Chapter 6

Eigenvalues and Eigenvectors

6.1 Introduction to Eigenvalues

Linear equations $A \boldsymbol{x}=\boldsymbol{b}$ come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution of $d \boldsymbol{u} / d t=A \boldsymbol{u}$ is changing with timegrowing or decaying or oscillating. We can't find it by elimination. This chapter enters a new part of linear algebra, based on $A \boldsymbol{x}=\lambda \boldsymbol{x}$. All matrices in this chapter are square.

A good model comes from the powers A, A^{2}, A^{3}, \ldots of a matrix. Suppose you need the hundredth power A^{100}. The starting matrix A becomes unrecognizable after a few steps, and A^{100} is very close to $\left[\begin{array}{llll}.6 & .6 ; & .4 & .4\end{array}\right]$:

A^{100} was found by using the eigenvalues of A, not by multiplying 100 matrices. Those eigenvalues (here they are 1 and $1 / 2$) are a new way to see into the heart of a matrix.

To explain eigenvalues, we first explain eigenvectors. Almost all vectors change direction, when they are multiplied by A. Certain exceptional vectors x are in the same direction as $A x$. Those are the "eigenvectors". Multiply an eigenvector by A, and the vector $A \boldsymbol{x}$ is a number λ times the original \boldsymbol{x}.

The basic equation is $A x=\lambda x$. The number λ is an eigenvalue of A.
The eigenvalue λ tells whether the special vector \boldsymbol{x} is stretched or shrunk or reversed or left unchanged-when it is multiplied by A. We may find $\lambda=2$ or $\frac{1}{2}$ or -1 or 1 . The eigenvalue λ could be zero! Then $A \boldsymbol{x}=0 \boldsymbol{x}$ means that this eigenvector \boldsymbol{x} is in the nullspace.

If A is the identity matrix, every vector has $A \boldsymbol{x}=\boldsymbol{x}$. All vectors are eigenvectors of I. All eigenvalues "lambda" are $\lambda=1$. This is unusual to say the least. Most 2 by 2 matrices have two eigenvector directions and two eigenvalues. We will show that $\operatorname{det}(A-\lambda I)=0$.

This section will explain how to compute the \boldsymbol{x} 's and λ 's. It can come early in the course because we only need the determinant of a 2 by 2 matrix. Let me use $\operatorname{det}(A-\lambda I)=0$ to find the eigenvalues for this first example, and then derive it properly in equation (3).
Example 1 The matrix A has two eigenvalues $\lambda=1$ and $\lambda=1 / 2$. Look at $\operatorname{det}(A-\lambda I)$:

$$
A=\left[\begin{array}{ll}
.8 & .3 \\
.2 & .7
\end{array}\right] \quad \operatorname{det}\left[\begin{array}{ll}
.8-\lambda & .3 \\
.2 & .7-\lambda
\end{array}\right]=\lambda^{2}-\frac{3}{2} \lambda+\frac{1}{2}=(\lambda-1)\left(\lambda-\frac{1}{2}\right)
$$

I factored the quadratic into $\lambda-1$ times $\lambda-\frac{1}{2}$, to see the two eigenvalues $\lambda=\mathbf{1}$ and $\lambda=\frac{1}{2}$. For those numbers, the matrix $A-\lambda I$ becomes singular (zero determinant). The eigenvectors \boldsymbol{x}_{1} and \boldsymbol{x}_{2} are in the nullspaces of $A-I$ and $A-\frac{1}{2} I$.
$(A-I) \boldsymbol{x}_{1}=0$ is $A \boldsymbol{x}_{1}=\boldsymbol{x}_{1}$ and the first eigenvector is $(.6, .4)$.
$\left(A-\frac{1}{2} I\right) \boldsymbol{x}_{2}=0$ is $A \boldsymbol{x}_{2}=\frac{1}{2} \boldsymbol{x}_{2}$ and the second eigenvector is $(1,-1)$:

$$
\begin{aligned}
& \boldsymbol{x}_{1}=\left[\begin{array}{l}
.6 \\
.4
\end{array}\right] \quad \text { and } \quad A \boldsymbol{x}_{1}=\left[\begin{array}{ll}
.8 & .3 \\
.2 & .7
\end{array}\right]\left[\begin{array}{l}
.6 \\
.4
\end{array}\right]=\boldsymbol{x}_{1} \quad\left(A \boldsymbol{x}=\boldsymbol{x} \text { means that } \lambda_{1}=1\right) \\
& \boldsymbol{x}_{2}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \quad \text { and } \quad A \boldsymbol{x}_{2}=\left[\begin{array}{ll}
.8 & .3 \\
.2 & .7
\end{array}\right]\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
.5 \\
-.5
\end{array}\right] \quad\left(\text { this is } \frac{1}{2} \boldsymbol{x}_{2} \text { so } \lambda_{2}=\frac{1}{2}\right) .
\end{aligned}
$$

If \boldsymbol{x}_{1} is multiplied again by A, we still get \boldsymbol{x}_{1}. Every power of A will give $A^{n} \boldsymbol{x}_{1}=\boldsymbol{x}_{1}$. Multiplying x_{2} by A gave $\frac{1}{2} x_{2}$, and if we multiply again we get $\left(\frac{1}{2}\right)^{2}$ times x_{2}.

When A is squared, the eigenvectors stay the same. The eigenvalues are squared.
This pattern keeps going, because the eigenvectors stay in their own directions (Figure 6.1) and never get mixed. The eigenvectors of A^{100} are the same \boldsymbol{x}_{1} and \boldsymbol{x}_{2}. The eigenvalues of A^{100} are $1^{100}=1$ and $\left(\frac{1}{2}\right)^{100}=$ very small number.

