A that correspond to the eigenvector of 5.
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.. Example 85 Find x⃗ such that Ax⃗ = 5⃗x, where

A =

[
1 4
2 3

]
.

SÊ½çã®ÊÄ Recall that our algebra from before showed that if

Ax⃗ = λx⃗ then (A− λI)⃗x = 0⃗.

Therefore, we need to solve the equaƟon (A− λI)⃗x = 0⃗ for x⃗ when λ = 5.

A− 5I =
[
1 4
2 3

]
− 5

[
1 0
0 1

]
=

[
−4 4
2 −2

]
To solve (A−5I)⃗x = 0⃗, we form the augmentedmatrix and put it into reduced row

echelon form: [
−4 4 0
2 −2 0

]
−→
rref

[
1 −1 0
0 0 0

]
.

Thus

x1 = x2
x2 is free

and

x⃗ =

[
x1
x2

]
= x2

[
1
1

]
.

We have infinite soluƟons to the equaƟon Ax⃗ = 5⃗x; any nonzero scalar mulƟple of the

vector
[
1
1

]
is a soluƟon. We can do a few examples to confirm this:

[
1 4
2 3

] [
2
2

]
=

[
10
10

]
= 5

[
2
2

]
;

[
1 4
2 3

] [
7
7

]
=

[
35
35

]
= 5

[
7
7

]
;

[
1 4
2 3

] [
−3
−3

]
=

[
−15
−15

]
= 5

[
−3
−3

]
.

..
Our method of finding the eigenvalues of a matrix A boils down to determining

which values ofλ give thematrix (A−λI) adeterminant of 0. In compuƟngdet (A− λI),
we get a polynomial in λ whose roots are the eigenvalues of A. This polynomial is im-
portant and so it gets its own name.
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..
DefiniƟon 28

.

.
CharacterisƟc Polynomial

Let A be an n× nmatrix. The characterisƟc polynomial of A
is the nth degree polynomial p(λ) = det (A− λI).

Our definiƟon just stateswhat the characterisƟc polynomial is. We know from our
work so far why we care: the roots of the characterisƟc polynomial of an n× nmatrix
A are the eigenvalues of A.

In Examples 84 and 85, we found eigenvalues and eigenvectors, respecƟvely, of
a given matrix. That is, given a matrix A, we found values λ and vectors x⃗ such that
Ax⃗ = λx⃗. The steps that follow outline the general procedure for finding eigenvalues
and eigenvectors; we’ll follow this up with some examples.

..
Key Idea 14

.

.
Finding Eigenvalues and Eigenvectors

Let A be an n× nmatrix.

1. To find the eigenvalues of A, compute p(λ), the char-
acterisƟc polynomial of A, set it equal to 0, then solve
for λ.

2. To find the eigenvectors of A, for each eigenvalue
solve the homogeneous system (A− λI)⃗x = 0⃗.

.. Example 86 ..Find the eigenvalues of A, and for each eigenvalue, find an eigen-
vector where

A =

[
−3 15
3 9

]
.

SÊ½çã®ÊÄ To find the eigenvalues, we must compute det (A− λI) and set it
equal to 0.

det (A− λI) =

∣∣∣∣ −3− λ 15
3 9− λ

∣∣∣∣
= (−3− λ)(9− λ)− 45

= λ2 − 6λ− 27− 45

= λ2 − 6λ− 72

= (λ− 12)(λ+ 6)

Therefore, det (A− λI) = 0 when λ = −6 and 12; these are our eigenvalues. (We
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should note that p(λ) = λ2 − 6λ− 72 is our characterisƟc polynomial.) It someƟmes
helps to give them “names,” so we’ll say λ1 = −6 and λ2 = 12. Now we find eigen-
vectors.

For λ1 = −6:
We need to solve the equaƟon (A − (−6)I)⃗x = 0⃗. To do this, we form the appro-

priate augmented matrix and put it into reduced row echelon form.[
3 15 0
3 15 0

]
−→
rref

[
1 5 0
0 0 0

]
.

Our soluƟon is

x1 = −5x2
x2 is free;

in vector form, we have

x⃗ = x2

[
−5
1

]
.

Wemay pick any nonzero value for x2 to get an eigenvector; a simple opƟon is x2 = 1.
Thus we have the eigenvector

x⃗1 =
[
−5
1

]
.

(We used the notaƟon x⃗1 to associate this eigenvector with the eigenvalue λ1.)

We now repeat this process to find an eigenvector for λ2 = 12: ..
In solving (A− 12I)⃗x = 0⃗, we find[

−15 15 0
3 −3 0

]
−→
rref

[
1 −1 0
0 0 0

]
.

In vector form, we have

x⃗ = x2

[
1
1

]
.

Again, we may pick any nonzero value for x2, and so we choose x2 = 1. Thus an
eigenvector for λ2 is

x⃗2 =
[
1
1

]
.

To summarize, we have:

eigenvalue λ1 = −6 with eigenvector x⃗1 =
[
−5
1

]
and

eigenvalue λ2 = 12 with eigenvector x⃗2 =
[
1
1

]
.
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We should take a moment and check our work: is it true that Ax⃗1 = λ1x⃗1?

Ax⃗1 =
[
−3 15
3 9

] [
−5
1

]
=

[
30
−6

]
= (−6)

[
−5
1

]
= λ1x⃗1.

Yes; it appears we have truly found an eigenvalue/eigenvector pair for the matrix A. ...

Let’s do another example.

.. Example 87 ..Let A =

[
−3 0
5 1

]
. Find the eigenvalues of A and an eigenvector

for each eigenvalue.

SÊ½çã®ÊÄ We first compute the characterisƟc polynomial, set it equal to 0,
then solve for λ.

det (A− λI) =

∣∣∣∣ −3− λ 0
5 1− λ

∣∣∣∣
= (−3− λ)(1− λ)

From this, we see that det (A− λI) = 0 when λ = −3, 1. We’ll set λ1 = −3 and
λ2 = 1.

Finding an eigenvector for λ1:
We solve (A− (−3)I)⃗x = 0⃗ for x⃗ by row reducing the appropriate matrix:[

0 0 0
5 4 0

]
−→
rref

[
1 5/4 0
0 0 0

]
.

Our soluƟon, in vector form, is

x⃗ = x2

[
−5/4
1

]
.

Again, we can pick any nonzero value for x2; a nice choice would eliminate the fracƟon.
Therefore we pick x2 = 4, and find

x⃗1 =
[
−5
4

]
.

Finding an eigenvector for λ2:
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We solve (A− (1)I)⃗x = 0⃗ for x⃗ by row reducing the appropriate matrix:[
−4 0 0
5 0 0

]
−→
rref

[
1 0 0
0 0 0

]
.

We’ve seen a matrix like this before,9 but we may need a bit of a refreshing. Our
first row tells us that x1 = 0, and we see that no rows/equaƟons involve x2. We con-
clude that x2 is free. Therefore, our soluƟon, in vector form, is

x⃗ = x2

[
0
1

]
.

We pick x2 = 1, and find

x⃗2 =
[
0
1

]
.

To summarize, we have:

eigenvalue λ1 = −3 with eigenvector x⃗1 =
[
−5
4

]
and

eigenvalue λ2 = 1 with eigenvector x⃗2 =
[
0
1

]
.

...

So far, our examples have involved 2×2matrices. Let’s do an example with a 3×3
matrix.

.. Example 88 ..Find the eigenvalues of A, and for each eigenvalue, give one eigen-
vector, where

A =

−7 −2 10
−3 2 3
−6 −2 9

 .

SÊ½çã®ÊÄ We first compute the characterisƟc polynomial, set it equal to 0,
then solve for λ. A warning: this process is rather long. We’ll use cofactor expansion
along the first row; don’t get bogged down with the arithmeƟc that comes from each
step; just try to get the basic idea of what was done from step to step.

9See page 31. Our future need of knowing how to handle this situaƟon is foretold in footnote 5.
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det (A− λI) =

∣∣∣∣∣∣
−7− λ −2 10
−3 2− λ 3
−6 −2 9− λ

∣∣∣∣∣∣
= (−7− λ)

∣∣∣∣ 2− λ 3
−2 9− λ

∣∣∣∣ − (−2)

∣∣∣∣ −3 3
−6 9− λ

∣∣∣∣ + 10

∣∣∣∣ −3 2− λ
−6 −2

∣∣∣∣
= (−7− λ)(λ2 − 11λ+ 24) + 2(3λ− 9) + 10(−6λ+ 18)

= −λ3 + 4λ2 − λ− 6

= −(λ+ 1)(λ− 2)(λ− 3)

..In the last stepwe factored the characterisƟc polynomial−λ3+4λ2−λ−6. Factoring
polynomials of degree> 2 is not trivial; we’ll assume the reader has access tomethods
for doing this accurately.10

Our eigenvalues are λ1 = −1, λ2 = 2 and λ3 = 3. We now find corresponding
eigenvectors.

For λ1 = −1:

We need to solve the equaƟon (A − (−1)I)⃗x = 0⃗. To do this, we form the appro-
priate augmented matrix and put it into reduced row echelon form.−6 −2 10 0

−3 3 3 0
−6 −2 10 0

 −→
rref

 1 0 −1.5 0
0 1 −.5 0
0 0 0 0


Our soluƟon, in vector form, is

x⃗ = x3

 3/2
1/2
1

 .

We can pick any nonzero value for x3; a nice choice would get rid of the fracƟons.

So we’ll set x3 = 2 and choose x⃗1 =

 3
1
2

 as our eigenvector.

For λ2 = 2:

We need to solve the equaƟon (A− 2I)⃗x = 0⃗. To do this, we form the appropriate
augmented matrix and put it into reduced row echelon form.

10You probably learned how to do this in an algebra course. As a reminder, possible roots can be found
by factoring the constant term (in this case,−6) of the polynomial. That is, the roots of this equaƟon could
be±1,±2,±3 and±6. That’s 12 things to check.

One could also graph this polynomial to find the roots. Graphing will show us that λ = 3 looks like a root,
and a simple calculaƟon will confirm that it is.
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−9 −2 10 0
−3 0 3 0
−6 −2 7 0

 −→
rref

 1 0 −1 0
0 1 −.5 0
0 0 0 0


Our soluƟon, in vector form, is

x⃗ = x3

 1
1/2
1

 .

We can pick any nonzero value for x3; again, a nice choice would get rid of the frac-

Ɵons. So we’ll set x3 = 2 and choose x⃗2 =

 2
1
2

 as our eigenvector.

For λ3 = 3:

We need to solve the equaƟon (A− 3I)⃗x = 0⃗. To do this, we form the appropriate
augmented matrix and put it into reduced row echelon form.−10 −2 10 0

−3 −1 3 0
−6 −2 6 0

 −→
rref

 1 0 −1 0
0 1 0 0
0 0 0 0


Our soluƟon, in vector form, is (note that x2 = 0):

x⃗ = x3

 1
0
1

 .

We can pick any nonzero value for x3; an easy choice is x3 = 1, so x⃗3 =

 1
0
1

 as

our eigenvector.

To summarize, we have the following eigenvalue/eigenvector pairs:

eigenvalue λ1 = −1 with eigenvector x⃗1 =

 3
1
2


eigenvalue λ2 = 2 with eigenvector x⃗2 =

 2
1
2


eigenvalue λ3 = 3 with eigenvector x⃗3 =

 1
0
1


...

Let’s pracƟce once more.
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.. Example 89 ..Find the eigenvalues of A, and for each eigenvalue, give one eigen-
vector, where

A =

 2 −1 1
0 1 6
0 3 4

 .

SÊ½çã®ÊÄ We first compute the characterisƟc polynomial, set it equal to 0,
then solve for λ. We’ll use cofactor expansion down the first column (since it has lots
of zeros).

det (A− λI) =

∣∣∣∣∣∣
2− λ −1 1
0 1− λ 6
0 3 4− λ

∣∣∣∣∣∣
= (2− λ)

∣∣∣∣ 1− λ 6
3 4− λ

∣∣∣∣
= (2− λ)(λ2 − 5λ− 14)

= (2− λ)(λ− 7)(λ+ 2)

NoƟce that while the characterisƟc polynomial is cubic, we never actually saw a
cubic; we never distributed the (2−λ) across the quadraƟc. Instead, we realized that
this was a factor of the cubic, and just factored the remaining quadraƟc. (This makes
this example quite a bit simpler than the previous example.)

Our eigenvalues are λ1 = −2, λ2 = 2 and λ3 = 7. We now find corresponding
eigenvectors.

For λ1 = −2:

We need to solve the equaƟon (A − (−2)I)⃗x = 0⃗. To do this, we form the appro-
priate augmented matrix and put it into reduced row echelon form. 4 −1 1 0

0 3 6 0
0 3 6 0

 −→
rref

 1 0 3/4 0
0 1 2 0
0 0 0 0


Our soluƟon, in vector form, is

x⃗ = x3

−3/4
−2
1

 .

We can pick any nonzero value for x3; a nice choice would get rid of the fracƟons.

So we’ll set x3 = 4 and choose x⃗1 =

−3
−8
4

 as our eigenvector.
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For λ2 = 2:

We need to solve the equaƟon (A− 2I)⃗x = 0⃗. To do this, we form the appropriate
augmented matrix and put it into reduced row echelon form. 0 −1 1 0

0 −1 6 0
0 3 2 0

 −→
rref

 0 1 0 0
0 0 1 0
0 0 0 0


This looks funny, so we’ll look remind ourselves how to solve this. The first two

rows tell us that x2 = 0 and x3 = 0, respecƟvely. NoƟce that no row/equaƟon uses x1;
we conclude that it is free. Therefore, our soluƟon in vector form is

x⃗ = x1

 1
0
0

 .

..
We can pick any nonzero value for x1; an easy choice is x1 = 1 and choose x⃗2 = 1

0
0

 as our eigenvector.

For λ3 = 7:

We need to solve the equaƟon (A− 7I)⃗x = 0⃗. To do this, we form the appropriate
augmented matrix and put it into reduced row echelon form.−5 −1 1 0

0 −6 6 0
0 3 −3 0

 −→
rref

 1 0 0 0
0 1 −1 0
0 0 0 0


Our soluƟon, in vector form, is (note that x1 = 0):

x⃗ = x3

 0
1
1

 .

We can pick any nonzero value for x3; an easy choice is x3 = 1, so x⃗3 =

 0
1
1

 as

our eigenvector.

To summarize, we have the following eigenvalue/eigenvector pairs:

eigenvalue λ1 = −2 with eigenvector x⃗1 =

−3
−8
4


eigenvalue λ2 = 2 with eigenvector x⃗2 =

 1
0
0


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eigenvalue λ3 = 7 with eigenvector x⃗3 =

 0
1
1


...

