1. Find a condition on b1, b2, b3 so that these systems are solvable
(a) $\left[\begin{array}{ccc}1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & 4 \\ 2 & 9 \\ -1 & -4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$
2.

Consider the space F spanned by the 4 vectors $v_{1}=(4,2,4,2), v_{2}=(-1,4,5,10)$, $v_{3}=$ $(-5,2,1,8)$ and $v_{4}=(6,6,10,10)$.
(a) Are the v_{i} 's linearly independent?
(b) Give a basis of F.
(c) What is the dimension of F ?
(d) Are $v_{1}+2 v_{2}+3 v_{3}, v_{1}-v_{2}$ and v_{4} linearly independent?
3.

Write the product $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}\pi \\ e\end{array}\right]$ in two ways:
(a) as dot products of the rows with the column vector
(b) as a linear combination of the columns.
4.
(a) What matrix A takes $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ to $A\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ to $A\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 7\end{array}\right]$?
(b) What is $A\left[\begin{array}{l}1 \\ 2\end{array}\right]$?