Figure 6.1: The eigenvectors keep their directions. A^{2} has eigenvalues 1^{2} and (.5) ${ }^{2}$.
Other vectors do change direction. But all other vectors are combinations of the two eigenvectors. The first column of A is the combination $\boldsymbol{x}_{1}+(.2) \boldsymbol{x}_{2}$:
Separate into eigenvectors $\quad\left[\begin{array}{l}.8 \\ .2\end{array}\right]=x_{1}+(.2) x_{2}=\left[\begin{array}{l}.6 \\ .4\end{array}\right]+\left[\begin{array}{r}.2 \\ -.2\end{array}\right]$.

Multiplying by A gives (.7,.3), the first column of A^{2}. Do it separately for \boldsymbol{x}_{1} and (.2) \boldsymbol{x}_{2}. Of course $A \boldsymbol{x}_{1}=\boldsymbol{x}_{1}$. And A multiplies \boldsymbol{x}_{2} by its eigenvalue $\frac{1}{2}$:
Multiply each \boldsymbol{x}_{i} by $\boldsymbol{\lambda}_{i} \quad A\left[\begin{array}{l}.8 \\ .2\end{array}\right]=\left[\begin{array}{l}.7 \\ .3\end{array}\right] \quad$ is $\quad \boldsymbol{x}_{1}+\frac{1}{2}(.2) \boldsymbol{x}_{2}=\left[\begin{array}{l}.6 \\ .4\end{array}\right]+\left[\begin{array}{r}.1 \\ -.1\end{array}\right]$.
Each eigenvector is multiplied by its eigenvalue, when we multiply by A. We didn't need these eigenvectors to find A^{2}. But it is the good way to do 99 multiplications. At every step \boldsymbol{x}_{1} is unchanged and \boldsymbol{x}_{2} is multiplied by $\left(\frac{1}{2}\right)$, so we have $\left(\frac{1}{2}\right)^{99}$:

$$
A^{99}\left[\begin{array}{l}
.8 \\
.2
\end{array}\right] \quad \text { is really } \quad \boldsymbol{x}_{1}+(.2)\left(\frac{1}{2}\right)^{99} \boldsymbol{x}_{2}=\left[\begin{array}{l}
.6 \\
.4
\end{array}\right]+\left[\begin{array}{l}
\text { very } \\
\text { small } \\
\text { vector }
\end{array}\right]
$$

This is the first column of A^{100}. The number we originally wrote as .6000 was not exact. We left out $(.2)\left(\frac{1}{2}\right)^{99}$ which wouldn't show up for 30 decimal places.

The eigenvector x_{1} is a "steady state" that doesn't change (because $\lambda_{1}=1$). The eigenvector \boldsymbol{x}_{2} is a "decaying mode" that virtually disappears (because $\lambda_{2}=.5$). The higher the power of A, the closer its columns approach the steady state.

We mention that this particular A is a Markov matrix. Its entries are positive and every column adds to 1 . Those facts guarantee that the largest eigenvalue is $\lambda=1$ (as we found). Its eigenvector $\boldsymbol{x}_{1}=(.6, .4)$ is the steady state-which all columns of A^{k} will approach. Section 8.3 shows how Markov matrices appear in applications like Google.

For projections we can spot the steady state $(\lambda=1)$ and the nullspace $(\lambda=0)$.
Example 2 The projection matrix $P=\left[\begin{array}{cc}.5 & .5 \\ .5 & .5\end{array}\right]$ has eigenvalues $\lambda=1$ and $\lambda=0$.
Its eigenvectors are $\boldsymbol{x}_{1}=(1,1)$ and $\boldsymbol{x}_{2}=(1,-1)$. For those vectors, $P \boldsymbol{x}_{1}=\boldsymbol{x}_{1}$ (steady state) and $P \boldsymbol{x}_{2}=\mathbf{0}$ (nullspace). This example illustrates Markov matrices and singular matrices and (most important) symmetric matrices. All have special λ 's and \boldsymbol{x} 's:

1. Each column of $P=\left[\begin{array}{ll}.5 & .5 \\ .5 & .5\end{array}\right]$ adds to 1 , so $\lambda=1$ is an eigenvalue.
2. P is singular, so $\lambda=0$ is an eigenvalue.
3. P is symmetric, so its eigenvectors $(1,1)$ and $(1,-1)$ are perpendicular.

The only eigenvalues of a projection matrix are 0 and 1 . The eigenvectors for $\lambda=0$ (which means $P \boldsymbol{x}=0 \boldsymbol{x}$) fill up the nullspace. The eigenvectors for $\lambda=1$ (which means $P \boldsymbol{x}=\boldsymbol{x}$) fill up the column space. The nullspace is projected to zero. The column space projects onto itself. The projection keeps the column space and destroys the nullspace:

Project each part $\quad \boldsymbol{v}=\left[\begin{array}{r}1 \\ -1\end{array}\right]+\left[\begin{array}{l}2 \\ 2\end{array}\right]$ projects onto $P \boldsymbol{v}=\left[\begin{array}{l}0 \\ 0\end{array}\right]+\left[\begin{array}{l}2 \\ 2\end{array}\right]$.
Special properties of a matrix lead to special eigenvalues and eigenvectors. That is a major theme of this chapter (it is captured in a table at the very end).

Projections have $\lambda=0$ and 1. Permutations have all $|\lambda|=1$. The next matrix R (a reflection and at the same time a permutation) is also special.

Example 3 The reflection matrix $R=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ has eigenvalues $\mathbf{1}$ and $\mathbf{- 1}$.