In this secƟon we have learned about a new concept: given a matrix Awe can find
certain values λ and vectors x⃗ where Ax⃗ = λx⃗. In the next secƟon we will conƟnue to
the paƩern we have established in this text: aŌer learning a new concept, we see how
it interacts with other concepts we know about. That is, we’ll look for connecƟons
between eigenvalues and eigenvectors and things like the inverse, determinants, the
trace, the transpose, etc.

Exercises 4.1
In Exercises 1 – 6, a matrix A and one of its
eigenvectors are given. Find the eigenvalue
of A for the given eigenvector.

1. A =

[
9 8
−6 −5

]
x⃗ =

[
−4
3

]

2. A =

[
19 −6
48 −15

]
x⃗ =

[
1
3

]

3. A =

[
1 −2
−2 4

]
x⃗ =

[
2
1

]

4. A =

−11 −19 14
−6 −8 6
−12 −22 15


x⃗ =

 3
2
4



5. A =

 −7 1 3
10 2 −3
−20 −14 1


x⃗ =

 1
−2
4



6. A =

−12 −10 0
15 13 0
15 18 −5



x⃗ =

−1
1
1


In Exercises 7 – 11, a matrix A and one of its
eigenvalues are given. Find an eigenvector of
A for the given eigenvalue.

7. A =

[
16 6
−18 −5

]
λ = 4

8. A =

[
−2 6
−9 13

]
λ = 7

9. A =

−16 −28 −19
42 69 46
−42 −72 −49


λ = 5

10. A =

 7 −5 −10
6 2 −6
2 −5 −5


λ = −3

11. A =

 4 5 −3
−7 −8 3
1 −5 8


λ = 2

In Exercises 12 – 28, find the eigenvalues of
the givenmatrix. For each eigenvalue, give an
eigenvector.

12.
[
−1 −4
−3 −2

]
13.

[
−4 72
−1 13

]
14.

[
2 −12
2 −8

]
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15.
[
3 12
1 −1

]
16.

[
5 9
−1 −5

]
17.

[
3 −1
−1 3

]
18.

[
0 1
25 0

]
19.

[
−3 1
0 −1

]

20.

 1 −2 −3
0 3 0
0 −1 −1


21.

 5 −2 3
0 4 0
0 −1 3


22.

 1 0 12
2 −5 0
1 0 2



23.

 1 0 −18
−4 3 −1
1 0 −8



24.

−1 18 0
1 2 0
5 −3 −1



25.

 5 0 0
1 1 0
−1 5 −2



26.

 2 −1 1
0 3 6
0 0 7



27.

 3 5 −5
−2 3 2
−2 5 0



28.

 1 2 1
1 2 3
1 1 1



4.2 ProperƟes of Eigenvalues and Eigenvectors

...AS YOU READ . . .

1. T/F: A and AT have the same eigenvectors.

2. T/F: A and A−1 have the same eigenvalues.

3. T/F: Marie Ennemond Camille Jordan was a guy.

4. T/F: Matrices with a trace of 0 are important, although we haven’t seen why.

5. T/F: A matrix A is inverƟble only if 1 is an eigenvalue of A.

In this secƟonwe’ll explore how the eigenvalues and eigenvectors of amatrix relate
to other properƟes of that matrix. This secƟon is essenƟally a hodgepodge of inter-
esƟng facts about eigenvalues; the goal here is not to memorize various facts about
matrix algebra, but to again be amazed at the many connecƟons between mathemat-
ical concepts.

We’ll begin our invesƟgaƟons with an example that will give a foundaƟon for other
discoveries.
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.. Example 90 Let A =

 1 2 3
0 4 5
0 0 6

. Find the eigenvalues of A.

SÊ½çã®ÊÄ To find the eigenvalues, we compute det (A− λI):

det (A− λI) =

∣∣∣∣∣∣
1− λ 2 3
0 4− λ 5
0 0 6− λ

∣∣∣∣∣∣
= (1− λ)(4− λ)(6− λ)

Since our matrix is triangular, the determinant is easy to compute; it is just the
product of the diagonal elements. Therefore, we found (and factored) our character-
isƟc polynomial very easily, and we see that we have eigenvalues of λ = 1, 4, and 6. ..

This examples demonstrates awonderful fact for us: the eigenvalues of a triangular
matrix are simply the entries on the diagonal. Finding the corresponding eigenvectors
sƟll takes some work, but finding the eigenvalues is easy.

With that fact in the backs of our minds, let us proceed to the next example where
we will come across some more interesƟng facts about eigenvalues and eigenvectors.

.. Example 91 ..Let A =

[
−3 15
3 9

]
and let B =

−7 −2 10
−3 2 3
−6 −2 9

 (as used in

Examples 86 and 88, respecƟvely). Find the following:

1. eigenvalues and eigenvectors of A and B

2. eigenvalues and eigenvectors of A−1 and B−1

3. eigenvalues and eigenvectors of AT and BT

4. The trace of A and B

5. The determinant of A and B

SÊ½çã®ÊÄ We’ll answer each in turn.

1. We already know the answer to these for we did this work in previous examples.
Therefore we just list the answers.

For A, we have eigenvalues λ = −6 and 12, with eigenvectors

x⃗ = x2

[
−5
1

]
and x2

[
1
1

]
, respecƟvely.

For B, we have eigenvalues λ = −1, 2, and 3 with eigenvectors

x⃗ = x3

 3
1
2

 , x3

 2
1
2

 and x3

 1
0
1

 , respecƟvely.
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2. We first compute the inverses of A and B. They are:

A−1 =

[
−1/8 5/24
1/24 1/24

]
and B−1 =

 −4 1/3 13/3
−3/2 1/2 3/2
−3 1/3 10/3

 .

Finding the eigenvalues and eigenvectors of these matrices is not terribly hard,
but it is not “easy,” either. Therefore, we omit showing the intermediate steps
and go right to the conclusions.

For A−1, we have eigenvalues λ = −1/6 and 1/12, with eigenvectors

x⃗ = x2

[
−5
1

]
and x2

[
1
1

]
, respecƟvely.

For B−1, we have eigenvalues λ = −1, 1/2 and 1/3 with eigenvectors

x⃗ = x3

 3
1
2

 , x3

 2
1
2

 and x3

 1
0
1

 , respecƟvely.

3. Of course, compuƟng the transpose of A and B is easy; compuƟng their eigenval-
ues and eigenvectors takes more work. Again, we omit the intermediate steps.

For AT, we have eigenvalues λ = −6 and 12 with eigenvectors

x⃗ = x2

[
−1
1

]
and x2

[
5
1

]
, respecƟvely.

For BT, we have eigenvalues λ = −1, 2 and 3 with eigenvectors

x⃗ = x3

−1
0
1

 , x3

−1
1
1

 and x3

 0
−2
1

 , respecƟvely.

4. The trace of A is 6; the trace of B is 4.

5. The determinant of A is−72; the determinant of B is−6.

...

Now that we have completed the “grunt work,” let’s analyze the results of the pre-
vious example. We are looking for any paƩerns or relaƟonships that we can find.

The eigenvalues and eigenvectors of A and A−1.

In our example, we found that the eigenvalues of A are−6 and 12; the eigenvalues
of A−1 are −1/6 and 1/12. Also, the eigenvalues of B are −1, 2 and 3, whereas the
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eigenvalues of B−1 are −1, 1/2 and 1/3. There is an obvious relaƟonship here; it
seems that if λ is an eigenvalue of A, then 1/λ will be an eigenvalue of A−1. We can
also note that the corresponding eigenvectors matched, too.

Why is this the case? Consider an inverƟble matrix Awith eigenvalue λ and eigen-
vector x⃗. Then, by definiƟon, we know that Ax⃗ = λx⃗. Now mulƟply both sides by
A−1:

Ax⃗ = λx⃗

A−1Ax⃗ = A−1λx⃗

x⃗ = λA−1x⃗
1
λ
x⃗ = A−1x⃗

Wehave just shown thatA−1x⃗ = 1/λx⃗; this, by definiƟon, shows that x⃗ is an eigen-
vector of A−1 with eigenvalue 1/λ. This explains the result we saw above.

The eigenvalues and eigenvectors of A and AT.

Our example showed that A and AT had the same eigenvalues but different (but
somehow similar) eigenvectors; it also showed that B and BT had the same eigenvalues
but unrelated eigenvectors. Why is this?

We can answer the eigenvalue quesƟon relaƟvely easily; it follows from the prop-
erƟes of the determinant and the transpose. Recall the following two facts:

1. (A+ B)T = AT + BT (Theorem 11) and

2. det (A) = det
(
AT
)
(Theorem 16).

We find the eigenvalues of a matrix by compuƟng the characterisƟc polynomial;
that is, we find det (A− λI). What is the characterisƟc polynomial of AT? Consider:

det
(
AT − λI

)
= det

(
AT − λIT

)
since I = IT

= det
(
(A− λI)T

)
Theorem 11

= det (A− λI) Theorem 16

So we see that the characterisƟc polynomial of AT is the same as that for A. There-
fore they have the same eigenvalues.

What about their respecƟve eigenvectors? Is there any relaƟonship? The simple
answer is “No.”11

11We have defined an eigenvector to be a column vector. SomemathemaƟcians prefer to use row vectors
instead; in that case, the typical eigenvalue/eigenvector equaƟon looks like x⃗A = λ⃗x. It turns out that doing
things this way will give you the same eigenvalues as our method. What is more, take the transpose of the
above equaƟon: you get (⃗xA)T = (λ⃗x)T which is also ATx⃗T = λ⃗xT. The transpose of a row vector is a
column vector, so this equaƟon is actually the kind we are used to, and we can say that x⃗T is an eigenvector
of AT.

In short, what we find is that the eigenvectors of AT are the “row” eigenvectors of A, and vice–versa.
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The eigenvalues and eigenvectors of A and The Trace.

Note that the eigenvalues of A are −6 and 12, and the trace is 6; the eigenvalues
of B are−1, 2 and 3, and the trace of B is 4. Do we noƟce any relaƟonship?

It seems that the sum of the eigenvalues is the trace! Why is this the case?

The answer to this is a bit out of the scope of this text; we can jusƟfy part of this
fact, and another part we’ll just state as being true without jusƟficaƟon.

First, recall from Theorem 13 that tr(AB) =tr(BA). Secondly, we state without jus-
ƟficaƟon that given a squarematrix A, we can find a squarematrix P such that P−1AP is
an upper triangularmatrixwith the eigenvalues ofA on the diagonal.12 Thus tr(P−1AP)
is the sum of the eigenvalues; also, using our Theorem 13, we know that tr(P−1AP) =
tr(P−1PA) = tr(A). Thus the trace of A is the sum of the eigenvalues.

The eigenvalues and eigenvectors of A and The Determinant.

Again, the eigenvalues of A are −6 and 12, and the determinant of A is −72. The
eigenvalues of B are −1, 2 and 3; the determinant of B is −6. It seems as though the
product of the eigenvalues is the determinant.

This is indeed true; we defend this with our argument from above. We know that
the determinant of a triangular matrix is the product of the diagonal elements. There-
fore, given a matrix A, we can find P such that P−1AP is upper triangular with the
eigenvalues of A on the diagonal. Thus det

(
P−1AP

)
is the product of the eigenvalues.

Using Theorem 16, we know that det
(
P−1AP

)
= det

(
P−1PA

)
= det (A). Thus the

determinant of A is the product of the eigenvalues.

We summarize the results of our example with the following theorem.

12Who in the world thinks up this stuff? It seems that the answer is Marie Ennemond Camille Jordan,
who, despite having at least two girl names, was a guy.
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..
Theorem 19

.

.
ProperƟes of Eigenvalues and Eigenvectors

Let A be an n× n inverƟble matrix. The following are true:

1. If A is triangular, then the diagonal elements of A are
the eigenvalues of A.

2. If λ is an eigenvalue of Awith eigenvector x⃗, then 1
λ is

an eigenvalue of A−1 with eigenvector x⃗.

3. If λ is an eigenvalue of A then λ is an eigenvalue of
AT.

4. The sum of the eigenvalues of A is equal to tr(A), the
trace of A.

5. The product of the eigenvalues of A is the equal to
det (A), the determinant of A.

There is one more concept concerning eigenvalues and eigenvectors that we will
explore. We do so in the context of an example.

.. Example 92 ..Find the eigenvalues and eigenvectors of thematrixA =

[
1 2
1 2

]
.

SÊ½çã®ÊÄ To find the eigenvalues, we compute det (A− λI):

det (A− λI) =

∣∣∣∣ 1− λ 2
1 2− λ

∣∣∣∣
= (1− λ)(2− λ)− 2

= λ2 − 3λ

= λ(λ− 3)

Our eigenvalues are therefore λ = 0, 3.
For λ = 0, we find the eigenvectors:[

1 2 0
1 2 0

]
−→
rref

[
1 2 0
0 0 0

]
This shows that x1 = −2x2, and so our eigenvectors x⃗ are

x⃗ = x2

[
−2
1

]
.

For λ = 3, we find the eigenvectors:
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[
−2 2 0
1 −1 0

]
−→
rref

[
1 −1 0
0 0 0

]
This shows that x1 = x2, and so our eigenvectors x⃗ are

x⃗ = x2

[
1
1

]
.

...

One interesƟng thing about the above example is that we see that 0 is an eigen-
value of A; we have not officially encountered this before. Does this mean anything
significant?13

Think aboutwhat an eigenvalue of 0means: there exists an nonzero vector x⃗where
Ax⃗ = 0⃗x = 0⃗. That is, we have a nontrivial soluƟon to Ax⃗ = 0⃗. We know this only
happens when A is not inverƟble.

So if A is inverƟble, there is no nontrivial soluƟon to Ax⃗ = 0⃗, and hence 0 is not
an eigenvalue of A. If A is not inverƟble, then there is a nontrivial soluƟon to Ax⃗ = 0⃗,
and hence 0 is an eigenvalue of A. This leads us to our final addiƟon to the InverƟble
Matrix Theorem.

..
Theorem 20

.

.
InverƟble Matrix Theorem

LetA be an n×nmatrix. The following statements are equiv-
alent.

(a) A is inverƟble.

(h) A does not have an eigenvalue of 0.

This secƟon is about the properƟes of eigenvalues and eigenvectors. Of course, we
have not invesƟgated all of the numerous properƟes of eigenvalues and eigenvectors;
we have just surveyed some of the most common (and most important) concepts.
Here are four quick examples of the many things that sƟll exist to be explored.

First, recall the matrix

A =

[
1 4
2 3

]
that we used in Example 84. It’s characterisƟc polynomial is p(λ) = λ2 − 4λ − 5.
Compute p(A); that is, compute A2−4A−5I. You should get something “interesƟng,”
and you should wonder “does this always work?”14

13Since 0 is a “special” number, we might think so – aŌerall, we found that having a determinant of 0 is
important. Then again, a matrix with a trace of 0 isn’t all that important. (Well, as far as we have seen; it
actually is). So, having an eigenvalue of 0 may or may not be significant, but we would be doing well if we
recognized the possibility of significance and decided to invesƟgate further.

