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A Note on Google’s PageRank

According to Google, google-search on a given topic results in a list-
ing of most relevant web pages related to the topic. Google ranks the
importance of webpages according to an eigenvector of a weighted link
matrix. The following offers an insight into how this is done and is a ba-
sic application of the eigenvalue problem from linear algebra. It is based
on the Bryan, Leise paper and on http://www.math.cornell.edu/~mec/

Winter2009/RalucaRemus/Lecture3/lecture3.html.

A Tiny Web Example

• Core idea: in assigning a score to any given web page, the page’s score
(ranking) is derived from the links made to that page from other web
pages.

• The links to a given page are called the backlinks for that page

• The web is represented as a directed graph G = (V,E) with vertices being
the web pages and edges the links. There is a directed edge from page i
to page j if page i contains a hyperlink to page j.

• Denote the importance score of page k by xk (xi > xj means that page i
is more important)

• As in the paper, the approach that doesn’t work is to take xk as the
number of backlinks for page k, e.g. here x1 = 2, x2 = 1, x3 = 3, x4 = 2:

Figure 1: An example web graph, its weighted version, and its link matrix
(transpose of the adjacency matrix of the weighted graph).

But we want a link to page k from an important page to boost page k’s
importance score more than a link from an unimportant page. (A page’s
importance is presumably higher when, say, the US Supreme Court’s web-
page links to it than when just Joe Blow’s web page links to it.)
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E.g., in the above graph, pages 1 and 4 have the same score, but one of
page 1’s backlinks is from the seemingly important page 3 (which seems
important because everybody else links to it), while one of page 4’s back-
links is from the relatively unimportant page 1. Thus, we’d be rating page
1’s importance higher than page 4’s.

• In an attempt to fix this, we can try to compute the score of page j as the
sum of the scores of all pages linking to page j.

For example, the score of page 1 would be determined by the relation
x1 = x3 +x4, because pages 3 and 4 are 1’s backlilnks and their scores are
x3 and x4.

• However, there’s a bit of a problem with this: we don’t want a single
individual webpage to gain influence merely by casting multiple votes (just
as in elections, we don’t want a single individual to gain undue influence
by casting multiple votes)

• So we make a correction: if page j contains nj out links, one of which links
to page k, then we boost page k’s score by xj/nj rather than by xj .

• Notice that in this scheme each web page gets a total of one vote, weighted
by that web page’s score, that is evenly divided up among all of its outgoing
links.

Let Lk = {1, 2, . . . , n} denote the set of pages with a link to page k, that
is, Lk is the set of k’s backlinks. For each k require:

xk =
∑
j∈Lk

xj
nj

(1)

where nj is the set of outgoing links from page j.

Assigning a Score to a Page, an Example

• Linear algebra point of view: For the web in the above figure, using
the outlined scheme, we have:

x1 = x3/1 + x4/2

x2 = x1/3

x3 = x1/3 + x2/2 + x4/2

x4 = x1/3 + x2/3

• These linear equations can be written as Ax = x:
0 0 1 1/2

1/3 0 0 0
1/3 1/2 0 1/2
1/3 1/2 0 0



x1
x2
x3
x4

 =


x1
x2
x3
x4
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• Thus, we have reduced the web ranking problem to the problem of finding
an eigenvector for the link matrix A: Ax = λx. In particular, we are
looking for the eigenvector corresponding to the eigenvalue λ = 1. (Note
that A is not the graph adjacency matrix. AT is the graph adjacency
matrix.)

• If the web graph has no ‘dangling’ nodes (a dangling webpage is a page
that has no outgoing links), e.g., see Fig. 2 then A will always have 1 as
an eigenvalue - easy to show.

By construction, the link matrix A is such that Aij = 1/nj if page j links
to page i and 0 otherwise1. Thus the j-th column of A contains nj non-
zero entries summing up to 1 (each is 1/nj). So A’s columns all sum up
to 1. Such matrix is called column-stochastic.

Claim: Every column-stochastic matrix has 1 as an eigenvalue. (proof :
take a vector of all ones, e, and consider ATe = e, which obviously holds
because the rows of AT add up to one. Thus 1 is an eigenvalue of AT .
Recalling that the eigenvlues of AT and A are the same, proves the claim.)

• In this small example the eigenvector corresponding to λ = 1 is easy to
find ‘by hand’. The following MATLAB code also finds the eigenvalus and
eigenvectors of A:

A = [ 0 0 1 1/2 ;
1/3 0 0 0 ;
1/3 1/2 0 1/2 ;
1/3 1/2 0 0 ] ;

[V D] = e i g (A) ;

% s c a l e the f i r s t e i g enve c t o r to sum up to 1
x = V( : , 1 ) /sum(V( : , 1 ) )

We obtain x = 1
31 [12 4 9 6] ≈ [0.38 0.12 0.29 0.19]. We call x the PageRank

vector of our web graph. Note that its components sum up to 1. We can
plot the rankings as well:

1The number of non-zero entries in the ith row of A is the in-degree of node i - i.e. how
many other pages link to it. And the number of non-zero entries in the jth column is the
out-degree of node j - i.e. how many other pages j links to.
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• Dynamical systems point of view: Suppose that initially the im-
portance is uniformly distributed among the 4 nodes, each getting 1/4.
Denote by v the initial rank vector, having all entries equal to 1/4. Each
incoming link increases the importance of a web page, so at step 1, we up-
date the rank of each page by adding to the current value the importance
of the incoming links. This is the same as multiplying the matrix A with v.
At step 1, the new importance vector is v1 = Av. We can iterate the pro-
cess, thus at step 2, the updated importance vector is v2 = A(Av) = A2v.
Numeric computations give:

We notice that the sequences of iterates v,Av, ...,Akv tend to the equi-
librium value v∗, which in this case is v∗ ≈ A8v. We observe that v∗ is
equal to the eigenvector x computed above.

