1. (a) Let a directed graph G_{1} be given.

Does each of the following list of vertices form a path in G_{1} ? If yes, determine (by circling) if the path is simple, if it is a circuit, and give its length.

a, b, e, c, b	Yes [simple circuit length \square] No
a, d, a, d, a	Yes [simple circuit length \square] No
a, d, e, b, a	Yes [simple circuit length \square] No
a, b, e, c, b, a	Yes [simple circuit length \square] No

(b) For the simple graph G_{2}

Find M^{2}, where M is the adjacency matrix of G_{2}

Find the number of paths from A to D in G_{2} of length 2. \square
2. List all the comparison steps used to search for 9 in the sequence $1,3,4,5,6,8,9,11$ using a) a linear search. b) a binary search.
3. Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

4.
(a) Is there an Euler circuit in the following graph? If so, find such a circuit. If not, explain why no such circuit exists.
(b) Is there a Hamilton circuit in the following graph? If so, find such a circuit. If not, prove why no such circuit exists.

5. Let $f(n)=3 n^{2}+8 n+7$. Show that $f(n)$ is $O\left(n^{2}\right)$. Be sure to specify the values of the witnesses C and k .
6. How many vertices and how many edges does each of the following graphs have?
(a) K_{5}
(b) C_{4}
(c) W_{5}
(d) $\mathrm{K}_{2,5}$
7. Describe an algorithm for finding the second largest integer in a sequence of distinct integers. Give a big-O estimate of the number of comparisons used by your algorithm.