14Yes.
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Second, in all of our examples, we have considered matrices where eigenvalues
“appeared only once.” Since we know that the eigenvalues of a triangular matrix ap-
pear on the diagonal, we know that the eigenvalues of

A =

[
1 1
0 1

]
are “1 and 1;” that is, the eigenvalue λ = 1 appears twice. What does thatmeanwhen
we consider the eigenvectors of λ = 1? Compare the result of this to the matrix

A =

[
1 0
0 1

]
,

which also has the eigenvalue λ = 1 appearing twice.15

Third, consider the matrix

A =

[
0 −1
1 0

]
.

What are the eigenvalues?16 We quickly compute the characterisƟc polynomial to be
p(λ) = λ2 + 1. Therefore the eigenvalues are±

√
−1 = ±i. What does this mean?

Finally, we have found the eigenvalues of matrices by finding the roots of the char-
acterisƟc polynomial. We have limited our examples to quadraƟc and cubic polynomi-
als; onewould expect for larger sizedmatrices that a computerwould be used to factor
the characterisƟc polynomials. However, in general, this is not how the eigenvalues
are found. Factoring high order polynomials is too unreliable, even with a computer
– round off errors can cause unpredictable results. Also, to even compute the charac-
terisƟc polynomial, one needs to compute the determinant, which is also expensive
(as discussed in the previous chapter).

So how are eigenvalues found? There are iteraƟve processes that can progressively
transform amatrix A into another matrix that is almost an upper triangular matrix (the
entries below the diagonal are almost zero) where the entries on the diagonal are the
eigenvalues. The more iteraƟons one performs, the beƩer the approximaƟon is.

Thesemethods are so fast and reliable that some computer programs convert poly-
nomial root finding problems into eigenvalue problems!

Most textbooks on Linear Algebra will provide direcƟon on exploring the above
topics and give further insight to what is going on. We have menƟoned all the eigen-
value and eigenvector properƟes in this secƟon for the same reasons we gave in the
previous secƟon. First, knowing these properƟes helps us solve numerous real world
problems, and second, it is fascinaƟng to see how rich and deep the theory of matrices
is.

15To direct further study, it helps to know that mathemaƟcians refer to this as the duplicity of an eigen-
value. In each of these two examples, A has the eigenvalue λ = 1 with duplicity of 2.

16Be careful; this matrix is not triangular.
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4.2 ProperƟes of Eigenvalues and Eigenvectors

Exercises 4.2
In Exercises 1 – 6, a matrix A is given. For
each,

(a) Find the eigenvalues of A, and for each
eigenvalue, find an eigenvector.

(b) Do the same for AT.

(c) Do the same for A−1.

(d) Find tr(A).

(e) Find det (A).

Use Theorem 19 to verify your results.

1.
[

0 4
−1 5

]

2.
[
−2 −14
−1 3

]
3.

[
5 30
−1 −6

]
4.

[
−4 72
−1 13

]

5.

 5 −9 0
1 −5 0
2 4 3



6.

 0 25 0
1 0 0
1 1 −3


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Wealready looked at the basics of graphing vectors. In this chapter, we’ll explore these
ideas more fully. One oŌen gains a beƩer understanding of a concept by “seeing” it.
For instance, one can study the funcƟon f(x) = x2 and describe many properƟes of
how the output relates to the input without producing a graph, but the graph can
quickly bring meaning and insight to equaƟons and formulae. Not only that, but the
study of graphs of funcƟons is in itself a wonderful mathemaƟcal world, worthy of
exploraƟon.

We’ve studied the graphing of vectors; in this chapter we’ll take this a step further
and study some fantasƟc graphical properƟes of vectors and matrix arithmeƟc. We
menƟoned earlier that these concepts form the basis of computer graphics; in this
chapter, we’ll see even beƩer how that is true.

5.1 TransformaƟons of the Cartesian Plane

...AS YOU READ . . .

1. To understand how the Cartesian plane is affected by mulƟplicaƟon by a matrix,
it helps to study how what is affected?

2. Transforming theCartesian plane throughmatrixmulƟplicaƟon transforms straight
lines into what kind of lines?

3. T/F: If one draws a picture of a sheep on the Cartesian plane, then transformed
the plane using the matrix [

−1 0
0 1

]
,

one could say that the sheep was “sheared.”



Chapter 5 Graphical ExploraƟons of Vectors

We studied in SecƟon 2.3 how to visualize vectors and how certain matrix arith-
meƟc operaƟons can be graphically represented. We limited our visual understanding
of matrix mulƟplicaƟon to graphing a vector, mulƟplying it by a matrix, then graphing
the resulƟng vector. In this secƟon we’ll explore these mulƟplicaƟon ideas in greater
depth. Instead of mulƟplying individual vectors by a matrix A, we’ll study what hap-
pens when we mulƟply every vector in the Cartesian plans by A.1

Because of the DistribuƟve Property as we saw demonstrated way back in Example
41, we can say that the Cartesian plane will be transformed in a very nice, predictable
way. Straight lineswill be transformed into other straight lines (and theywon’t become
curvy, or jagged, or broken). Curved lines will be transformed into other curved lines
(perhaps the curve will become “straight,” but it won’t become jagged or broken).

Oneway of studying how thewhole Cartesian plane is affected bymulƟplicaƟon by
amatrixA is to study how the unit square is affected. The unit square is the squarewith
corners at the points (0, 0), (1, 0), (1, 1), and (0, 1). Each corner can be represented
by the vector that points to it; mulƟply each of these vectors by A and we can get an
idea of how A affects the whole Cartesian plane.

Let’s try an example.

.. Example 93 ..Plot the vectors of the unit square before and aŌer they have been
mulƟplied by A, where

A =

[
1 4
2 3

]
.

SÊ½çã®ÊÄ The four corners of the unit square can be represented by the vec-
tors [

0
0

]
,

[
1
0

]
,

[
1
1

]
,

[
0
1

]
.

MulƟplying each by A gives the vectors[
0
0

]
,

[
1
2

]
,

[
5
5

]
,

[
4
3

]
,

respecƟvely.
(Hint: one way of using your calculator to do this for you quickly is to make a 2× 4

matrix whose columns are each of these vectors. In this case, create a matrix

B =

[
0 1 1 0
0 0 1 1

]
.

ThenmulƟplyBbyA and readoff the transformed vectors from the respecƟve columns:

AB =

[
0 1 5 4
0 2 5 3

]
.

1No, we won’t do them one by one.
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5.1 TransformaƟons of the Cartesian Plane

This saves Ɵme, especially if you do a similar procedure for mulƟple matrices A. Of
course, we can save more Ɵme by skipping the first column; since it is the column of
zeros, it will stay the column of zeros aŌer mulƟplicaƟon by A.)

The unit square and its transformaƟon are graphed in Figure 5.1, where the shaped
verƟces correspond to each other across the two graphs. Note how the square got
turned into some sort of quadrilateral (it’s actually a parallelogram). A really interest-
ing thing is how the triangular and square verƟces seem to have changed places – it is
as though the square, in addiƟon to being stretched out of shape, was flipped.

.. x.

y

.
1

.

1

..... x.

y

.
1

.

1

....

..Figure 5.1: Transforming the unit square by matrix mulƟplicaƟon in Example 93.

.. x.

y

.
1

.

1

..... x.

y

.
1

.

1

....

..Figure 5.2: Emphasizing straight lines going to straight lines in Example 93.

To stress how “straight lines get transformed to straight lines,” consider Figure 5.2.
Here, the unit square has some addiƟonal points drawn on it which correspond to the
shaded dots on the transformed parallelogram. Note how relaƟve distances are also
preserved; the dot halfway between the black and square dots is transformed to a po-
siƟon along the line, halfway between the black and square dots. ...

Muchmore can be said about this example. Before we delve into this, though, let’s
try one more example.
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Chapter 5 Graphical ExploraƟons of Vectors

.. Example 94 Plot the transformed unit square aŌer it has been transformed by
A, where

A =

[
0 −1
1 0

]
.

SÊ½çã®ÊÄ We’ll put the vectors that correspond to each corner in a matrix B
as before and then mulƟply it on the leŌ by A. Doing so gives:

AB =

[
0 −1
1 0

] [
0 1 1 0
0 0 1 1

]
=

[
0 0 −1 −1
0 1 1 0

]
In Figure 5.3 the unit square is again drawn along with its transformaƟon by A.

.. x.

y

.
1

.

1

..... x.

y

.
1

....

..Figure 5.3: Transforming the unit square by matrix mulƟplicaƟon in Example 94.

Make note of how the square moved. It did not simply “slide” to the leŌ;2 nor
did it “flip” across the y axis. Rather, it was rotated counterclockwise about the origin
90◦. In a rotaƟon, the shape of an object does not change; in our example, the square
remained a square of the same size. ..

We have broached the topic of how the Cartesian plane can be transformed via
mulƟplicaƟon by a 2×2matrix A. We have seen two examples so far, and our intuiƟon
as to how the plane is changed has been informed only by seeing how the unit square
changes. Let’s explore this further by invesƟgaƟng two quesƟons:

1. Suppose wewant to transform the Cartesian plane in a knownway (for instance,
we may want to rotate the plane counterclockwise 180◦). How do we find the
matrix (if one even exists) which performs this transformaƟon?

2. Howdoes knowing how the unit square is transformed really help in understand-
ing how the enƟre plane is transformed?

These quesƟons are closely related, and as we answer one, we will help answer
the other.

2mathemaƟcally, that is called a translaƟon
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5.1 TransformaƟons of the Cartesian Plane

To get started with the first quesƟon, look back at Examples 93 and 94 and con-
sider again how the unit square was transformed. In parƟcular, is there any correlaƟon
between where the verƟces ended up and the matrix A?

If you are just reading on, and haven’t actually gone back and looked at the exam-
ples, go back now and try tomake some sort of connecƟon. Otherwise – youmay have
noted some of the following things:

1. The zero vector (⃗0, the “black” corner) never moved. That makes sense, though;
A0⃗ = 0⃗.

2. The “square” corner, i.e., the corner corresponding to the vector
[
1
0

]
, is always

transformed to the vector in the first column of A!

3. Likewise, the “triangular” corner, i.e., the corner corresponding to the vector[
0
1

]
, is always transformed to the vector in the second column of A!3

4. The “white dot” corner is always transformed to the sum of the two column
vectors of A.4

Let’s now take the Ɵme to understand these four points. The first point should be
clear; 0⃗will always be transformed to 0⃗ viamatrixmulƟplicaƟon. (Hence the hint in the
middle of Example 93, where we are told that we can ignore entering in the column of
zeros in the matrix B.)

We can understand the second and third points simultaneously. Let

A =

[
a b
c d

]
, e⃗1 =

[
1
0

]
and e⃗2 =

[
0
1

]
.

What are Ae⃗1 and Ae⃗2?

Ae⃗1 =
[
a b
c d

] [
1
0

]
=

[
a
c

]

Ae⃗2 =
[
a b
c d

] [
0
1

]
=

[
b
d

]
3Although this is less of a surprise, given the result of the previous point.
4This observaƟon is a bit more obscure than the first three. It follows from the fact that this corner of

the unit square is the “sum” of the other two nonzero corners.
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Chapter 5 Graphical ExploraƟons of Vectors

So bymeremechanics ofmatrixmulƟplicaƟon, the square corner e⃗1 is transformed
to the first column of A, and the triangular corner e⃗2 is transformed to the second col-
umn of A. A similar argument demonstrates why the white dot corner is transformed
to the sum of the columns of A.5

Revisit now the quesƟon “How do we find the matrix that performs a given trans-
formaƟon on the Cartesian plane?” The answer follows from what we just did. Think
about the given transformaƟon and how it would transform the corners of the unit
square. Make the first column of A the vector where e⃗1 goes, and make the second
column of A the vector where e⃗2 goes.

Let’s pracƟce this in the context of an example.

.. Example 95 ..Find thematrixA that flips the Cartesian plane about the x axis and
then stretches the plane horizontally by a factor of two.

SÊ½çã®ÊÄ We first consider e⃗1 =

[
1
0

]
. Where does this corner go to under

the given transformaƟon? Flipping the plane across the x axis does not change e⃗1 at

all; stretching the plane sends e⃗1 to
[
2
0

]
. Therefore, the first column of A is

[
2
0

]
.

Now consider e⃗2 =

[
0
1

]
. Flipping the plane about the x axis sends e⃗2 to the vec-

tor
[

0
−1

]
; subsequently stretching the plane horizontally does not affect this vector.

Therefore the second column of A is
[

0
−1

]
.

Puƫng this together gives

A =

[
2 0
0 −1

]
.

To help visualize this, consider Figure 5.4 where a shape is transformed under this
matrix. NoƟce how it is turned upside down and is stretched horizontally by a factor
of two. (The gridlines are given as a visual aid.)

5Another way of looking at all of this is to consider what A · I is: of course, it is just A. What are the
columns of I? Just e⃗1 and e⃗2.
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5.1 TransformaƟons of the Cartesian Plane

.

..Figure 5.4: Transforming the Cartesian plane in Example 95...

A while ago we asked two quesƟons. The first was “How dowe find thematrix that
performs a given transformaƟon?” We have just answered that quesƟon (althoughwe
will do more to explore it in the future). The second quesƟon was “How does knowing
how the unit square is transformed really help us understand how the enƟre plane is
transformed?”

Consider Figure 5.5 where the unit square (with verƟces marked with shapes as
before) is shown transformed under an unknown matrix. How does this help us un-
derstand how the whole Cartesian plane is transformed? For instance, how can we
use this picture to figure out how the point (2, 3) will be transformed?

.. x.

y

....

..Figure 5.5: The unit square under an unknown transformaƟon.

There are two ways to consider the soluƟon to this quesƟon. First, we know now
how to compute the transformaƟon matrix; the new posiƟon of e⃗1 is the first column
of A, and the new posiƟon of e⃗2 is the second column of A. Therefore, by looking at
the figure, we can deduce that

A =

[
1 −1
1 2

]
.6

6At least, A is close to that. The square corner could actually be at the point (1.01, .99).
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Chapter 5 Graphical ExploraƟons of Vectors

To find where the point (2, 3) is sent, simply mulƟply[
1 −1
1 2

] [
2
3

]
=

[
−1
8

]
.

