Binomial PMF

I had the program run 40 trials. For the values of P I used

$.5$ - The result was a graph that stayed at $y = 0$ until $x = 10$, then it increased to $y \sim .13$ by $x = 20$, and then symmetrically decreased again.

$.25$ - The binomial increases at $x = 0$ and caps out at $x = 10$. It reaches 0 at $x = 20$.

$.75$ - The binomial increases at $x = 20$ and caps out at $x = 30$. It reaches 0 at $x = 40$.

Binomial CDF

I had the program run 40 trials.

The plot increases at a point on the graph and then levels out at the top, but never goes back to 0.

Where the increase in y occurs varies depending on the number of p. The lower the p value is the closer to $x = 0$ the graph will increase from $y = 0$.

For example, at $p = .5$ the graph increases at $x = 10$ and maxes at $y = 1$ when $x = 30$. For $p = .25$ the graph increases at $x = 0$ and maxes at $y = 1$ when $x = 20$.

Geometric PMF

I ran 10 trials for this.

For plot showed a trend in the y-value decreasing from $y = p$ starting at $x = 1$. As the values of x increased the curve started to flatten out. The curve appeared to have a limit of $x = 0$.

Geometric CDF

Almost the opposite happened with the CDF than the PMF. The plots started at $x = 1$ and increased in y value as x increased. The y-values started at $y = p$. The plot created a stair effect, with y remaining constant from $[x1, x2)$, then jumped to a higher y-value. The limit appeared to be $y = 1$.