The eigenvector $(1,1)$ is unchanged by R. The second eigenvector is $(1,-1)$-its signs are reversed by R. A matrix with no negative entries can still have a negative eigenvalue! The eigenvectors for R are the same as for P, because reflection $=2($ projection $)-I$:

$$
\boldsymbol{R}=2 \boldsymbol{P}-\boldsymbol{I} \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=2\left[\begin{array}{cc}
.5 & .5 \tag{2}\\
.5 & .5
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Here is the point. If $P \boldsymbol{x}=\lambda \boldsymbol{x}$ then $2 P \boldsymbol{x}=2 \lambda \boldsymbol{x}$. The eigenvalues are doubled when the matrix is doubled. Now subtract $I \boldsymbol{x}=\boldsymbol{x}$. The result is $(2 P-I) \boldsymbol{x}=(2 \lambda-1) \boldsymbol{x}$. When a matrix is shifted by I, each λ is shifted by 1 . No change in eigenvectors.

Figure 6.2: Projections P have eigenvalues 1 and 0 . Reflections R have $\lambda=1$ and -1 . A typical \boldsymbol{x} changes direction, but not the eigenvectors \boldsymbol{x}_{1} and \boldsymbol{x}_{2}.

Key idea: The eigenvalues of R and P are related exactly as the matrices are related:
The eigenvalues of $R=2 P-I$ are $2(1)-1=1$ and $2(0)-1=-1$.
The eigenvalues of R^{2} are λ^{2}. In this case $R^{2}=I$. Check $(1)^{2}=1$ and $(-1)^{2}=1$.

The Equation for the Eigenvalues

For projections and reflections we found λ 's and \boldsymbol{x} 's by geometry: $P \boldsymbol{x}=\boldsymbol{x}, P \boldsymbol{x}=\mathbf{0}$, $R \boldsymbol{x}=-\boldsymbol{x}$. Now we use determinants and linear algebra. This is the key calculation in the chapter-almost every application starts by solving $A \boldsymbol{x}=\lambda \boldsymbol{x}$.

First move $\lambda \boldsymbol{x}$ to the left side. Write the equation $A \boldsymbol{x}=\lambda \boldsymbol{x}$ as $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$. The matrix $A-\lambda I$ times the eigenvector \boldsymbol{x} is the zero vector. The eigenvectors make up the nullspace of $A-\lambda I$. When we know an eigenvalue λ, we find an eigenvector by solving $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$.

Eigenvalues first. If $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$ has a nonzero solution, $A-\lambda I$ is not invertible. The determinant of $\boldsymbol{A}-\lambda$ I must be zero. This is how to recognize an eigenvalue λ :

Eigenvalues The number λ is an eigenvalue of A if and only if $A-\lambda I$ is singular:

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 \tag{3}
\end{equation*}
$$

This "characteristic equation" $\operatorname{det}(A-\lambda I)=0$ involves only λ, not \boldsymbol{x}. When A is n by n, the equation has degree n. Then A has n eigenvalues and each λ leads to \boldsymbol{x} :

For each λ solve $(A-\lambda I) \boldsymbol{x}=0$ or $A \boldsymbol{x}=\lambda \boldsymbol{x}$ to find an eigenvector \boldsymbol{x}.
Example $4 \quad A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ is already singular (zero determinant). Find its λ 's and \boldsymbol{x} 's.
When A is singular, $\lambda=0$ is one of the eigenvalues. The equation $A \boldsymbol{x}=0 \boldsymbol{x}$ has solutions. They are the eigenvectors for $\lambda=0$. But $\operatorname{det}(A-\lambda I)=0$ is the way to find all λ 's and \boldsymbol{x} 's. Always subtract λI from A :

$$
\text { Subtract } \lambda \text { from the diagonal to find } \quad A-\lambda I=\left[\begin{array}{cc}
1-\lambda & 2 \tag{4}\\
2 & 4-\lambda
\end{array}\right] \text {. }
$$

Take the determinant " $a d-b c$ " of this 2 by 2 matrix. From $1-\lambda$ times $4-\lambda$, the " $a d$ " part is $\lambda^{2}-5 \lambda+4$. The " $b c$ " part, not containing λ, is 2 times 2 .

$$
\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 2 \tag{5}\\
2 & 4-\lambda
\end{array}\right]=(1-\lambda)(4-\lambda)-(2)(2)=\lambda^{2}-5 \lambda .
$$

Set this determinant $\lambda^{2}-\mathbf{5} \lambda$ to zero. One solution is $\lambda=0$ (as expected, since A is singular). Factoring into λ times $\lambda-5$, the other root is $\lambda=5$:

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-5 \lambda=0 \quad \text { yields the eigenvalues } \quad \lambda_{1}=0 \quad \text { and } \quad \lambda_{2}=5
$$

Now find the eigenvectors. Solve $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$ separately for $\lambda_{1}=0$ and $\lambda_{2}=5$:
$(A-0 I) x=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{l}y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ yields an eigenvector $\left[\begin{array}{l}y \\ z\end{array}\right]=\left[\begin{array}{r}2 \\ -1\end{array}\right]$ for $\lambda_{1}=0$
$(A-5 I) x=\left[\begin{array}{rr}-4 & 2 \\ 2 & -1\end{array}\right]\left[\begin{array}{l}y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ yields an eigenvector $\left[\begin{array}{l}y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ for $\lambda_{2}=5$.
The matrices $A-0 I$ and $A-5 I$ are singular (because 0 and 5 are eigenvalues). The eigenvectors $(2,-1)$ and $(1,2)$ are in the nullspaces: $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$ is $A \boldsymbol{x}=\lambda \boldsymbol{x}$.