There is another way of doing this which isn’t as computaƟonal – it doesn’t involve
compuƟng the transformaƟon matrix. Consider the following equaliƟes:[

2
3

]
=

[
2
0

]
+

[
0
3

]
= 2

[
1
0

]
+ 3

[
0
1

]
= 2e⃗1 + 3e⃗2

This last equality states something that is somewhat obvious: to arrive at the vector[
2
3

]
, one needs to go 2 units in the e⃗1 direcƟon and 3 units in the e⃗2 direcƟon. To find

where the point (2, 3) is transformed, one needs to go 2 units in the new e⃗1 direcƟon
and 3 units in the new e⃗2 direcƟon. This is demonstrated in Figure 5.6.

.. x.

y

.
2× “new” e⃗1

.

3× “new” e⃗2

.

new locaƟon of
the point (2, 3)

..Figure 5.6: Finding the new locaƟon of the point (2, 3).

We are coming to grips with how matrix transformaƟons work. We asked two ba-
sic quesƟons: “How do we find the matrix for a given transformaƟon?” and “How
do we understand the transformaƟon without the matrix?”, and we’ve answered each
accompanied by one example. Let’s do another example that demonstrates both tech-
niques at once.

.. Example 96 ..First, find thematrixA that transforms theCartesian planeby stretch-
ing it verƟcally by a factor of 1.5, then stretches it horizontally by a factor of 0.5, then
rotates it clockwise about the origin 90◦. Secondly, using the new locaƟons of e⃗1 and
e⃗2, find the transformed locaƟon of the point (−1, 2).
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5.1 TransformaƟons of the Cartesian Plane

SÊ½çã®ÊÄ To findA, first consider the new locaƟon of e⃗1. Stretching the plane
verƟcally does not affect e⃗1; stretching the plane horizontally by a factor of 0.5 changes

e⃗1to
[
1/2
0

]
, and then rotaƟng it 90◦ about the origin moves it to

[
0

−1/2

]
. This is the

first column of A.
Now consider the new locaƟon of e⃗2. Stretching the plane verƟcally changes it to[
0

3/2

]
; stretching horizontally does not affect it, and rotaƟng 90◦ moves it to

[
3/2
0

]
.

This is then the second column of A. This gives

A =

[
0 3/2

−1/2 0

]
.

Where does the point (−1, 2) get sent to? The corresponding vector
[
−1
2

]
is

found by going −1 units in the e⃗1 direcƟon and 2 units in the e⃗2 direcƟon. Therefore,
the transformaƟon will send the vector to−1 units in the new e⃗1 direcƟon and 2 units
in the new e⃗2 direcƟon. This is sketched in Figure 5.7, along with the transformed unit
square. We can also check this mulƟplicaƟvely:[

0 3/2
−1/2 0

] [
−1
2

]
=

[
3

1/2

]
.

Figure 5.8 shows the effects of the transformaƟon on another shape.

.. x.

y

....

..Figure 5.7: Understanding the transformaƟon in Example 96.

.

..Figure 5.8: Transforming the Cartesian plane in Example 96... 195



Chapter 5 Graphical ExploraƟons of Vectors

Right nowwe are focusing on transforming the Cartesian plane –we aremaking 2D
transformaƟons. Knowing how to do this provides a foundaƟon for transforming 3D
space,7 which, among other things, is very important when producing 3D computer
graphics. Basic shapes can be drawn and then rotated, stretched, and/or moved to
other regions of space. This also allows for things like “moving the camera view.”

What kinds of transformaƟons are possible? We have already seen some of the
things that are possible: rotaƟons, stretches, and flips. We have also menƟoned some
things that are not possible. For instance, we stated that straight lines always get trans-
formed to straight lines. Therefore, we cannot transform the unit square into a circle
using a matrix.

Let’s look at some common transformaƟons of the Cartesian plane and the matri-
ces that perform these operaƟons. In the following figures, a transformaƟon matrix
will be given alongside a picture of the transformed unit square. (The original unit
square is drawn lightly as well to serve as a reference.)

2D Matrix TransformaƟons

Horizontal stretch by a
factor of k.[

k 0
0 1

]
.. x.

y

.........

(k, 1)

VerƟcal stretch by a
factor of k.[

1 0
0 k

]
.. x.

y

.........

(1, k)

7Actually, it provides a foundaƟon for doing it in 4D, 5D, . . ., 17D, etc. Those are just harder to visualize.
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5.1 TransformaƟons of the Cartesian Plane

Horizontal shear by a
factor of k.[

1 k
0 1

]
.. x.

y

.........

(k, 1)

VerƟcal shear by a factor
of k. [

1 0
k 1

]
.. x.

y

.........

(k, 1)

Horizontal reflecƟon
across the y axis.[

−1 0
0 1

] .. x.

y

........

VerƟcal reflecƟon across
the x axis.[

1 0
0 −1

] .. x.

y

........
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Diagonal reflecƟon
across the line y = x.[

0 1
1 0

] .. x.

y

........

RotaƟon around the
origin by an angle of θ.[

cos θ − sin θ
sin θ cos θ

]
.. x.

y

.........
θ

ProjecƟon onto the x
axis.
(Note how the square is
“squashed” down onto
the x-axis.)[

1 0
0 0

] .. x.

y

........

ProjecƟon onto the y
axis.
(Note how the square is
“squashed” over onto
the y-axis.)[

0 0
0 1

] .. x.

y

........

Now that we have seen a healthy list of transformaƟons that we can perform on
the Cartesian plane, let’s pracƟce a few more Ɵmes creaƟng the matrix that gives the
desired transformaƟon. In the following example, we develop our understanding one
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5.1 TransformaƟons of the Cartesian Plane

more criƟcal step.

.. Example 97 ..Find the matrix A that transforms the Cartesian plane by perform-
ing the following operaƟons in order:

1. VerƟcal shear by a factor of
0.5

2. Counterclockwise rotaƟon
about the origin by an angle
of θ = 30◦

3. Horizontal stretch by a fac-
tor of 2

4. Diagonal reflecƟon across
the line y = x

SÊ½çã®ÊÄ Wow! We already know how to do this – sort of. We know we
can find the columns of A by tracing where e⃗1 and e⃗2 end up, but this also seems
difficult. There is so much that is going on. Fortunately, we can accomplish what we
need without much difficulty by being systemaƟc.

First, let’s perform the verƟcal shear. The matrix that performs this is

A1 =

[
1 0
0.5 1

]
.

AŌer that, we want to rotate everything clockwise by 30◦. To do this, we use

A2 =

[
cos 30◦ − sin 30◦

sin 30◦ cos 30◦

]
=

[√
3/2 −1/2
1/2

√
3/2

]
.

In order to do both of these operaƟons, in order, we mulƟply A2A1.8

To perform the final two operaƟons, we note that

A3 =

[
2 0
0 1

]
and A4 =

[
0 1
1 0

]
perform the horizontal stretch and diagonal reflecƟon, respecƟvely. Thus to perform
all of the operaƟons “at once,” we need to mulƟply by

A = A4A3A2A1

=

[
0 1
1 0

] [
2 0
0 1

] [√
3/2 −1/2
1/2

√
3/2

] [
1 0
0.5 1

]
=

[
(
√
3+ 2)/4

√
3/2

(2
√
3− 1)/2 −1

]
≈

[
0.933 0.866
1.232 −1

]
.

8The reader might ask, “Is it important to do mulƟply these in that order? Could we have mulƟplied
A1A2 instead?” Our answer starts with “Is matrix mulƟplicaƟon commutaƟve?” The answer to our quesƟon
is “No,” so the answers to the reader’s quesƟons are “Yes” and “No,” respecƟvely.
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Chapter 5 Graphical ExploraƟons of Vectors

Let’s consider this closely. Suppose I want to know where a vector x⃗ ends up. We
claim we can find the answer by mulƟplying Ax⃗. Why does this work? Consider:

Ax⃗ = A4A3A2A1x⃗

= A4A3A2(A1x⃗) (performs the verƟcal shear)

= A4A3(A2x⃗1) (performs the rotaƟon)

= A4(A3x⃗2) (performs the horizontal stretch)

= A4x⃗3 (performs the diagonal reflecƟon)

= x⃗4 (the result of transforming x⃗)

Most readers are not able to visualize exactly what the given list of operaƟons does
to the Cartesian plane. In Figure 5.9 we sketch the transformed unit square; in Figure
5.10 we sketch a shape and its transformaƟon.

.. x.

y

........

..Figure 5.9: The transformed unit square in Example 97.

.

..Figure 5.10: A transformed shape in Example 97....

Onceweknowwhatmatrices perform thebasic transformaƟons,9 performing com-
plex transformaƟons on the Cartesian plane really isn’t that . . . complex. It boils down

9or know where to find them200



5.1 TransformaƟons of the Cartesian Plane

to mulƟplying by a series of matrices.

We’ve shown many examples of transformaƟons that we can do, and we’ve men-
Ɵoned just a few that we can’t – for instance, we can’t turn a square into a circle. Why
not? Why is it that straight lines get sent to straight lines? We spent a lot of Ɵmewithin
this text looking at inverƟble matrices; what connecƟons, if any,10 are there between
inverƟble matrices and their transformaƟons on the Cartesian plane?

All these quesƟons require us to think like mathemaƟcians – we are being asked to
study the properƟes of an object we just learned about and their connecƟons to things
we’ve already learned. We’ll do all this (and more!) in the following secƟon.

Exercises 5.1
In Exercises 1 – 4, a sketch of transformed unit
square is given. Find the matrix A that per-
forms this transformaƟon.

1.
.. x.

y

.
1

.
1
....

2.
.. x.

y

.
1

.
1
....

3.
.. x.

y

.
1

.
1
....

4.
.. x.

y

.
1

.
1
....

In Exercises 5 – 10, a list of transformaƟons is
given. Find the matrix A that performs those
transformaƟons, in order, on the Cartesian
plane.

5. (a) verƟcal shear by a factor of 2

(b) horizontal shear by a factor of 2

6. (a) horizontal shear by a factor of 2

(b) verƟcal shear by a factor of 2

7. (a) horizontal stretch by a factor of 3

(b) reflecƟon across the line y = x

8. (a) counterclockwise rotaƟon by an
angle of 45◦

(b) verƟcal stretch by a factor of 1/2

9. (a) clockwise rotaƟon by an angle of
90◦

(b) horizontal reflecƟon across the y
axis

(c) verƟcal shear by a factor of 1

10. (a) verƟcal reflecƟon across the x
axis

(b) horizontal reflecƟon across the y
axis

(c) diagonal reflecƟon across the line
y = x

In Exercises 11 – 14, two sets of transforma-
Ɵons are given. Sketch the transformed unit
square under each set of transformaƟons.
Are the transformaƟons the same? Explain
why/why not.

10By now, the reader should expect connecƟons to exist.

201



Chapter 5 Graphical ExploraƟons of Vectors

11. (a) a horizontal reflecƟon across the
y axis, followed by a verƟcal re-
flecƟon across the x axis, com-
pared to

(b) a counterclockise rotaƟon of
180◦

12. (a) a horizontal stretch by a factor of
2 followed by a reflecƟon across
the line y = x, compared to

(b) a verƟcal stretch by a factor of 2

13. (a) a horizontal stretch by a factor of
1/2 followed by a verƟcal stretch
by a factor of 3, compared to

(b) the same operaƟons but in oppo-
site order

14. (a) a reflecƟon across the line y =
x followed by a reflecƟon across
the x axis, compared to

(b) a reflecƟon across the the y axis,
followed by a reflecƟon across
the line y = x.

5.2 ProperƟes of Linear TransformaƟons

...AS YOU READ . . .

1. T/F: TranslaƟng the Cartesian plane 2 units up is a linear transformaƟon.

2. T/F: If T is a linear transformaƟon, then T(⃗0) = 0⃗.

In the previous secƟon we discussed standard transformaƟons of the Cartesian
plane – rotaƟons, reflecƟons, etc. As a moƟvaƟonal example for this secƟon’s study,
let’s consider another transformaƟon – let’s find thematrix thatmoves the unit square
one unit to the right (see Figure 5.11). This is called a translaƟon.

.. x.

y

..... x.

y

....

..Figure 5.11: TranslaƟng the unit square one unit to the right.

Our work from the previous secƟon allows us to find the matrix quickly. By looking

at the picture, it is easy to see that e⃗1 is moved to
[
2
0

]
and e⃗2 is moved to

[
1
1

]
.

Therefore, the transformaƟon matrix should be

A =

[
2 1
0 1

]
.

However, look at Figure 5.12 where the unit square is drawn aŌer being trans-
formed by A. It is clear that we did not get the desired result; the unit square was not
translated, but rather stretched/sheared in some way.
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.. x.

y

..... x.

y

....

..Figure 5.12: Actual transformaƟon of the unit square by matrix A.

What did we do wrong? Wewill answer this quesƟon, but first we need to develop
a few thoughts and vocabulary terms.

We’ve been using the term “transformaƟon” to describe how we’ve changed vec-
tors. In fact, “transformaƟon” is synonymous to “funcƟon.” We are used to funcƟons
like f(x) = x2, where the input is a number and the output is another number. In the
previous secƟon, we learned about transformaƟons (funcƟons) where the input was
a vector and the output was another vector. If A is a “transformaƟon matrix,” then we
could create a funcƟon of the form T(⃗x) = Ax⃗. That is, a vector x⃗ is the input, and the
output is x⃗ mulƟplied by A.11

When we defined f(x) = x2 above, we let the reader assume that the input was
indeed a number. If we wanted to be complete, we should have stated

f : R → R where f(x) = x2.

The first part of that line told us that the input was a real number (that was the first
R) and the output was also a real number (the second R).

To define a transformaƟonwhere a 2D vector is transformed into another 2D vector
via mulƟplicaƟon by a 2× 2 matrix A, we should write

T : R2 → R2 where T(⃗x) = Ax⃗.

Here, the firstR2 means that we are using 2D vectors as our input, and the secondR2

means that a 2D vector is the output.
Consider a quick example:

T : R2 → R3 where T
([

x1
x2

])
=

 x21
2x1
x1x2

 .

NoƟce that this takes 2D vectors as input and returns 3D vectors as output. For in-
stance,

T
([

3
−2

])
=

 9
6
−6

 .

We now define a special type of transformaƟon (funcƟon).
11We used T instead of f to define this funcƟon to help differenƟate it from “regular” funcƟons. “Nor-

mally” funcƟons are defined using lower case leƩers when the input is a number; when the input is a vector,
we use upper case leƩers.
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..
DefiniƟon 29

.

.
Linear TransformaƟon

A transformaƟon T : Rn → Rm is a linear transformaƟon if
it saƟsfies the following two properƟes:

1. T(⃗x + y⃗) = T(⃗x) + T(⃗y) for all vectors x⃗ and y⃗, and

2. T(k⃗x) = kT(⃗x) for all vectors x⃗ and all scalars k.

If T is a linear transformaƟon, it is oŌen said that “T is linear.”

Let’s learn about this definiƟon through some examples.

