Binomial PMF

I had the program run 40 trials. For the values of PI used
$.5-$ The result was a graph that stayed at $\mathrm{y}=0$ until $\mathrm{x}=10$, then it increased to $\mathrm{y} \sim .13$ by $\mathrm{x}=20$, and then symmetrically decreased again.
.25 -The binomial increases at $\mathrm{x}=0$ and caps out at $\mathrm{x}=10$. It reaches 0 at $\mathrm{x}=20$.
.75- The binomial increases at $x=20$ and caps out at $x=30$. It reaches 0 at $x=40$.

Binomial CDF

I had the program run 40 trials.
The plot increases at a point on the graph and then levels out at the top, but never goes back to 0 . Where the increase in y occurs varies depending on the number of p . The lower the p value is the closer to $\mathrm{x}=0$ the graph will increase from $\mathrm{y}=0$.

For example, at $\mathrm{p}=.5$ the graph increases at $\mathrm{x}=10$ and maxes at $\mathrm{y}=1$ when $\mathrm{x}=30$. For $\mathrm{p}=.25$ the graph increases at $\mathrm{x}=0$ and maxes at $\mathrm{y}=1$ when $\mathrm{x}=20$.

Geometric PMF

I ran 10 trials for this.
For plot showed a trend in the y-value decreasing from $y=p$ starting at $x=1$. As the values of x increased the curve started to flatten out. The curve appeared to have a limit of $x=0$.

Geometric CDF
Almost the opposite happened with the CDF than the PMF. The plots started at $\mathrm{x}=1$ and increased in y value as x increased. The y-values started at $y=p$. The plot created a stair effect, with y remaining constant from [x1,x2), then jumped to a higher y-value. The limit appeared to be $\mathrm{y}=1$.