We need to emphasize: There is nothing exceptional about $\lambda=0$. Like every other number, zero might be an eigenvalue and it might not. If A is singular, it is. The eigenvectors fill the nullspace: $A \boldsymbol{x}=0 \boldsymbol{x}=\mathbf{0}$. If A is invertible, zero is not an eigenvalue. We shift A by a multiple of I to make it singular.

In the example, the shifted matrix $A-5 I$ is singular and 5 is the other eigenvalue.

Summary To solve the eigenvalue problem for an n by n matrix, follow these steps:

1. Compute the determinant of $A-\lambda I$. With λ subtracted along the diagonal, this determinant starts with λ^{n} or $-\lambda^{n}$. It is a polynomial in λ of degree n.
2. Find the roots of this polynomial, by solving $\operatorname{det}(A-\lambda I)=0$. The n roots are the n eigenvalues of A. They make $A-\lambda I$ singular.
3. For each eigenvalue λ, solve $(A-\lambda I) \boldsymbol{x}=0$ to find an eigenvector \boldsymbol{x}.

A note on the eigenvectors of 2 by 2 matrices. When $A-\lambda I$ is singular, both rows are multiples of a vector (a, b). The eigenvector is any multiple of $(b,-a)$. The example had $\lambda=0$ and $\lambda=5$:
$\lambda=0$: rows of $A-0 I$ in the direction $(1,2)$; eigenvector in the direction $(2,-1)$
$\lambda=5$: rows of $A-5 I$ in the direction $(-4,2)$; eigenvector in the direction $(2,4)$.
Previously we wrote that last eigenvector as $(1,2)$. Both $(1,2)$ and $(2,4)$ are correct. There is a whole line of eigenvectors-any nonzero multiple of \boldsymbol{x} is as good as \boldsymbol{x}. MATLAB's eig (A) divides by the length, to make the eigenvector into a unit vector.

We end with a warning. Some 2 by 2 matrices have only one line of eigenvectors. This can only happen when two eigenvalues are equal. (On the other hand $A=I$ has equal eigenvalues and plenty of eigenvectors.) Similarly some n by n matrices don't have n independent eigenvectors. Without n eigenvectors, we don't have a basis. We can't write every \boldsymbol{v} as a combination of eigenvectors. In the language of the next section, we can't diagonalize a matrix without n independent eigenvectors.

Good News, Bad News

Bad news first: If you add a row of A to another row, or exchange rows, the eigenvalues usually change. Elimination does not preserve the λ 's. The triangular U has its eigenvalues sitting along the diagonal-they are the pivots. But they are not the eigenvalues of A ! Eigenvalues are changed when row 1 is added to row 2 :

$$
U=\left[\begin{array}{ll}
1 & 3 \\
0 & 0
\end{array}\right] \quad \text { has } \lambda=0 \text { and } \lambda=1 ; \quad A=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right] \quad \text { has } \lambda=0 \text { and } \lambda=7
$$

Good news second: The product λ_{1} times λ_{2} and the sum $\lambda_{1}+\lambda_{2}$ can be found quickly from the matrix. For this A, the product is 0 times 7. That agrees with the determinant (which is 0). The sum of eigenvalues is $0+7$. That agrees with the sum down the main diagonal (the trace is $1+6$). These quick checks always work:

The product of the n eigenvalues equals the determinant. The sum of the n eigenvalues equals the sum of the n diagonal entries.

The sum of the entries on the main diagonal is called the trace of A :

$$
\begin{equation*}
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=\text { trace }=a_{11}+a_{22}+\cdots+a_{n n} \tag{6}
\end{equation*}
$$

Those checks are very useful. They are proved in Problems 16-17 and again in the next section. They don't remove the pain of computing λ 's. But when the computation is wrong, they generally tell us so. To compute the correct λ 's, go back to $\operatorname{det}(A-\lambda I)=0$.

The determinant test makes the product of the λ 's equal to the product of the pivots (assuming no row exchanges). But the sum of the λ 's is not the sum of the pivots-as the example showed. The individual λ 's have almost nothing to do with the pivots. In this new part of linear algebra, the key equation is really nonlinear: λ multiplies \boldsymbol{x}.

Why do the eigenvalues of a triangular matrix lie on its diagonal?

Imaginary Eigenvalues

One more bit of news (not too terrible). The eigenvalues might not be real numbers.

Example 5 The 90° rotation $Q=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ has no real eigenvectors. Its eigenvalues are
$\lambda=i$ and $\lambda=-i$. Sum of $\lambda \prime s=$ trace $=0$. Product $=$ determinant $=1$.

After a rotation, no vector $Q \boldsymbol{x}$ stays in the same direction as \boldsymbol{x} (except $\boldsymbol{x}=\mathbf{0}$ which is useless). There cannot be an eigenvector, unless we go to imaginary numbers. Which we do.

To see how i can help, look at Q^{2} which is $-I$. If Q is rotation through 90°, then Q^{2} is rotation through 180°. Its eigenvalues are -1 and -1 . (Certainly $-I \boldsymbol{x}=-1 \boldsymbol{x}$.) Squaring Q will square each λ, so we must have $\lambda^{2}=-1$. The eigenvalues of the 90° rotation matrix Q are $+i$ and $-i$, because $i^{2}=-1$.