.. Example 98 Determine whether or not the transformaƟon T : R2 → R3 is a
linear transformaƟon, where

T
([

x1
x2

])
=

 x21
2x1
x1x2

 .

SÊ½çã®ÊÄ We’ll arbitrarily pick two vectors x⃗ and y⃗:

x⃗ =

[
3
−2

]
and y⃗ =

[
1
5

]
.

Let’s check to see if T is linear by using the definiƟon.

1. Is T(⃗x + y⃗) = T(⃗x) + T(⃗y)? First, compute x⃗ + y⃗:

x⃗ + y⃗ =
[

3
−2

]
+

[
1
5

]
=

[
4
3

]
.

Now compute T(⃗x), T(⃗y), and T(⃗x + y⃗):

T(⃗x) = T
([

3
−2

])

=

 9
6
−6


T(⃗y) = T

([
1
5

])

=

 1
2
5


T(⃗x + y⃗) = T

([
4
3

])

=

 16
8
12


Is T(⃗x + y⃗) = T(⃗x) + T(⃗y)? 9

6
−6

+

 1
2
5

 !

̸=

 16
8
12

 .

Therefore, T is not a linear transformaƟon. ..
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Sowehave an example of something that doesn’twork. Let’s try an examplewhere
things do work.12

.. Example 99 ..Determine whether or not the transformaƟon T : R2 → R2 is a
linear transformaƟon, where T(⃗x) = Ax⃗ and

A =

[
1 2
3 4

]
.

SÊ½çã®ÊÄ Let’s start by again considering arbitrary x⃗ and y⃗. Let’s choose the
same x⃗ and y⃗ from Example 98.

x⃗ =

[
3
−2

]
and y⃗ =

[
1
5

]
.

If the lineararity properƟes hold for these vectors, thenmaybe it is actually linear (and
we’ll do more work).

1. Is T(⃗x + y⃗) = T(⃗x) + T(⃗y)? Recall:

x⃗ + y⃗ =
[
4
3

]
.

Now compute T(⃗x), T(⃗y), and T(⃗x) + T(⃗y):

T(⃗x) = T
([

3
−2

])
=

[
−1
1

] T(⃗y) = T
([

1
5

])
=

[
11
23

] T(⃗x + y⃗) = T
([

4
3

])
=

[
10
24

]

Is T(⃗x + y⃗) = T(⃗x) + T(⃗y)?[
−1
1

]
+

[
11
23

]
!
=

[
10
24

]
.

So far, so good: T(⃗x + y⃗) is equal to T(⃗x) + T(⃗y).

12Recall a principle of logic: to show that something doesn’t work, we just need to show one case where
it fails, which we did in Example 98. To show that something always works, we need to show it works
for all cases – simply showing it works for a few cases isn’t enough. However, doing so can be helpful in
understanding the situaƟon beƩer.
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2. Is T(k⃗x) = kT(⃗x)? Let’s arbitrarily pick k = 7, and use x⃗ as before.

T(7⃗x) = T
([

21
−14

])
=

[
−7
7

]
= 7

[
−1
1

]
= 7 · T(⃗x) !

So far it seems that T is indeed linear, for it worked in one example with arbitrarily
chosen vectors and scalar. Now we need to try to show it is always true.

Consider T(⃗x + y⃗). By the definiƟon of T, we have

T(⃗x + y⃗) = A(⃗x + y⃗).

By Theorem 3, part 2 (on page 62) we state that the DistribuƟve Property holds for
matrix mulƟplicaƟon.13 So A(⃗x + y⃗) = Ax⃗ + A⃗y. Recognize now that this last part is
just T(⃗x) + T(⃗y)! We repeat the above steps, all together:

T(⃗x + y⃗) = A(⃗x + y⃗) (by the definiƟon of T in this example)

= Ax⃗ + A⃗y (by the DistribuƟve Property)

= T(⃗x) + T(⃗y) (again, by the definiƟon of T)

Therefore, no maƩer what x⃗ and y⃗ are chosen, T(⃗x + y⃗) = T(⃗x) + T(⃗y). Thus the first
part of the lineararity definiƟon is saƟsfied.

The second part is saƟsfied in a similar fashion. Let k be a scalar, and consider:

T(k⃗x) = A(k⃗x) (by the definiƟon of T is this example)

= kAx⃗ (by Theorem 3 part 3)

= kT(⃗x) (again, by the definiƟon of T)

Since T saƟsfies both parts of the definiƟon, we conclude that T is a linear trans-
formaƟon. ...

Wehave seen twoexamples of transformaƟons so far, onewhichwas not linear and
one that was. One might wonder “Why is linearity important?”, which we’ll address
shortly.

First, consider how we proved the transformaƟon in Example 99 was linear. We
defined T by matrix mulƟplicaƟon, that is, T(⃗x) = Ax⃗. We proved T was linear using
properƟes of matrix mulƟplicaƟon –we never considered the specific values of A! That
is, we didn’t just choose a good matrix for T; any matrix A would have worked. This

13Recall that a vector is just a special type of matrix, so this theorem applies to matrix–vector mulƟplica-
Ɵon as well.
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leads us to an important theorem. The first part we have essenƟally just proved; the
second part we won’t prove, although its truth is very powerful.

..
Theorem 21

.

.
Matrices and Linear TransformaƟons

1. Define T : Rn → Rm by T(⃗x) = Ax⃗, where A is an
m× nmatrix. Then T is a linear transformaƟon.

2. Let T : Rn → Rm be any linear transformaƟon. Then
there exists an uniquem×nmatrixA such that T(⃗x) =
Ax⃗.

The second part of the theorem says that all linear transformaƟons can be de-
scribed using matrix mulƟplicaƟon. Given any linear transformaƟon, there is a matrix
that completely defines that transformaƟon. This importantmatrix gets its own name.

..
DefiniƟon 30

.

.
Standard Matrix of a Linear TransformaƟon

Let T : Rn → Rm be a linear transformaƟon. By Theorem
21, there is a matrix A such that T(⃗x) = Ax⃗. This matrix A
is called the standard matrix of the linear transformaƟon T,
and is denoted [ T ].a

aThe matrix–like brackets around T suggest that the standard matrix A
is a matrix “with T inside.”

While exploring all of the ramificaƟons of Theorem 21 is outside the scope of this
text, let it suffice to say that since 1) linear transformaƟons are very, very important
in economics, science, engineering and mathemaƟcs, and 2) the theory of matrices is
well developed and easy to implement by hand and on computers, then 3) it is great
news that these two concepts go hand in hand.

We have already used the second part of this theorem in a small way. In the pre-
vious secƟon we looked at transformaƟons graphically and found the matrices that
produced them. At the Ɵme, we didn’t realize that these transformaƟons were linear,
but indeed they were.

This brings us back to the moƟvaƟng example with which we started this secƟon.
We tried to find the matrix that translated the unit square one unit to the right. Our
aƩempt failed, and we have yet to determine why. Given our link between matrices
and linear transformaƟons, the answer is likely “the translaƟon transformaƟon is not
a linear transformaƟon.” While that is a true statement, it doesn’t really explain things
all that well. Is there some way we could have recognized that this transformaƟon
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wasn’t linear?14

Yes, there is. Consider the second part of the linear transformaƟon definiƟon. It
states that T(k⃗x) = kT(⃗x) for all scalars k. If we let k = 0, we have T(0⃗x) = 0 · T(⃗x), or
more simply, T(⃗0) = 0⃗. That is, if T is to be a linear transformaƟon, it must send the
zero vector to the zero vector.

This is a quick way to see that the translaƟon transformaƟon fails to be linear. By
shiŌing the unit square to the right one unit, the corner at the point (0, 0)was sent to
the point (1, 0), i.e.,

the vector
[
0
0

]
was sent to the vector

[
1
0

]
.

This property relaƟng to 0⃗ is important, so we highlight it here.

..
Key Idea 15

.

.
Linear TransformaƟons and 0⃗

Let T : Rn → Rm be a linear transformaƟon. Then:

T(⃗0n) = 0⃗m.

That is, the zero vector in Rn gets sent to the zero vector in
Rm.

The interested reader may wish to read the footnote below.15

The Standard Matrix of a Linear TransformaƟon

It is oŌen the case that while one can describe a linear transformaƟon, one doesn’t
know what matrix performs that transformaƟon (i.e., one doesn’t know the standard
matrix of that linear transformaƟon). How do we systemaƟcally find it? We’ll need a
new definiƟon.

..
DefiniƟon 31

.

.
Standard Unit Vectors

In Rn, the standard unit vectors e⃗i are the vectors with a 1
in the ith entry and 0s everywhere else.

14That is, apart from applying the definiƟon directly?
15The idea that linear transformaƟons “send zero to zero” has an interesƟng relaƟon to terminology. The

reader is likely familiar with funcƟons like f(x) = 2x+ 3 and would likely refer to this as a “linear funcƟon.”
However, f(0) ̸= 0, so f is not “linear” by our new definiƟon of linear. We erroneously call f “linear” since
its graph produces a line, though we should be careful to instead state that “the graph of f is a line.”
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We’ve already seen these vectors in the previous secƟon. In R2, we idenƟfied

e⃗1 =
[
1
0

]
and e⃗2 =

[
0
1

]
.

In R4, there are 4 standard unit vectors:

e⃗1 =


1
0
0
0

 , e⃗2 =


0
1
0
0

 , e⃗3 =


0
0
1
0

 , and e⃗4 =


0
0
0
1

 .

How do these vectors help us find the standard matrix of a linear transformaƟon?
Recall again our work in the previous secƟon. There, we pracƟced looking at the trans-
formed unit square and deducing the standard transformaƟon matrix A. We did this
by making the first column of A the vector where e⃗1 ended up and making the second
column of A the vector where e⃗2 ended up. One could represent this with:

A =
[
T(e⃗1) T(e⃗2)

]
= [ T ].

That is, T(e⃗1) is the vector where e⃗1 ends up, and T(e⃗2) is the vector where e⃗2 ends up.
The same holds true in general. Given a linear transformaƟon T : Rn → Rm, the

standard matrix of T is the matrix whose ith column is the vector where e⃗i ends up.
While we won’t prove this is true, it is, and it is very useful. Therefore we’ll state it
again as a theorem.

..
Theorem 22

.

.
The Standard Matrix of a Linear TransformaƟon

Let T : Rn → Rm be a linear transformaƟon. Then [ T ] is the
m× nmatrix:

[ T ] =
[
T(e⃗1) T(e⃗2) · · · T(e⃗n)

]
.

Let’s pracƟce this theorem in an example.

.. Example 100 ..Define T : R3 → R4 to be the linear transformaƟon where

T

 x1
x2
x3

 =


x1 + x2
3x1 − x3
2x2 + 5x3

4x1 + 3x2 + 2x3

 .

Find [ T ].
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SÊ½çã®ÊÄ T takes vectors fromR3 intoR4, so [ T ] is going to be a 4×3matrix.
Note that

e⃗1 =

 1
0
0

 , e⃗2 =

 0
1
0

 and e⃗3 =

 0
0
1

 .

We find the columns of [ T ] by finding where e⃗1, e⃗2 and e⃗3 are sent, that is, we find
T(e⃗1), T(e⃗2) and T(e⃗3).

T(e⃗1) = T

 1
0
0



=


1
3
0
4



T(e⃗2) = T

 0
1
0



=


1
0
2
3



T(e⃗3) = T

 0
0
1



=


0
−1
5
2


Thus

[ T ] = A =


1 1 0
3 0 −1
0 2 5
4 3 2

 .

Let’s check this. Consider the vector

x⃗ =

 1
2
3

 .

Strictly from the original definiƟon, we can compute that

T(⃗x) = T

 1
2
3

 =


1+ 2
3− 3
4+ 15

4+ 6+ 6

 =


3
0
19
16

 .

Now compute T(⃗x) by compuƟng [ T ]⃗x= Ax⃗.

Ax⃗ =


1 1 0
3 0 −1
0 2 5
4 3 2


 1
2
3

 =


3
0
19
16

 .

They match!16 ...

Let’s do another example, one that is more applicaƟon oriented.

16Of course they do. That was the whole point.

210



5.2 ProperƟes of Linear TransformaƟons

.. Example 101 ..A baseball team manager has collected basic data concerning his
hiƩers. He has the number of singles, doubles, triples, and home runs they have hit
over the past year. For each player, he wants twomore pieces of informaƟon: the total
number of hits and the total number of bases.

Using the techniques developed in this secƟon, devise a method for the manager
to accomplish his goal.

SÊ½çã®ÊÄ If the manager only wants to compute this for a few players, then
he could do it by hand fairly easily. AŌer all:

total # hits = # of singles + # of doubles + # of triples + # of home runs,

and

total # bases = # of singles + 2×# of doubles + 3×# of triples + 4×# of home runs.

However, if he has a lot of players to do this for, he would likely want a way to
automate the work. One way of approaching the problem starts with recognizing that
he wants to input four numbers into a funcƟon (i.e., the number of singles, doubles,
etc.) and he wants two numbers as output (i.e., number of hits and bases). Thus he
wants a transformaƟon T : R4 → R2 where each vector in R4 can be interpreted as


# of singles
# of doubles
# of triples

# of home runs

 ,

and each vector in R2 can be interpreted as

[
# of hits
# of bases

]
.

To find [ T ], he computes T(e⃗1), T(e⃗2), T(e⃗3) and T(e⃗4).

211



Chapter 5 Graphical ExploraƟons of Vectors

T(e⃗1) = T



1
0
0
0




=

[
1
1

]

T(e⃗3) = T



0
0
1
0




=

[
1
3

]

T(e⃗2) = T



0
1
0
0




=

[
1
2

]

T(e⃗4) = T



0
0
0
1




=

[
1
4

]

(What do these calculaƟons mean? For example, finding T(e⃗3) =
[
1
3

]
means that

one triple counts as 1 hit and 3 bases.)

Thus our transformaƟon matrix [ T ]is

[ T ] = A =

[
1 1 1 1
1 2 3 4

]
.

As an example, consider a player who had 102 singles, 30 doubles, 8 triples and 14
home runs. By using A, we find that

[
1 1 1 1
1 2 3 4

]
102
30
8
14

 =

[
154
242

]
,

meaning the player had 154 hits and 242 total bases. ...

A quesƟon that we should ask concerning the previous example is “How do we
know that the funcƟon the manager used was actually a linear transformaƟon? AŌer
all, we were wrong before – the translaƟon example at the beginning of this secƟon
had us fooled at first.”

