1. (a) Let a directed graph G_{1} be given.

Does each of the following list of vertices form a path in G_{1} ? If yes, determine (by circling) if the path is simple, if it is a circuit, and give its length.

a, b, e, c, b	Yes [simple circuit length \square] No
a, d, a, d, a	Yes [simple circuit length \square] No
a, d, e, b, a	Yes [simple circuit length \square] No
a, b, e, c, b, a	Yes [simple circuit length \square] No

(b) For the simple graph G_{2}

Find M^{2}, where M is the adjacency matrix of G_{2}

Find the number of paths from A to D in G_{2} of length 2. \square
2.. Use structural induction to show that $l(\mathrm{~T})=i(\mathrm{~T})+1$ for a full binary tree T , where $l(\mathrm{~T})$ is the number of leaves of T and $i(\mathrm{~T})$ is the number of internal vertices of T .
Note: The root r is a leaf of the full binary tree with exactly one vertex r. This tree has no internal vertices. If a full binary tree has more than one vertex, then its root belongs to its internal vertices.
3. Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

G

H
4. Prove that that $n^{2}<n!$. Clearly state the basis step and inductive hypothesis.
5. Prove that for all positive integers n the following formula holds

$$
\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{n}}=\frac{2^{n}-1}{2^{n}}
$$

6. Let $f(n)=2 n^{2}+5 n \log (n)+8 n+7$. Show that $f(n)$ is $\mathrm{O}\left(n^{2}\right)$. Be sure to specify the values of the witnesses C and k.
7. Use Dijkstra's algorithm to find the length of the shortest path between the vertices a and z in the following weighted graph.

a	b	c	d	e	z	S
0	∞	∞	∞	∞	∞	a
X						
X						
X						
X						
X						
X						
X						
X						

Draw a tree representing the shortest distances from a to each of the other vertices. Indicate the distance next to each vertex.
(b)
(a)
(d)
(z)
(c) (e)
8. How many vertices and how many edges does each of the following graphs have?
(a) K_{5}
(b) C_{4}
(c) W_{5}
(d) $\mathrm{K}_{2,5}$
9. Give a recursive algorithm for finding the string w^{i}, the concatenation of i copies of w, when w is a bit string.
10. Describe an algorithm for finding the second largest integer in a sequence of distinct integers. Give a big-O estimate of the number of comparisons used by your algorithm.
11. Give a recursive definition of
a) the set of odd positive integers.
b) the set of positive integer powers of 3 .
c) the set of polynomials with integer coefficients.
12. Let S be the subset of the set of ordered pairs of integers defined recursively by Basis step: $(0,0) \in S$.
Recursive step: If $(a, b) \in S$, then $(a+2, b+3) \in S$ and $(a+3, b+2) \in S$.
a) List the elements of S produced by the first two applications of the recursive definition.
b) Use structural induction to show that $5 \mid a+b$ when $(a, b) \in S$.
13. Write a pseudocode for an algorithm for evaluating a polynomial of degree n, $p(x)=a_{\mathrm{n}} x^{\mathrm{n}}+a_{\mathrm{n}-1} x^{\mathrm{n}-1}+\ldots+a_{1} x+a_{0}$, at $x=c$.
What is big-O estimate of the time complexity of your algorithm (in terms of the number of multiplications and additions used) as a function of n ? Explain your answer.
14. Show that $\log (\boldsymbol{n}!)$ is $\Theta(\boldsymbol{n} \cdot \log (\boldsymbol{n}))$.