Those λ 's come as usual from $\operatorname{det}(Q-\lambda I)=0$. This equation gives $\lambda^{2}+1=0$. Its roots are i and $-i$. We meet the imaginary number i also in the eigenvectors:

$$
\begin{aligned}
& \text { Complex } \\
& \text { eigenvectors }
\end{aligned} \quad\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
i
\end{array}\right]=i\left[\begin{array}{l}
1 \\
i
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
i \\
1
\end{array}\right]=-i\left[\begin{array}{l}
i \\
1
\end{array}\right] .
$$

Somehow these complex vectors $\boldsymbol{x}_{1}=(1, i)$ and $\boldsymbol{x}_{2}=(i, 1)$ keep their direction as they are rotated. Don't ask me how. This example makes the all-important point that real matrices can easily have complex eigenvalues and eigenvectors. The particular eigenvalues i and $-i$ also illustrate two special properties of Q :

1. Q is an orthogonal matrix so the absolute value of each λ is $|\lambda|=1$.
2. Q is a skew-symmetric matrix so each λ is pure imaginary.

A symmetric matrix $\left(A^{\mathrm{T}}=A\right)$ can be compared to a real number. A skew-symmetric matrix $\left(A^{\mathrm{T}}=-A\right)$ can be compared to an imaginary number. An orthogonal matrix ($A^{\mathrm{T}} A=I$) can be compared to a complex number with $|\lambda|=1$. For the eigenvalues those are more than analogies-they are theorems to be proved in Section 6.4.

The eigenvectors for all these special matrices are perpendicular. Somehow $(i, 1)$ and $(1, i)$ are perpendicular (Chapter 10 explains the dot product of complex vectors).

Eigshow in MATLAB

There is a MATLAB demo (just type eigshow), displaying the eigenvalue problem for a 2 by 2 matrix. It starts with the unit vector $\boldsymbol{x}=(1,0)$. The mouse makes this vector move around the unit circle. At the same time the screen shows $A \boldsymbol{x}$, in color and also moving. Possibly $A \boldsymbol{x}$ is ahead of \boldsymbol{x}. Possibly $A \boldsymbol{x}$ is behind \boldsymbol{x}. Sometimes $A \boldsymbol{x}$ is parallel to \boldsymbol{x}. At that parallel moment, $A \boldsymbol{x}=\lambda \boldsymbol{x}$ (at \boldsymbol{x}_{1} and \boldsymbol{x}_{2} in the second figure).

These are not eigenvectors

$A \boldsymbol{x}$ lines up with \boldsymbol{x} at eigenvectors

The eigenvalue λ is the length of $A \boldsymbol{x}$, when the unit eigenvector \boldsymbol{x} lines up. The built-in choices for A illustrate three possibilities: 0,1 , or 2 directions where $A \boldsymbol{x}$ crosses \boldsymbol{x}.
0. There are no real eigenvectors. Ax stays behind or ahead of \boldsymbol{x}. This means the eigenvalues and eigenvectors are complex, as they are for the rotation Q.

1. There is only one line of eigenvectors (unusual). The moving directions $A \boldsymbol{x}$ and \boldsymbol{x} touch but don't cross over. This happens for the last 2 by 2 matrix below.
2. There are eigenvectors in two independent directions. This is typical! $A \boldsymbol{x}$ crosses \boldsymbol{x} at the first eigenvector \boldsymbol{x}_{1}, and it crosses back at the second eigenvector \boldsymbol{x}_{2}. Then $A \boldsymbol{x}$ and \boldsymbol{x} cross again at $-\boldsymbol{x}_{1}$ and $-\boldsymbol{x}_{2}$.

You can mentally follow \boldsymbol{x} and $A \boldsymbol{x}$ for these five matrices. Under the matrices I will count their real eigenvectors. Can you see where $A \boldsymbol{x}$ lines up with \boldsymbol{x} ?

$$
A=\underset{2}{\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]} \underset{2}{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]} \underset{0}{\left[\begin{array}{rl}
0 & 1 \\
-1 & 0
\end{array}\right]} \underset{\substack{ \\
0}}{\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

When A is singular (rank one), its column space is a line. The vector $A \boldsymbol{x}$ goes up and down that line while \boldsymbol{x} circles around. One eigenvector \boldsymbol{x} is along the line. Another eigenvector appears when $A \boldsymbol{x}_{2}=\mathbf{0}$. Zero is an eigenvalue of a singular matrix.

■ REVIEW OF THE KEY IDEAS

1. $A \boldsymbol{x}=\lambda \boldsymbol{x}$ says that eigenvectors \boldsymbol{x} keep the same direction when multiplied by A.
2. $A \boldsymbol{x}=\lambda \boldsymbol{x}$ also says that $\operatorname{det}(A-\lambda I)=0$. This determines n eigenvalues.
3. The eigenvalues of A^{2} and A^{-1} are λ^{2} and λ^{-1}, with the same eigenvectors.
4. The sum of the λ 's equals the sum down the main diagonal of A (the trace). The product of the λ 's equals the determinant.
5. Projections P, reflections $R, 90^{\circ}$ rotations Q have special eigenvalues $1,0,-1, i,-i$. Singular matrices have $\lambda=0$. Triangular matrices have λ 's on their diagonal.

- WORKED EXAMPLES

6.1 A Find the eigenvalues and eigenvectors of A and A^{2} and A^{-1} and $A+4 I$:

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right] \quad \text { and } \quad A^{2}=\left[\begin{array}{rr}
5 & -4 \\
-4 & 5
\end{array}\right]
$$

Check the trace $\lambda_{1}+\lambda_{2}$ and the determinant $\lambda_{1} \lambda_{2}$ for A and also A^{2}.
Solution The eigenvalues of A come from $\operatorname{det}(A-\lambda I)=0$:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
2-\lambda & -1 \\
-1 & 2-\lambda
\end{array}\right|=\lambda^{2}-4 \lambda+3=0
$$