This is a good point; the answer is fairly easy. Recall from Example 98 the transfor-
maƟon

T98

([
x1
x2

])
=

 x21
2x1
x1x2


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and from Example 100

T100

 x1
x2
x3

 =


x1 + x2
3x1 − x3
2x2 + 5x3

4x1 + 3x2 + 2x3

 ,

where we use the subscripts for T to remind us which example they came from.
We found that T98 was not a linear transformaƟon, but stated that T100 was (al-

though we didn’t prove this). What made the difference?
Look at the entries of T98(⃗x) and T100(⃗x). T98 contains entries where a variable is

squared and where 2 variables are mulƟplied together – these prevent T98 from being
linear. On the other hand, the entries of T100 are all of the form a1x1+ · · ·+ anxn; that
is, they are just sums of the variables mulƟplied by coefficients. T is linear if and only if
the entries of T(⃗x) are of this form. (Hence linear transformaƟons are related to linear
equaƟons, as defined in SecƟon 1.1.) This idea is important.

..
Key Idea 16

.

.
CondiƟons on Linear TransformaƟons

Let T : Rn → Rm be a transformaƟon and consider the
entries of

T(⃗x) = T



x1
x2
...
xn


 .

T is linear if andonly if each entry of T(⃗x) is of the forma1x1+
a2x2 + · · · anxn.

Going back to our baseball example, the manager could have defined his transfor-
maƟon as

T



x1
x2
x3
x4


 =

[
x1 + x2 + x3 + x4

x1 + 2x2 + 3x3 + 4x4

]
.

Since that fits the model shown in Key Idea 16, the transformaƟon T is indeed linear
and hence we can find a matrix [ T ] that represents it.

Let’s pracƟce this concept further in an example.

.. Example 102 ..Using Key Idea 16, determinewhether or not each of the following
transformaƟons is linear.

T1

([
x1
x2

])
=

[
x1 + 1
x2

]
T2

([
x1
x2

])
=

[
x1/x2√

x2

]
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T3

([
x1
x2

])
=

[√
7x1 − x2
πx2

]
SÊ½çã®ÊÄ T1 is not linear! This may come as a surprise, but we are not al-

lowed to add constants to the variables. By thinking about this, we can see that this
transformaƟon is trying to accomplish the translaƟon that got us started in this secƟon
– it adds 1 to all the x values and leaves the y values alone, shiŌing everything to the
right one unit. However, this is not linear; again, noƟce how 0⃗ does not get mapped
to 0⃗.

T2 is also not linear. We cannot divide variables, nor can we put variabless in-
side the square root funcƟon (among other other things; again, see SecƟon 1.1). This
means that the baseball manager would not be able to use matrices to compute a
baƫng average, which is (number of hits)/(number of at bats).

T3 is linear. Recall that
√
7 and π are just numbers, just coefficients. ...

We’vemenƟoned before that we can draw vectors other than 2D vectors, although
the more dimensions one adds, the harder it gets to understand. In the next secƟon
we’ll learn about graphing vectors in 3D – that is, how to draw on paper or a computer
screen a 3D vector.

Exercises 5.2
In Exercises 1 – 5, a transformaƟon T is given.
Determine whether or not T is linear; if not,
state why not.

1. T
([

x1
x2

])
=

[
x1 + x2
3x1 − x2

]
2. T

([
x1
x2

])
=

[
x1 + x22
x1 − x2

]
3. T

([
x1
x2

])
=

[
x1 + 1
x2 + 1

]
4. T

([
x1
x2

])
=

[
1
1

]
5. T

([
x1
x2

])
=

[
0
0

]
In Exercises 6 – 11, a linear transformaƟon T
is given. Find [ T ].

6. T
([

x1
x2

])
=

[
x1 + x2
x1 − x2

]

7. T
([

x1
x2

])
=

 x1 + 2x2
3x1 − 5x2

2x2



8. T

 x1
x2
x3

 =


x1 + 2x2 − 3x3

0
x1 + 4x3
5x2 + x3



9. T

 x1
x2
x3

 =

 x1 + 3x3
x1 − x3
x1 + x3


10. T

([
x1
x2

])
=

[
0
0

]

11. T



x1
x2
x3
x4


 =

[
x1 + 2x2 + 3x3 + 4x4

]
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5.3 Visualizing Vectors: Vectors in Three Dimensions

...AS YOU READ . . .

1. T/F: The viewpoint of the reader makes a difference in how vectors in 3D look.

2. T/F: If two vectors are not near each other, then they will not appear to be near
each other when graphed.

3. T/F: The parallelogram law only applies to adding vectors in 2D.

We ended the last secƟon by staƟng we could extend the ideas of drawing 2D vec-
tors to drawing 3D vectors. Once we understand how to properly draw these vectors,
addiƟon and subtracƟon is relaƟvely easy. We’ll also discuss how to find the length of
a vector in 3D.

We start with the basics of drawing a vector in 3D. Instead of having just the tradi-
Ɵonal x and y axes, we now add a third axis, the z axis. Without any addiƟonal vectors,
a generic 3D coordinate system can be seen in Figure 5.13.

..

x

. y.

z

..Figure 5.13: The 3D coordinate system

In 2D, the point (2, 1) refers to going 2 units in the x direcƟon followed by 1 unit in
the y direcƟon. In 3D, each point is referenced by 3 coordinates. The point (4, 2, 3) is
found by going 4 units in the x direcƟon, 2 units in the y direcƟon, and 3 units in the z
direcƟon.

How does one sketch a vector on this coordinate system? As onemight expect, we

can sketch the vector v⃗ =

 1
2
3

 by drawing an arrow from the origin (the point (0,0,0))

to the point (1, 2, 3).17 The only “tricky” part comes from the fact that we are trying
to represent three dimensional space on a two dimensional sheet of paper. However,

17Of course, we don’t have to start at the origin; all that really maƩers is that the Ɵp of the arrow is 1 unit
in the x direcƟon, 2 units in the y direcƟon, and 3 units in the z direcƟon from the origin of the arrow.
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it isn’t really hard. We’ll discover a good way of approaching this in the context of an
example.

.. Example 103 ..Sketch the following vectors with their origin at the origin.

v⃗ =

 2
1
3

 and u⃗ =

 1
3
−1



SÊ½çã®ÊÄ We’ll start with v⃗ first. StarƟng at the origin, move 2 units in the x
direcƟon. This puts us at the point (2, 0, 0) on the x axis. Then, move 1 unit in the y
direcƟon. (In our method of drawing, this means moving 1 unit directly to the right.
Of course, we don’t have a grid to follow, so we have to make a good approximaƟon of
this distance.) Finally, we move 3 units in the z direcƟon. (Again, in our drawing, this
means going straight “up” 3 units, and we must use our best judgment in a sketch to
measure this.)

This allows us to locate the point (2, 1, 3); now we draw an arrow from the origin
to this point. In Figure 5.14 we have all 4 stages of this sketch. The dashed lines show
us moving down the x axis in (a); in (b) we move over in the y direcƟon; in (c) we move
up in the z direcƟon, and finally in (d) the arrow is drawn.

..

x

. y.

z

.

(a)

.

x

. y.

z

.

(b)

.

x

.

y

.

z

.

(2,1,3)

.

(c)

.

x

.

y

.

z

.

(d)

..Figure 5.14: Stages of sketching the vector v⃗ for Example 103.
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Drawing the dashed lines help us find our way in our representaƟon of three di-
mensional space. Without them, it is hard to see how far in each direcƟon the vector
is supposed to have gone.

To draw u⃗, we follow the same procedure we used to draw v⃗. We first locate the
point (1, 3,−1), then draw the appropriate arrow. In Figure 5.15 we have u⃗ drawn
along with v⃗. We have used different dashed and doƩed lines for each vector to help
disƟnguish them.

NoƟce that this Ɵme we had to go in the negaƟve z direcƟon; this just means we
moved down one unit instead of up a unit.

..

x

. y.

z

..Figure 5.15: Vectors v⃗ and u⃗ in Example 103....

As in 2D, we don’t usually draw the zero vector,

0⃗ =

 0
0
0

 .

It doesn’t point anywhere. It is a conceptually important vector that does not have a
terribly interesƟng visualizaƟon.

Ourmethod of drawing 3D objects on a flat surface – a 2D surface – is preƩy clever.
It isn’t perfect, though; visually, drawing vectors with negaƟve components (especially
negaƟve x coordinates) can look a bit odd. Also, two very different vectors can point
to the same place. We’ll highlight this with our next two examples.

.. Example 104 ..Sketch the vector v⃗ =

−3
−1
2

.
SÊ½çã®ÊÄ We use the same procedure we used in Example 103. StarƟng at

the origin, we move in the negaƟve x direcƟon 3 units, then 1 unit in the negaƟve y
direcƟon, and then finally up 2 units in the z direcƟon to find the point (−3,−1, 2).
We follow by drawing an arrow. Our sketch is found in Figure 5.16; v⃗ is drawn in two
coordinate systems, once with the helpful dashed lines, and once without. The second
drawing makes it preƩy clear that the dashed lines truly are helpful.
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..

x

. y.

z

.

x

. y.

z

..Figure 5.16: Vector v⃗ in Example 104....

.. Example 105 Draw the vectors v⃗ =

 2
4
2

 and u⃗ =

−2
1
−1

 on the same coordi-

nate system.

SÊ½çã®ÊÄ We follow the steps we’ve taken before to sketch these vectors,
shown in Figure 5.17. The dashed lines are aides for v⃗ and the doƩed lines are aids
for u⃗. We again include the vectors without the dashed and doƩed lines; but without
these, it is very difficult to tell which vector is which!

..

x

. y.

z

.

x

. y.

z

..Figure 5.17: Vectors v⃗ and u⃗ in Example 105...

Our three examples have demonstrated that we have a preƩy clever, albeit imper-
fect, method for drawing 3D vectors. The vectors in Example 105 look similar because
of our viewpoint. In Figure 5.18 (a), we have rotated the coordinate axes, giving the
vectors a different appearance. (Vector v⃗ now looks like it lies on the y axis.)

Another important factor in how things look is the scale we use for the x, y, and
z axes. In 2D, it is easy to make the scale uniform for both axes; in 3D, it can be a bit
tricky to make the scale the same on the axes that are “slanted.” Figure 5.18 (b) again
shows the same 2 vectors found in Example 105, but this Ɵme the scale of the x axis
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is a bit different. The end result is that again the vectors appear a bit different than
they did before. These facts do not necessarily pose a big problem; we must merely
be aware of these facts and not make judgments about 3D objects based on one 2D
image.18

..

x

.

y

.

z

.

(a)

..

x

. y.

z

.

(b)

..Figure 5.18: Vectors v⃗ and u⃗ in Example 105 with
a different viewpoint (a) and x axis scale (b).

We now invesƟgate properƟes of vector arithmeƟc: what happens (i.e., how do
we draw) when we add 3D vectors and mulƟply by a scalar? How do we compute the
length of a 3D vector?

Vector AddiƟon and SubtracƟon

In 2D, we saw that we could add vectors together graphically using the Parallelo-
gram Law. Does the same apply for adding vectors in 3D?We invesƟgate in an example.

.. Example 106 ..Let v⃗ =

 2
1
3

 and u⃗ =

 1
3
−1

. Sketch v⃗+ u⃗.

SÊ½çã®ÊÄ We sketched each of these vectors previously in Example 103. We

sketch them, along with v⃗+ u⃗ =

 3
4
2

, in Figure 5.19 (a). (We use loosely dashed lines

for v⃗+ u⃗.)

18The human brain uses both eyes to convey 3D, or depth, informaƟon. With one eye closed (or missing),
we can have a very hard Ɵme with “depth percepƟon.” Two objects that are far apart can seem very close
together. A simple example of this problem is this: close one eye, and place your index finger about a foot
above this text, directly above this WORD. See if you were correct by dropping your finger straight down.
Did you actually hit the proper spot? Try it again with both eyes, and you should see a noƟcable difference
in your accuracy.

Looking at 3D objects on paper is a bit like viewing the world with one eye closed.
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Does the Parallelogram Law sƟll hold? In Figure 5.19 (b), we draw addiƟonal rep-
resentaƟons of v⃗ and u⃗ to form a parallelogram (without all the doƩed lines), which
seems to affirm the fact that the Parallelogram Law does indeed hold.

..

x

. y.

z

.

(b)

.

x

. y.

z

.

(b)

..Figure 5.19: Vectors v⃗, u⃗, and v⃗ + u⃗ Example 106.

...

We also learned that in 2D, we could subtract vectors by drawing a vector from the
Ɵp of one vector to the other.19 Does this also work in 3D?We’ll invesƟgate again with
an example, using the familiar vectors v⃗ and u⃗ from before.

.. Example 107 ..Let v⃗ =

 2
1
3

 and u⃗ =

 1
3
−1

. Sketch v⃗− u⃗.

SÊ½çã®ÊÄ It is simple to compute that v⃗ − u⃗ =

 1
−2
4

. All three of these

vectors are sketched in Figure 5.20 (a), where again v⃗ is guided by the dashed, u⃗ by the
doƩed, and v⃗− u⃗ by the loosely dashed lines.

Does the 2D subtracƟon rule sƟll hold? That is, can we draw v⃗ − u⃗ by drawing an
arrow from the Ɵp of u⃗ to the Ɵp of v⃗? In Figure 5.20 (b), we translate the drawing of
v⃗− u⃗ to the Ɵp of u⃗, and sure enough, it looks like it works. (And in fact, it really does.)

19Recall that it is important which vector we used for the origin and which was used for the Ɵp.
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..

x

. y.

z

.

(a)

.

x

. y.

z

.

(b)

..Figure 5.20: Vectors v⃗, u⃗, and v⃗ − u⃗ from Example 107.

...

The previous two examples highlight the fact that even in 3D, we can sketch vec-
tors without explicitly knowing what they are. We pracƟce this one more Ɵme in the
following example.

.. Example 108 ..Vectors v⃗ and u⃗ are drawn in Figure 5.21. Using this drawing, sketch
the vectors v⃗+ u⃗ and v⃗− u⃗.

..

x

. y.

z

.

v⃗

.

u⃗

..Figure 5.21: Vectors v⃗ and u⃗ for Example 108.

SÊ½çã®ÊÄ Using the Parallelogram Law, we draw v⃗ + u⃗ by first drawing a gray
version of u⃗ coming from the Ɵp of v⃗; v⃗+ u⃗ is drawn dashed in Figure 5.22.

To draw v⃗− u⃗, we draw a doƩed arrow from the Ɵp of u⃗to the Ɵp of v⃗.
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..

x

. y.

z

..Figure 5.22: Vectors v⃗, u⃗, v⃗ + u⃗ and v⃗ − u⃗ for Example 108.
...

Scalar MulƟplicaƟon

Given a vector v⃗ in 3D, what does the vector 2⃗v look like? How about −v⃗? AŌer
learning about vector addiƟon and subtracƟon in 3D, we are probably gaining confi-
dence in working in 3D and are tempted to say that 2⃗v is a vector twice as long as v⃗,
poinƟng in the same direcƟon, and −v⃗ is a vector of the same length as v⃗, poinƟng
in the opposite direcƟon. We would be right. We demonstrate this in the following
example.