• Probabilistic point of view: Since the importance of a web page is
measured by its popularity (how many incoming links it has), we can
view the importance of page i as the probability that a random surfer
on the Internet that opens a browser to any page and starts following
hyperlinks, visits the page i. We can interpret the weights we assigned
to the edges of the graph in a probabilistic way: A random surfer that is
currently viewing web page 2, has 1/2 probability to go to page 3, and 1/2
probability to go to page 4. We can model the process as a random walk
on graphs. Each page has equal probability 1/4 to be chosen as a starting
point. So, the initial probability distribution is given by the column vector
x = [ 14

1
4

1
4

1
4 ]T . The probability that page i will be visited after one step

is equal to Ax, and so on. The probability that page i will be visited
after k steps is equal to Akx. The sequence Ax,A2x,A3x, ...,Akx, ...
converges in this case to a unique probabilistic vector v∗. In this context
v∗ is called the stationary distribution. Moreover, the ith entry in v∗ is
simply the probability that at each moment a random surfer visits page
i. The computations are identical to the ones we did in the dynamical
systems interpretation, only the meaning we attribute to each step being
slightly different.
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Dangling Nodes

• If the web graph has dangling nodes, they can be easily repaired. A column
in the link matrix that represents a dangling node has all zero entries, since
a dangling node has no outgoing edges. We can replace each such column
with a column vector with all entries 1/n, where n is the total number of
graph nodes, see Fig. 2. In this way, the importance of the node is equally
redistributed among the other nodes of the graph, instead of being lost.
Since it is equally redistributed, the relative ranking of the other nodes
did not change. For example, we can fix the dangling node E in Fig. 2 by
replacing the column corresponding to E with a column vector with all
entries 1/5.

Figure 2: Example of a dangling node.

Case of Disconnectd SubWebs

• There maybe more than one eigenvector that solves Ax = x if the web
graph is not connected. In this case the solution is not unique, and hence
the dimensionality of the eigenspace V1(A) corresponding to λ = 1 is larger
that one. For example, there are two eigenvectors that solve Ax = x in
Fig. 3.

Figure 3: Example of a disconnected web graph, its link matrix with two differ-
ent eigenvectors corresponding to eigenvalue 1.

• To solve this problem Page and Brin replaced the matrix A with the
matrix:

M = (1−m)A +mS,
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where S is n × n matrix with all entries 1/n. This means we add ’weak’
links form every webpage to every other. The value of m originally used
by Google is reportedly 0.15. For any m ∈ [0, 1] the matrix M is column-
stochastic and we can show that V1(M) is always one-dimensional if m ∈
(0, 1] if there is no dangling nodes.

• Observe that:

Mx = (1−m)Ax +mSx = (1−m)Ax +ms,

where s is a column vector with all entries 1/n, since Sx = s for any vector
x = [x1, . . . , xn]T such that

∑n
i=1 xi = 1.

• Hence, the equation x = Mx can also be cast as x = (1−m)Ax +ms.

PageRank Foundations

• By the following theorem, matrix M has a unique eigenvector, correspond-
ing to the eigenvalue 1, which is called the PageRank vector for the web
graph with link matrix A.

Perron-Frobenius Theorem: If M is a positive, column stochastic
matrix, then

1. 1 is an eigenvalue of multiplicity one,

2. 1 is the largest eigenvalue: all the other eigenvalues have absolute
value smaller than 1, and

3. the eigenvectors corresponding to the eigenvalue 1 have either only
positive entries or only negative entries. In particular, for the eigen-
value 1 there exists a unique eigenvector with the sum of its entries
equal to 1.

• From the mathematical point of view, once we have M, computing the
eigenvector corresponding to the eigenvalue 1 is, at least in theory, a
straightforward task. But when the matrix M has size 30 billion (as it
does for the real Web graph), even mathematical software such as Matlab
or Mathematica are clearly overwhelmed. An alternative way of comput-
ing the eigenvector is given by the Power Method. The theorem below
guarantees that the method works for positive, column stochastic matri-
ces.

Power Method Convergence Theorem: Let M be a positive, column
stochastic n × n matrix. Denote by v∗ its eigenvector corresponding to
the eigenvalue 1. Let v be the column vector with all entries equal to 1/n.
Then the sequence v,Mv, ...,Mkv converges to vector v∗.

• In the random surfer model, we argued that the iteration process corre-
sponds to the way importance distributes over the net following the link
structure. Computationally speaking, it is much more easier, starting from
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the vector with v, to multiply v,Mv, ...,Mkv until convergence then it
is to compute the eigenvectors of M. In fact, in this case, one needs only
compute the first couple of iterates in order to get a good approximation
of the PageRank vector.

• For a random matrix, the power method is in general known to be slow
to converge. What makes it work fast in this case however is the fact that
the web graph is sparse. This means that a node i has a small number
of outgoing links (a couple of hundred at best, which is extremely small
corresponding to the 30 billion nodes it could theoretically link to). Hence
the link matrix A has a lot of entries equal to 0.
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