This factors into $(\lambda-1)(\lambda-3)=0$ so the eigenvalues of A are $\lambda_{1}=1$ and $\lambda_{2}=3$. For the trace, the sum $2+2$ agrees with $1+3$. The determinant 3 agrees with the product $\lambda_{1} \lambda_{2}=3$. The eigenvectors come separately by solving $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$ which is $A \boldsymbol{x}=\lambda \boldsymbol{x}$:

$$
\begin{aligned}
& \lambda=1: \quad(A-I) \boldsymbol{x}=\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text { gives the eigenvector } \boldsymbol{x}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \lambda=3: \quad(A-3 I) \boldsymbol{x}=\left[\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text { gives the eigenvector } \boldsymbol{x}_{2}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

A^{2} and A^{-1} and $A+4 I$ keep the same eigenvectors as A. Their eigenvalues are λ^{2} and λ^{-1} and $\lambda+4$:

$$
A^{2} \text { has eigenvalues } 1^{2}=1 \text { and } 3^{2}=9 \quad A^{-1} \text { has } \frac{1}{1} \text { and } \frac{1}{3} \quad A+4 I \text { has } \begin{aligned}
& 1+4=5 \\
& 3+4=7
\end{aligned}
$$

The trace of A^{2} is $5+5$ which agrees with $1+9$. The determinant is $25-16=9$.
Notes for later sections: A has orthogonal eigenvectors (Section 6.4 on symmetric matrices). A can be diagonalized since $\lambda_{1} \neq \lambda_{2}$ (Section 6.2). A is similar to any 2 by 2 matrix with eigenvalues 1 and 3 (Section 6.6). A is a positive definite matrix (Section 6.5) since $A=A^{\mathrm{T}}$ and the λ 's are positive.
6.1 B Find the eigenvalues and eigenvectors of this 3 by 3 matrix A :

> Symmetric matrix
> Singular matrix
> Trace $1+2+1=4$

$$
A=\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

Solution Since all rows of A add to zero, the vector $\boldsymbol{x}=(1,1,1)$ gives $A \boldsymbol{x}=\mathbf{0}$. This is an eigenvector for the eigenvalue $\lambda=0$. To find λ_{2} and λ_{3} I will compute the 3 by 3 determinant:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & -1 & 0 \\
-1 & 2-\lambda & -1 \\
0 & -1 & 1-\lambda
\end{array}\right|=\begin{aligned}
& =(1-\lambda)(2-\lambda)(1-\lambda)-2(1-\lambda) \\
& =(1-\lambda)[(2-\lambda)(1-\lambda)-2] \\
&
\end{aligned}
$$

That factor $-\lambda$ confirms that $\lambda=0$ is a root, and an eigenvalue of A. The other factors $(1-\lambda)$ and $(3-\lambda)$ give the other eigenvalues 1 and 3 , adding to 4 (the trace). Each eigenvalue $0,1,3$ corresponds to an eigenvector:

$$
\boldsymbol{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad A \boldsymbol{x}_{1}=\mathbf{0} \boldsymbol{x}_{1} \quad \boldsymbol{x}_{2}=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right] \quad A \boldsymbol{x}_{2}=\mathbf{1} \boldsymbol{x}_{2} \quad \boldsymbol{x}_{3}=\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right] \quad A \boldsymbol{x}_{3}=\mathbf{3} \boldsymbol{x}_{3}
$$

I notice again that eigenvectors are perpendicular when A is symmetric.
The 3 by 3 matrix produced a third-degree (cubic) polynomial for $\operatorname{det}(A-\lambda I)=$ $-\lambda^{3}+4 \lambda^{2}-3 \lambda$. We were lucky to find simple roots $\lambda=0,1,3$. Normally we would use a command like $\operatorname{eig}(A)$, and the computation will never even use determinants (Section 9.3 shows a better way for large matrices).

The full command $[S, D]=\boldsymbol{\operatorname { e i g }}(A)$ will produce unit eigenvectors in the columns of the eigenvector matrix S. The first one happens to have three minus signs, reversed from $(1,1,1)$ and divided by $\sqrt{3}$. The eigenvalues of A will be on the diagonal of the eigenvalue matrix (typed as D but soon called Λ).

Problem Set 6.1

1 The example at the start of the chapter has powers of this matrix A :

$$
A=\left[\begin{array}{ll}
.8 & .3 \\
.2 & .7
\end{array}\right] \quad \text { and } \quad A^{2}=\left[\begin{array}{ll}
.70 & .45 \\
.30 & .55
\end{array}\right] \quad \text { and } \quad A^{\infty}=\left[\begin{array}{ll}
.6 & .6 \\
.4 & .4
\end{array}\right]
$$

Find the eigenvalues of these matrices. All powers have the same eigenvectors.
(a) Show from A how a row exchange can produce different eigenvalues.
(b) Why is a zero eigenvalue not changed by the steps of elimination?

2 Find the eigenvalues and the eigenvectors of these two matrices:

$$
A=\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right] \quad \text { and } \quad A+I=\left[\begin{array}{ll}
2 & 4 \\
2 & 4
\end{array}\right]
$$

$A+I$ has the \qquad eigenvectors as A. Its eigenvalues are \qquad by 1 .

3 Compute the eigenvalues and eigenvectors of A and A^{-1}. Check the trace!

$$
A=\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right] \quad \text { and } \quad A^{-1}=\left[\begin{array}{rr}
-1 / 2 & 1 \\
1 / 2 & 0
\end{array}\right]
$$

A^{-1} has the \qquad eigenvectors as A. When A has eigenvalues λ_{1} and λ_{2}, its inverse has eigenvalues \qquad .
4 Compute the eigenvalues and eigenvectors of A and A^{2} :

$$
A=\left[\begin{array}{rr}
-1 & 3 \\
2 & 0
\end{array}\right] \quad \text { and } \quad A^{2}=\left[\begin{array}{rr}
7 & -3 \\
-2 & 6
\end{array}\right]
$$

A^{2} has the same \qquad as A. When A has eigenvalues λ_{1} and λ_{2}, A^{2} has eigenvalues
\qquad . In this example, why is $\lambda_{1}^{2}+\lambda_{2}^{2}=13 ?$

5 Find the eigenvalues of A and B (easy for triangular matrices) and $A+B$:

$$
A=\left[\begin{array}{ll}
3 & 0 \\
1 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right] \quad \text { and } \quad A+B=\left[\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right] .
$$

Eigenvalues of $A+B$ (are equal to)(are not equal to) eigenvalues of A plus eigenvalues of B.