.. Example 109 ..Sketch v⃗, 2⃗v, and−v⃗, where

v⃗ =

 1
2
3

 .

SÊ½çã®ÊÄ

..

x

. y.

z

..Figure 5.23: Sketching scalar mulƟples of v⃗ in Example 109.
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It is easy to compute

2⃗v =

 2
4
6

 and − v⃗ =

−1
−2
−3

 .

These are drawn in Figure 5.23. This figure is, in many ways, a mess, with all the
dashed and doƩed lines. They are useful though. Use them to see how each vec-
tor was formed, and note that 2⃗v at least looks twice as long as v⃗, and it looks like−v⃗
points in the opposite direcƟon.20 ...

Vector Length

Howdowemeasure the length of a vector in 3D? In 2D,wewere able to answer this
quesƟon by using the Pythagorean Theorem. Does the Pythagorean Theorem apply in
3D? In a sense, it does.

Consider the vector v⃗ =

 1
2
3

, as drawn in Figure 5.24 (a), with guiding dashed

lines. Now look at part (b) of the same figure. Note how two lengths of the dashed
lines have now been drawn gray, and another doƩed line has been added.

..

x

. y.

z

.

(a)

.

x

. y.

z

.

(b)

..Figure 5.24: CompuƟng the length of v⃗

These gray dashed and doƩed lines form a right triangle with the doƩed line form-
ing the hypotenuse. We can find the length of the doƩed line using the Pythagorean
Theorem.

length of the doƩed line =
√

sum of the squares of the dashed line lengths

That is, the length of the doƩed line =
√

12 + 22 =
√
5.

20Our previous work showed that looks can be deceiving, but it is indeed true in this case.
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Now consider this: the vector v⃗ is the hypotenuse of another right triangle: the
one formed by the doƩed line and the verƟcal dashed line. Again, we employ the
Pythagorean Theorem to find its length.

length of v⃗ =
√

(length of dashed gray line)2 + (length of black dashed line)2

Thus, the length of v⃗ is (recall, we denote the length of v⃗ with ||⃗v||):

||⃗v|| =
√

(length of gray line)2 + (length of black line)2

=

√√
5
2
+ 32

=
√

5+ 32

Let’s stop for a moment and think: where did this 5 come from in the previous
equaƟon? It came fromfinding the length of the gray dashed line – it came from12+22.
Let’s subsƟtute that into the previous equaƟon:

||⃗v|| =
√

5+ 32

=
√

12 + 22 + 32

=
√
14

The key comes from the middle equaƟon: ||⃗v|| =
√

12 + 22 + 32. Do those num-
bers 1, 2, and 3 look familiar? They are the component values of v⃗! This is very similar
to the definiƟon of the length of a 2D vector. AŌer formally defining this, we’ll pracƟce
with an example.

..
DefiniƟon 32

.

.
3D Vector Length

Let

v⃗ =

 x1
x2
x3

 .

The length of v⃗, denoted ||⃗v||, is

||⃗v|| =
√

x21 + x22 + x23.
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.. Example 110 Find the lengths of vectors v⃗ and u⃗, where

v⃗ =

 2
−3
5

 and u⃗ =

−4
7
0

 .

SÊ½çã®ÊÄ We apply DefiniƟon 32 to each vector:

||⃗v|| =
√

22 + (−3)2 + 52

=
√
4+ 9+ 25

=
√
38

||⃗u|| =
√

(−4)2 + 72 + 02

=
√
16+ 49

=
√
65

..

Here we end our invesƟgaƟon into the world of graphing vectors. Extensions into
graphing 4D vectors and beyond can be done, but they truly are confusing and not
really done except for abstract purposes.

There are further things to explore, though. Just as in 2D, we can transform 3D
space by matrix mulƟplicaƟon. Doing this properly – rotaƟng, stretching, shearing,
etc. – allows one to manipulate 3D space and create incredible computer graphics.

Exercises 5.3
In Exercises 1 – 4, vectors x⃗ and y⃗ are given.
Sketch x⃗, y⃗, x⃗+ y⃗, and x⃗− y⃗ on the same Carte-
sian axes.

1. x⃗ =

 1
−1
2

, y⃗ =
 2
3
2


2. x⃗ =

 2
4
−1

, y⃗ =
−1
−3
−1


3. x⃗ =

 1
1
2

, y⃗ =
 3
3
6


4. x⃗ =

 0
1
1

, y⃗ =
 0
−1
1



In Exercises 5 – 8, vectors x⃗ and y⃗ are drawn.
Sketch 2⃗x, −y⃗, x⃗ + y⃗, and x⃗ − y⃗ on the same
Cartesian axes.

5.
..

x

. y.

z

.

x⃗

.y⃗
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6.
..

x

. y.

z

.

x⃗

.

y⃗

7.
..

x

. y.

z

.

x⃗

.

y⃗

8.
..

x

. y.

z

. x⃗.

y⃗

In Exercises 9 – 12, a vector x⃗ and a scalar
a are given. Using DefiniƟon 32, compute
the lengths of x⃗ and a⃗x, then compare these
lengths.

9. x⃗ =

 1
−2
5

, a = 2

10. x⃗ =

−3
4
3

, a = −1

11. x⃗ =

 7
2
1

, a = 5

12. x⃗ =

 1
2
−2

, a = 3
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Chapter 1

SecƟon 1.1

1. y

3. y

5. n

7. y

9. y

11. x = 1, y = −2

13. x = −1, y = 0, z = 2

15. 29 chickens and 33 pigs

SecƟon 1.2

1.

 3 4 5 7
−1 1 −3 1
2 −2 3 5


3.

 1 3 −4 5 17
−1 0 4 8 1
2 3 4 5 6


5.

x1 + 2x2 = 3
−x1 + 3x2 = 9

7.
x1 + x2 − x3 − x4 = 2

2x1 + x2 + 3x3 + 5x4 = 7

9.
x1 + x3 + 7x5 = 2

x2 + 3x3 + 2x4 = 5

11.

 2 −1 7
5 0 3
0 4 −2



13.

 2 −1 7
0 4 −2
5 8 −1


15.

 2 −1 7
0 4 −2
0 5/2 −29/2


17. R1 + R2 → R2

19. R1 ↔ R2

21. x = 2, y = 1

23. x = −1, y = 0

25. x1 = −2, x2 = 1, x3 = 2

SecƟon 1.3

1. (a) yes

(b) no

(c) no

(d) yes

3. (a) no

(b) yes

(c) yes

(d) yes

5.
[
1 0
0 1

]
7.

[
1 3
0 0

]
9.

[
1 0 3
0 1 7

]
11.

[
1 −1 2
0 0 0

]

13.

 1 0 0
0 1 0
0 0 1


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15.

 1 0 0
0 1 0
0 0 1



17.

 1 0 0 1
0 1 1 1
0 0 0 0



19.

 1 0 1 3
0 1 −2 4
0 0 0 0


21.

[
1 1 0 0 0 0
0 0 1 3 1 4

]
SecƟon 1.4

1. x1 = 1− 2x2; x2 is free. Possible soluƟons:
x1 = 1, x2 = 0 and x1 = −1, x2 = 1.

3. x1 = 1; x2 = 2

5. No soluƟon; the system is inconsistent.

7. x1 = −11+ 10x3; x2 = −4+ 4x3; x3 is
free. Possible soluƟons: x1 = −11,
x2 = −4, x3 = 0 and x1 = −1, x2 = 0 and
x3 = 1.

9. x1 = 1− x2 − x4; x2 is free; x3 = 1− 2x4;
x4 is free. Possible soluƟons: x1 = 1,
x2 = 0, x3 = 1, x4 = 0 and x1 = −2,
x2 = 1, x3 = −3, x4 = 2

11. No soluƟon; the system is inconsistent.

13. x1 = 1
3 − 4

3 x3; x2 = 1
3 − 1

3 x3; x3 is free.
Possible soluƟons: x1 = 1

3 , x2 = 1
3 , x3 = 0

and x1 = −1, x2 = 0, x3 = 1

15. Never exactly 1 soluƟon; infinite soluƟons if
k = 2; no soluƟon if k ̸= 2.

17. Exactly 1 soluƟon if k ̸= 2; no soluƟon if
k = 2; never infinite soluƟons.

SecƟon 1.5

1. 29 chickens and 33 pigs

3. 42 grande tables, 22 venƟ tables

5. 30 men, 15 women, 20 kids

7. f(x) = −2x+ 10

9. f(x) = 1
2 x

2 + 3x+ 1

11. f(x) = 3

13. f(x) = x3 + 1

15. f(x) = 3
2 x+ 1

17. The augmented matrix from this system is 1 1 1 1 8
6 1 2 3 24
0 1 −1 0 0

. From this we

find the soluƟon

t =
8

3
−

1

3
f

x =
8

3
−

1

3
f

w =
8

3
−

1

3
f.

The only Ɵme each of these variables are
nonnegaƟve integers is when f = 2 or
f = 8. If f = 2, then we have 2
touchdowns, 2 extra points and 2 two point
conversions (and 2 field goals); this doesn’t
make sense since the extra points and two
point conversions follow touchdowns. If
f = 8, then we have no touchdowns, extra
points or two point conversions (just 8 field
goals). This is the only soluƟon; all points
were scored from field goals.

19. Let x1, x2 and x3 represent the number of
free throws, 2 point and 3 point shots
taken. The augmented matrix from this

system is
[
1 1 1 30
1 2 3 80

]
. From this we

find the soluƟon

x1 = −20+ x3
x2 = 50− 2x3.

In order for x1 and x2 to be nonnegaƟve, we
need 20 ≤ x3 ≤ 25. Thus there are 6
different scenerios: the “first” is where 20
three point shots are taken, no free throws,
and 10 two point shots; the “last” is where
25 three point shots are taken, 5 free
throws, and no two point shots.

21. Let y = ax+ b; all linear funcƟons through
(1,3) come in the form y = (3− b)x+ b.
Examples: b = 0 yields y = 3x; b = 2
yields y = x+ 2.

23. Let y = ax2 + bx+ c; we find that
a = − 1

2 + 1
2 c and b = 1

2 − 3
2 c. Examples:

c = 1 yields y = −x+ 1; c = 3 yields
y = x2 − 4x+ 3.

Chapter 2

SecƟon 2.1

1.
[
−2 −1
12 13

]
3.

[
2 −2
14 8

]
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5.
[

9 −7
11 −6

]
7.

[
−14
6

]
9.

[
−15
−25

]
11. X =

[
−5 9
−1 −14

]
13. X =

[
−5 −2

−9/2 −19/2

]
15. a = 2, b = 1

17. a = 5/2+ 3/2b

19. No soluƟon.

21. No soluƟon.

SecƟon 2.2

1. −22

3. 0

5. 5

7. 15

9. −2

11. Not possible.

13. AB =

[
8 3
10 −9

]
BA =

[
−3 24
4 2

]
15. AB =

[
−1 −2 12
10 4 32

]
BA is not possible.

17. AB is not possible.

BA =

[
27 −33 39
−27 −3 −15

]

19. AB =

 −32 34 −24
−32 38 −8
−16 21 4


BA =

[
22 −14
−4 −12

]

21. AB =

 −56 2 −36
20 19 −30
−50 −13 0


BA =

[
−46 40
72 9

]
23. AB =

[
−15 −22 −21 −1
16 −53 −59 −31

]
BA is not possible.

25. AB =

 0 0 4
6 4 −2
2 −4 −6


BA =

 2 −2 6
2 2 4
4 0 −6


27. AB =

 21 −17 −5
19 5 19
5 9 4


BA =

 19 5 23
5 −7 −1

−14 6 18


29. DA =

[
4 −6
4 −6

]
AD =

[
4 8
−3 −6

]

31. DA =

 2 2 2
−6 −6 −6
−15 −15 −15


AD =

 2 −3 5
4 −6 10
−6 9 −15


33. DA =

 d1a d1b d1c
d2d d2e d2f
d3g d3h d3i


AD =

 d1a d2b d3c
d1d d2e d3f
d1g d2h d3i


35. A⃗x =

[
−6
11

]

37. A⃗x =

 −5
5
21


39. A⃗x =

 x1 + 2x2 + 3x3
x1 + 2x3

2x1 + 3x2 + x3


41. A2 =

[
4 0
0 9

]
; A3 =

[
8 0
0 27

]

43. A2 =

 0 0 1
1 0 0
0 1 0

; A3 =

 1 0 0
0 1 0
0 0 1


45. (a)

[
0 −2
−5 −1

]
(b)

[
10 2
5 11

]
(c)

[
−11 −15
37 32

]
(d) No.

(e) (A+B)(A+B) = AA+AB+BA+BB =
A2 + AB+ BA+ B2.
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SecƟon 2.3

1. x⃗ + y⃗ =
[
−1
4

]
, x⃗ − y⃗ =

[
3
−2

]
Sketches will vary depending on choice of
origin of each vector.

..
2

.

1

.
x⃗

.

y⃗

.

x⃗ + y⃗

.

x⃗ − y⃗

3. x⃗ + y⃗ =
[
−3
3

]
, x⃗ − y⃗ =

[
1
−1

]
Sketches will vary depending on choice of
origin of each vector.

..
2

.

1

.

x⃗

.

y⃗

.

x⃗ + y⃗

.
x⃗ − y⃗

5. Sketches will vary depending on choice of
origin of each vector.

..
1

.

1

.

2⃗x

.

−y⃗

.

x⃗ + y⃗

.

x⃗ − y⃗

7. Sketches will vary depending on choice of
origin of each vector.

..
1

.

1

.

2⃗x

.

−y⃗

.

x⃗ + y⃗

. x⃗ − y⃗

9. ||⃗x|| =
√
5; ||a⃗x|| =

√
45 = 3

√
5. The

vector a⃗x is 3 Ɵmes as long as x⃗.

11. ||⃗x|| =
√
34; ||a⃗x|| =

√
34. The vectors a⃗x

and x⃗ are the same length (they just point
in opposite direcƟons).

13. (a) ||⃗x|| =
√
2; ||⃗y|| =

√
13;

||⃗x + y⃗|| = 5.

(b) ||⃗x|| =
√
5; ||⃗y|| = 3

√
5;

||⃗x + y⃗|| = 4
√
5.

(c) ||⃗x|| =
√
10; ||⃗y|| =

√
29;

||⃗x + y⃗|| =
√
65.

(d) ||⃗x|| =
√
5; ||⃗y|| = 2

√
5;

||⃗x + y⃗|| =
√
5.

The equality holds someƟmes; only when x⃗
and y⃗ point along the same line, in the same
direcƟon.

15.
.. x.

y

.

x⃗

.

y⃗

.

A⃗x

.

A⃗y

17.

.. x.

y

.

x⃗

.

y⃗

.

A⃗x

.

A⃗y

SecƟon 2.4
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1. MulƟply Au⃗ and A⃗v to verify.

3. MulƟply Au⃗ and A⃗v to verify.

5. MulƟply Au⃗ and A⃗v to verify.

7. MulƟply Au⃗, A⃗v and A(⃗u+ v⃗) to verify.

9. MulƟply Au⃗, A⃗v and A(⃗u+ v⃗) to verify.

11. (a) x⃗ =

[
0
0

]
(b) x⃗ =

[
2/5

−13/5

]
13. (a) x⃗ =

[
0
0

]
(b) x⃗ =

[
−2

−9/4

]

15. (a) x⃗ = x3

 5/4
1
1


(b) x⃗ =

 1
0
0

+ x3

 5/4
1
1


17. (a) x⃗ = x3

 14
−10
0


(b) x⃗ =

[
−4
2

]
+ x3

 14
−10
0



19. (a) x⃗ = x3


2

2/5
1
0

+ x4


−1
2/5
0
1


(b) x⃗ =

−2
2/5
0
0

+ x3


2

2/5
1
0

+ x4


−1
2/5
0
1



21. (a) x⃗ = x2


−1/2
1
0
0
0

+ x4


1/2
0

−1/2
1
0

+

x5


13/2
0
−2
0
1



(b) x⃗ =


−5
0

3/2
0
0

+ x2


−1/2
1
0
0
0

+

x4


1/2
0

−1/2
1
0

+ x5


13/2
0
−2
0
1



23. (a) x⃗ = x4


1

13/9
−1/3
1
0

+ x5


0
−1
−1
0
1


(b) x⃗ =

1
1/9
5/3
0
0

+x4


1

13/9
−1/3
1
0

+x5


0
−1
−1
0
1


25. x⃗ = x2

[
−2
1

]
= x2⃗v

.. x.

y

.

v⃗

27. x⃗ =

[
0.5
0

]
+ x2

[
2.5
1

]
= x⃗p + x2v⃗

.. x.

y

.
x⃗p
.

v⃗

SecƟon 2.5

1. X =

[
1 −9
−4 −5

]
3. X =

[
−2 −7
7 −6

]
5. X =

[
−5 2 −3
−4 −3 −2

]
7. X =

[
1 0
3 −1

]

9. X =

 3 −3 3
2 −2 −3
−3 −1 −2


11. X =

 5/3 2/3 1
−1/3 1/6 0
1/3 1/3 0


SecƟon 2.6
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1.
[
−24 −5
5 1

]
3.

[
1/3 0
0 1/7

]
5. A−1 does not exist.

7.
[
1 0
0 1

]
9.

[
−5/13 3/13
1/13 2/13

]
11.

[
−2 1
3/2 −1/2

]

13.

 1 2 −2
0 1 −3
6 10 −5


15.

 1 0 0
52 −48 7
8 −7 1


17. A−1 does not exist.

19.

 25 8 0
78 25 0
−30 −9 1


21.

 0 1 0
0 0 1
1 0 0



23.


1 0 0 0
−3 −1 0 −4
−35 −10 1 −47
−2 −2 0 −9



25.


28 18 3 −19
5 1 0 −5
4 5 1 0
52 60 12 −15



27.


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


29. x⃗ =

[
2
3

]
31. x⃗ =

[
−8
1

]

33. x⃗ =

 −7
1
−1


35. x⃗ =

 3
−1
−9


SecƟon 2.7

1. (AB)−1 =

[
−2 3
1 −1.4

]
3. (AB)−1 =

[
29/5 −18/5
−11/5 7/5

]
5. A−1 =

[
−2 −5
−1 −3

]
,

(A−1)−1 =

[
−3 5
1 −2

]
7. A−1 =

[
−3 7
1 −2

]
,

(A−1)−1 =

[
2 7
1 3

]
9. SoluƟons will vary.

11. Likely some entries that should be 0 will not
be exactly 0, but rather very small values.

Chapter 3

SecƟon 3.1

1. A is symmetric.
[
−7 4
4 −6

]
3. A is diagonal, as is AT.

[
1 0
0 9

]
5.

[
−5 3 −10
−9 1 −8

]

7.


4 −9
−7 6
−4 3
−9 −9



9.


−7
−8
2
−3


11.

 −9 6 −8
4 −3 1
10 −7 −1


13. A is symmetric.

 4 0 −2
0 2 3
−2 3 6


15.

 2 5 7
−5 5 −4
−3 −6 −10


17.

 4 5 −6
2 −4 6
−9 −10 9


19. A is upper triangular; AT is lower triangular. −3 0 0

−4 −3 0
−5 5 −3


232



21. A is diagonal, as is AT.

 1 0 0
0 2 0
0 0 −1


23. A is skew symmetric.

 0 −1 2
1 0 −4
−2 4 0


SecƟon 3.2

1. 6

3. 3

5. −9

7. 1

9. Not defined; the matrix must be square.

11. −23

13. 4

15. 0

17. (a) tr(A)=8; tr(B)=−2; tr(A+ B)=6

(b) tr(AB) = 53 = tr(BA)

19. (a) tr(A)=−1; tr(B)=6; tr(A+ B)=5

(b) tr(AB) = 201 = tr(BA)

SecƟon 3.3

1. 34

3. −44

5. −44

7. 28

9. (a) The submatrices are
[
7 6
6 10

]
,[

3 6
1 10

]
, and

[
3 7
1 6

]
,

respecƟvely.

(b) C1,2 = 34, C1,2 = −24, C1,3 = 11

11. (a) The submatrices are
[
3 10
3 9

]
,[

−3 10
−9 9

]
, and

[
−3 3
−9 3

]
,

respecƟvely.

(b) C1,2 = −3, C1,2 = −63, C1,3 = 18

13. −59

15. 15

17. 3

19. 0

21. 0

23. −113

25. Hint: C1,1 = d.

SecƟon 3.4

1. 84

3. 0

5. 10

7. 24

9. 175

11. −200

13. 34

15. (a) det(A) = 41; R2 ↔ R3

(b) det(B) = 164;−4R3 → R3

(c) det(C) = −41; R2 + R1 → R1

17. (a) det(A) = −16; R1 ↔ R2 then
R1 ↔ R3

(b) det(B) = −16;−R1 → R1 and
−R2 → R2

(c) det(C) = −432; C = 3 ∗M

19. det(A) = 4, det(B) = 4, det(AB) = 16

21. det(A) = −12, det(B) = 29,
det(AB) = −348

23. −59

25. 15

27. 3

29. 0

SecƟon 3.5

1. (a) det (A) = 14, det (A1) = 70,
det (A2) = 14

(b) x⃗ =

[
5
1

]
3. (a) det (A) = 0, det (A1) = 0,

det (A2) = 0

(b) Infinite soluƟons exist.

5. (a) det (A) = 16, det (A1) = −64,
det (A2) = 80

(b) x⃗ =

[
−4
5

]
7. (a) det (A) = −123, det (A1) = −492,

det (A2) = 123, det (A3) = 492

(b) x⃗ =

 4
−1
−4


9. (a) det (A) = 56, det (A1) = 224,

det (A2) = 0, det (A3) = −112

233



Chapter A SoluƟons To Selected Problems

(b) x⃗ =

 4
0
−2


11. (a) det (A) = 0, det (A1) = 147,

det (A2) = −49, det (A3) = −49

(b) No soluƟon exists.

Chapter 4

SecƟon 4.1

1. λ = 3

3. λ = 0

5. λ = 3

7. x⃗ =

[
−1
2

]

9. x⃗ =

 3
−7
7



11. x⃗ =

 −1
1
1


13. λ1 = 4 with x⃗1 =

[
9
1

]
;

λ2 = 5 with x⃗2 =

[
8
1

]

15. λ1 = −3 with x⃗1 =

[
−2
1

]
;

λ2 = 5 with x⃗2 =

[
6
1

]

17. λ1 = 2 with x⃗1 =

[
1
1

]
;

λ2 = 4 with x⃗2 =

[
−1
1

]

19. λ1 = −1 with x⃗1 =

[
1
2

]
;

λ2 = −3 with x⃗2 =

[
1
0

]

21. λ1 = 3 with x⃗1 =

 −3
0
2

;
λ2 = 4 with x⃗2 =

 −5
−1
1


λ3 = 5 with x⃗3 =

 1
0
0



23. λ1 = −5 with x⃗1 =

 24
13
8

;
λ2 = −2 with x⃗2 =

 6
5
1


λ3 = 3 with x⃗3 =

 0
1
0


25. λ1 = −2 with x⃗1 =

 0
0
1

;
λ2 = 1 with x⃗2 =

 0
3
5


λ3 = 5 with x⃗3 =

 28
7
1


27. λ1 = −2 with x⃗ =

 1
0
1

;
λ2 = 3 with x⃗ =

 1
1
1

;
λ3 = 5 with x⃗ =

 0
1
1


SecƟon 4.2

1. (a) λ1 = 1 with x⃗1 =

[
4
1

]
;

λ2 = 4 with x⃗2 =

[
1
1

]
(b) λ1 = 1 with x⃗1 =

[
−1
1

]
;

λ2 = 4 with x⃗2 =

[
−1
4

]
(c) λ1 = 1/4 with x⃗1 =

[
1
1

]
;

λ2 = 4 with x⃗2 =

[
4
1

]
(d) 5

(e) 4

3. (a) λ1 = −1 with x⃗1 =

[
−5
1

]
;

λ2 = 0 with x⃗2 =

[
−6
1

]
(b) λ1 = −1 with x⃗1 =

[
1
6

]
;

λ2 = 0 with x⃗2 =

[
1
5

]
(c) Ais not inverƟble.
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(d) -1

(e) 0

5. (a) λ1 = −4 with x⃗1 =

 −7
−7
6

;
λ2 = 3 with x⃗2 =

 0
0
1


λ3 = 4 with x⃗3 =

 9
1
22


(b) λ1 = −4 with x⃗1 =

 −1
9
0

;
λ2 = 3 with x⃗2 =

 −20
26
7


λ3 = 4 with x⃗3 =

 −1
1
0


(c) λ1 = −1/4 with x⃗1 =

 −7
−7
6

;
λ2 = 1/3 with x⃗2 =

 0
0
1


λ3 = 1/4 with x⃗3 =

 9
1
22


(d) 3

(e) −48

Chapter 5

SecƟon 5.1

1. A =

[
1 2
3 4

]
3. A =

[
1 2
1 2

]
5. A =

[
5 2
2 1

]
7. A =

[
0 1
3 0

]
9. A =

[
0 −1
−1 −1

]
11. Yes, these are the same; the transformaƟon

matrix in each is
[
−1 0
0 −1

]
.

13. Yes, these are the same. Each produces the

transformaƟon matrix
[
1/2 0
0 3

]
.

SecƟon 5.2

1. Yes

3. No; cannot add a constant.

5. Yes.

7. [ T ] =

 1 2
3 −5
0 2



9. [ T ] =

 1 0 3
1 0 −1
1 0 1



11. [ T ] =
[
1 2 3 4

]

SecƟon 5.3

1. x⃗ + y⃗ =

 3
2
4

, x⃗ − y⃗ =

 −1
−4
0


Sketches will vary slightly depending on
orientaƟon.

..

x

. y.

z

.

y⃗

.

x⃗

.

x⃗ + y⃗

.
x⃗ − y⃗

3. x⃗ + y⃗ =

 4
4
8

, x⃗ − y⃗ =

 −2
−2
−4


Sketches will vary slightly depending on
orientaƟon.
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..

x

. y.

z

.

x⃗

.

y⃗

.

x⃗ + y⃗

.

x⃗ − y⃗

5. Sketches may vary slightly.

..

x

. y.

z

.

2⃗x

.
-⃗y

.

x⃗ + y⃗

.

x⃗ − y⃗

7. Sketches may vary slightly.

..

x

. y.

z

.

2⃗x

.
-⃗y

.

x⃗ + y⃗

.

x⃗ − y⃗

9. ||⃗x|| =
√
30, ||a⃗x|| =

√
120 = 2

√
30

11. ||⃗x|| =
√
54 = 3

√
6,

||a⃗x|| =
√
270 = 15

√
6
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Index

anƟsymmetric, 128
augmented matrix, 8

basic variable, 27

characterisƟc polynomial, 168
cofactor, 137

expansion, 139, 146
consistent, 24, 88, 90
Cramer’s Rule, 159

determinant
3× 3 shortcut, 155
and elementary row operaƟons, 150
definiƟon, 141
of 2× 2 matrices, 136
of triangular matrices, 148
properƟes, 154

diagonal, 118
definiƟon, 123

eigenvalue
definiƟon, 164
finding, 168
properƟes, 182

eigenvector, see eigenvalue
elementary row operaƟons, 13

and determinants, 150

free variable, 25, 27

Gaussian eliminaƟon, 15, 18
backward steps, 17
forward steps, 17

homogeneous, 87, 88, 90

idenƟty matrix, 61

inconsistent, 24
inverse

compuƟng, 107
definiƟon, 106
InverƟble Matrix Theorem, 113
properƟes, 113, 119
uniqueness, 106

InverƟble Matrix Theorem, 113, 155, 183

leading one, 14, 27, 29
linear equaƟon, 3
linear transformaƟon

and 0⃗, 208
condiƟons on, 213
definiƟon, 204
standard matrix of, 207, 209

matrix
addiƟon, 47
arithmeƟc properƟes, 49
augmented, 8
cofactor, 137
definiƟon, 7
determinant, 136, 141
diagonal, 123
equality, 46
idenƟty matrix, 61
inverse, 106, 107
minor, 137
mulƟplicaƟon, 54

properƟes, 62
scalar mulƟplicaƟon, 47
the zero matrix, 49
transpose, 122
triangular, 123

minor, 137

Parallelogram Law, 69
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Index

parƟcular soluƟon, 30
problem solving, 37
pseudoinverse, 130

reduced echelon form, 14
reduced row echelon form, 14
row echelon form, 14

skew symmetric, 128
definiƟon, 128
theorem, 129

soluƟon, 3
infinite, 24, 27, 90
none, 24
parƟcular, 30
types, 24
unique, 24, 90, 110

standard unit vector, 208
symmetric, 128

definiƟon, 128
theorem, 129

system of linear equaƟons
consistent, 24, 27, 88, 90
definiƟon, 3
homogeneous, 87
inconsistent, 24, 29
soluƟon, 3

trace
definiƟon, 131
properƟes, 133

transpose, 121
definiƟon, 122
properƟes, 126
skew-symmetric, 128
symmetric, 128

triangular matrix
definiƟon, 123
determinant, 148

variable
basic, 27
dependent, 27
free, 25, 27
independent, 27

vector

column, 52
length, 74, 224
row, 52

zero matrix, 49
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