6 Find the eigenvalues of A and B and $A B$ and $B A$:
$A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $A B=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$ and $B A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$.
(a) Are the eigenvalues of $A B$ equal to eigenvalues of A times eigenvalues of B ?
(b) Are the eigenvalues of $A B$ equal to the eigenvalues of $B A$?

7 Elimination produces $A=L U$. The eigenvalues of U are on its diagonal; they are the \qquad . The eigenvalues of L are on its diagonal; they are all \qquad . The eigenvalues of A are not the same as \qquad -.

8 (a) If you know that \boldsymbol{x} is an eigenvector, the way to find λ is to \qquad .
(b) If you know that λ is an eigenvalue, the way to find \boldsymbol{x} is to \qquad -.

9 What do you do to the equation $A \boldsymbol{x}=\lambda \boldsymbol{x}$, in order to prove (a), (b), and (c)?
(a) λ^{2} is an eigenvalue of A^{2}, as in Problem 4.
(b) λ^{-1} is an eigenvalue of A^{-1}, as in Problem 3.
(c) $\lambda+1$ is an eigenvalue of $A+I$, as in Problem 2 .

10 Find the eigenvalues and eigenvectors for both of these Markov matrices A and A^{∞}. Explain from those answers why A^{100} is close to A^{∞} :

$$
A=\left[\begin{array}{ll}
.6 & .2 \\
.4 & .8
\end{array}\right] \quad \text { and } \quad A^{\infty}=\left[\begin{array}{ll}
1 / 3 & 1 / 3 \\
2 / 3 & 2 / 3
\end{array}\right]
$$

11 Here is a strange fact about 2 by 2 matrices with eigenvalues $\lambda_{1} \neq \lambda_{2}$: The columns of $A-\lambda_{1} I$ are multiples of the eigenvector \boldsymbol{x}_{2}. Any idea why this should be?

12 Find three eigenvectors for this matrix P (projection matrices have $\lambda=1$ and 0):

$$
\text { Projection matrix } \quad P=\left[\begin{array}{ccc}
.2 & .4 & 0 \\
.4 & .8 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

If two eigenvectors share the same λ, so do all their linear combinations. Find an eigenvector of P with no zero components.

13 From the unit vector $\boldsymbol{u}=\left(\frac{1}{6}, \frac{1}{6}, \frac{3}{6}, \frac{5}{6}\right)$ construct the rank one projection matrix $P=\boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}$. This matrix has $P^{2}=P$ because $\boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}=1$.
(a) $P \boldsymbol{u}=\boldsymbol{u}$ comes from $\left(\boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}\right) \boldsymbol{u}=\boldsymbol{u}$ (\qquad). Then \boldsymbol{u} is an eigenvector with $\lambda=1$.
(b) If \boldsymbol{v} is perpendicular to \boldsymbol{u} show that $P \boldsymbol{v}=\mathbf{0}$. Then $\lambda=0$.
(c) Find three independent eigenvectors of P all with eigenvalue $\lambda=0$.

14 Solve $\operatorname{det}(Q-\lambda I)=0$ by the quadratic formula to reach $\lambda=\cos \theta \pm i \sin \theta$:

$$
Q=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \quad \text { rotates the } x y \text { plane by the angle } \theta \text {. No real } \lambda \text { 's. }
$$

Find the eigenvectors of Q by solving $(Q-\lambda I) \boldsymbol{x}=\mathbf{0}$. Use $i^{2}=-1$.

15 Every permutation matrix leaves $\boldsymbol{x}=(1,1, \ldots, 1)$ unchanged. Then $\lambda=1$. Find two more λ 's (possibly complex) for these permutations, from $\operatorname{det}(P-\lambda I)=0$:

$$
P=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

16 The determinant of A equals the product $\lambda_{1} \lambda_{2} \cdots \lambda_{n}$. Start with the polynomial $\operatorname{det}(A-\lambda I)$ separated into its n factors (always possible). Then set $\lambda=0$:

$$
\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right) \quad \text { so } \quad \operatorname{det} A=
$$

\qquad .

Check this rule in Example 1 where the Markov matrix has $\lambda=1$ and $\frac{1}{2}$.
17 The sum of the diagonal entries (the trace) equals the sum of the eigenvalues:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { has } \quad \operatorname{det}(A-\lambda I)=\lambda^{2}-(a+d) \lambda+a d-b c=0
$$

The quadratic formula gives the eigenvalues $\lambda=(a+d+\sqrt{ }) / 2$ and $\lambda=$ \qquad _. Their sum is \qquad . If A has $\lambda_{1}=3$ and $\lambda_{2}=4$ then $\operatorname{det}(A-\lambda I)=$ \qquad .

18 If A has $\lambda_{1}=4$ and $\lambda_{2}=5$ then $\operatorname{det}(A-\lambda I)=(\lambda-4)(\lambda-5)=\lambda^{2}-9 \lambda+20$. Find three matrices that have trace $a+d=9$ and determinant 20 and $\lambda=4,5$.

19 A 3 by 3 matrix B is known to have eigenvalues $0,1,2$. This information is enough to find three of these (give the answers where possible) :
(a) the rank of B
(b) the determinant of $B^{\mathrm{T}} B$
(c) the eigenvalues of $B^{\mathrm{T}} B$
(d) the eigenvalues of $\left(B^{2}+I\right)^{-1}$.

20 Choose the last rows of A and C to give eigenvalues 4,7 and $1,2,3$:

Companion matrices

$$
A=\left[\begin{array}{ll}
0 & 1 \\
* & *
\end{array}\right] \quad C=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
* & * & *
\end{array}\right]
$$

21 The eigenvalues of \boldsymbol{A} equal the eigenvalues of $\boldsymbol{A}^{\mathrm{T}}$. This is because $\operatorname{det}(A-\lambda I)$ equals $\operatorname{det}\left(A^{\mathrm{T}}-\lambda I\right)$. That is true because \qquad . Show by an example that the eigenvectors of A and A^{T} are not the same.

22 Construct any 3 by 3 Markov matrix M : positive entries down each column add to 1 . Show that $M^{\mathrm{T}}(1,1,1)=(1,1,1)$. By Problem $21, \lambda=1$ is also an eigenvalue of M. Challenge: A 3 by 3 singular Markov matrix with trace $\frac{1}{2}$ has what λ 's ?

23 Find three 2 by 2 matrices that have $\lambda_{1}=\lambda_{2}=0$. The trace is zero and the determinant is zero. A might not be the zero matrix but check that $A^{2}=0$.

24 This matrix is singular with rank one. Find three λ 's and three eigenvectors:

$$
A=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 & 2 \\
4 & 2 & 4 \\
2 & 1 & 2
\end{array}\right]
$$

25 Suppose A and B have the same eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ with the same independent eigenvectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$. Then $A=B$. Reason: Any vector \boldsymbol{x} is a combination $c_{1} \boldsymbol{x}_{1}+\cdots+c_{n} \boldsymbol{x}_{n}$. What is $A \boldsymbol{x}$? What is $B \boldsymbol{x}$?

26 The block B has eigenvalues 1,2 and C has eigenvalues 3,4 and D has eigenvalues 5,7 . Find the eigenvalues of the 4 by 4 matrix A :

$$
A=\left[\begin{array}{ll}
B & C \\
0 & D
\end{array}\right]=\left[\begin{array}{rrrr}
0 & 1 & 3 & 0 \\
-2 & 3 & 0 & 4 \\
0 & 0 & 6 & 1 \\
0 & 0 & 1 & 6
\end{array}\right]
$$

27 Find the rank and the four eigenvalues of A and C :

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

28 Subtract I from the previous A. Find the λ 's and then the determinants of

$$
B=A-I=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right] \quad \text { and } \quad C=I-A=\left[\begin{array}{rrrr}
0 & -1 & -1 & -1 \\
-1 & 0 & -1 & -1 \\
-1 & -1 & 0 & -1 \\
-1 & -1 & -1 & 0
\end{array}\right]
$$

29 (Review) Find the eigenvalues of A, B, and C :

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 2 & 0 \\
3 & 0 & 0
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right]
$$

30 When $a+b=c+d$ show that $(1,1)$ is an eigenvector and find both eigenvalues :

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

31 If we exchange rows 1 and 2 and columns 1 and 2, the eigenvalues don't change. Find eigenvectors of A and B for $\lambda=11$. Rank one gives $\lambda_{2}=\lambda_{3}=0$.

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 6 & 3 \\
4 & 8 & 4
\end{array}\right] \quad \text { and } \quad B=P A P^{\mathrm{T}}=\left[\begin{array}{lll}
6 & 3 & 3 \\
2 & 1 & 1 \\
8 & 4 & 4
\end{array}\right]
$$

32 Suppose A has eigenvalues $0,3,5$ with independent eigenvectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$.
(a) Give a basis for the nullspace and a basis for the column space.
(b) Find a particular solution to $A \boldsymbol{x}=\boldsymbol{v}+\boldsymbol{w}$. Find all solutions.
(c) $A \boldsymbol{x}=\boldsymbol{u}$ has no solution. If it did then \qquad would be in the column space.

33 Suppose $\boldsymbol{u}, \boldsymbol{v}$ are orthonormal vectors in \mathbf{R}^{2}, and $A=\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}$. Compute $A^{2}=\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}} \boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}$ to discover the eigenvalues of A. Check that the trace of A agrees with $\lambda_{1}+\lambda_{2}$.

34 Find the eigenvalues of this permutation matrix P from $\operatorname{det}(P-\lambda I)=0$. Which vectors are not changed by the permutation? They are eigenvectors for $\lambda=1$. Can you find three more eigenvectors?

$$
P=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Challenge Problems

35 There are six 3 by 3 permutation matrices P. What numbers can be the determinants of P ? What numbers can be pivots? What numbers can be the trace of P ? What four numbers can be eigenvalues of P, as in Problem 15?

36 Is there a real 2 by 2 matrix (other than I) with $A^{3}=I$? Its eigenvalues must satisfy $\lambda^{3}=1$. They can be $e^{2 \pi i / 3}$ and $e^{-2 \pi i / 3}$. What trace and determinant would this give? Construct a rotation matrix as A (which angle of rotation?).

37 (a) Find the eigenvalues and eigenvectors of A. They depend on c :

$$
A=\left[\begin{array}{cc}
.4 & 1-c \\
.6 & c
\end{array}\right]
$$

(b) Show that A has just one line of eigenvectors when $c=1.6$.
(c) This is a Markov matrix when $c=8$. Then A^{n} will approach what matrix A^{∞} ?

