C4: DISCRETE_RANDOM_VARIABLES

DEFINITION OF A DISCRETE RANDOM VARIABLE
Let Ω be an arbitrary sample space. We can have 2 types of sample spaces:
0) FINITE: $\Omega=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$

1) INFINITE: $\Omega=a_{1}, a_{2}, \cdots$

As Ω is arbitrary, it can assume any arbitrary collection of arbitrary values.

A discrete random variable X is a function $X: \Omega \rightarrow \mathbb{R}$.
X receives an arbitrary sample space Ω as input, and maps Ω to a set of Real Numbers \mathbb{R}.

DEFINITION OF A PROBABILITY MASS FUNCTION
The Probability Mass Function p of a discrete random variable X is the function $p: \mathbb{R} \rightarrow[0,1]$. p receives a set of Real Numbers \mathbb{R} as input, and maps the set to the inclusive interval [0, 1$]$. We define p as:

$$
p(a)=P(\{X=a\}) \mid-\infty<a<\infty
$$

Explanation of the formula:
0) Since Ω is arbitrary, value a assumes an arbitrary range.

1) $\operatorname{Set}\{X=a\} \subseteq \Omega$ describes an event or events that occur in Ω, for a particular a.
2) $P(\{X=a\})$ is the probability that a particular a will occur in Ω.

If X assumes a finite number of values $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, then:
0) $p\left(a_{i}\right)>0$.

1) $p\left(a_{1}\right)+p\left(a_{2}\right)+\cdots+p\left(a_{n}\right)=1$.
2) $p(a)=0$ for all other values of a.

If X assumes an infinite number of values a_{1}, a_{2}, \ldots, then:
0) $p\left(a_{i}\right)>0$.

1) $p\left(a_{1}\right)+p\left(a_{2}\right)+\cdots=1$.
2) $p(a)=0$ for all other values of a.

DEFINITION OF A CUMULATIVE/DISTRIBUTION FUNCTION
The Cumulative/Distribution Function F of a random variable X is the function $F: \mathbb{R} \rightarrow[0,1]$. F receives a set of Real Numbers \mathbb{R} as input, and maps the set to the inclusive interval [0, 1]. We define F as:

$$
F\left(a_{w}\right)=P\left(\left\{X \leq a_{w}\right\}\right) \mid-\infty<a_{w}<\infty .
$$

Another valid definition of F is:

$$
F\left(a_{w}\right)=\sum_{k=a_{1}}^{a_{w}}[p(k)] .
$$

Explanation of the formulas:
0) Since Ω is arbitrary, a_{w} assumes an arbitrary range.

1) $\operatorname{Set}\left[\left\{X \leq a_{w}\right\} \subseteq \Omega\right] \mid\left[\forall k \in X,\left[k \leq a_{w}\right]\right]$.
2) $P\left(\left\{X \leq a_{w}\right\}\right)$ is the cumulative probability of all such events $k \in X$.

DEFINITION OF A BERNOULLI DISTRIBUTION
A discrete random variable X has a Bernoulli Distribution with these parameters:
Success Probability $p \mid 0 \leq p \leq 1$.
Failure Probability $1-p \mid 0 \leq 1-p \leq 1$.

We define the Probability Mass Function p_{x} of a Bernoulli Distribution as:

$$
\begin{gathered}
p_{x}(1)=P(\{X=1\})=p \\
p_{x}(0)=P(\{X=0\})=1-p
\end{gathered}
$$

Explanation of the formulas:
0) A Bernoulli Distribution is suitable to model experiments with only 2 possible outcomes:

$$
1=" \text { success" } ; 0=\text { " failure" }
$$

1) $p_{x}(1)=P(\{X=1\})$ is the probability that the event $1=$ "success" shall occur.
2) $p_{x}(0)=P(\{X=0\})$ is the probability that the event $0=$ "failure" shall occur.

We denote this Bernoulli Distribution as $\operatorname{Ber}(p)$.

DEFINITION OF A BINOMIAL DISTRIBUTION
Intuition: The probability of k successful outcomes in n trials.
A discrete random variable X has a Binomial Distribution with these parameters:
$n \mid n=1,2, \cdots$
Success Probability $p \mid 0 \leq p \leq 1$.
Failure Probability $1-p \mid 0 \leq 1-p \leq 1$.

We define the Probability Mass Function p_{x} of a Binomial Distribution as:

$$
\left.p_{x}(k)=P(\{X=k\})=\left[\begin{array}{l}
n \\
k
\end{array}\right]\left[p^{k}\right]\left[[1-p]^{[n-k]}\right] \right\rvert\, k=0,1, \cdots, n .
$$

Explanation of the formula:
0) $\left[\begin{array}{l}n \\ k\end{array}\right]=\frac{n!}{k![n-k]!}$ Combination: from n elements, the number of order-insensitive ways to choose k elements.

1) $\left[p^{k}\right]$: The probability of a "success," repeated k times.
2) $\left[[1-p]^{[n-k]}\right]$: The probability of a "failure," repeated $[n-k]$ times.

We denote this Binomial Distribution by $\operatorname{Bin}(n, p)$.

DEFINITION OF A GEOMETRIC DISTRIBUTION
Intuition: The probability of being successful in k th trial. This means that all previous $k-1$ failed. A discrete random variable X has a Geometric Distribution with these parameters: Success Probability $p \mid 0 \leq p \leq 1$. Failure Probability $1-p \mid 0 \leq 1-p \leq 1$.

We define the Probabillity Mass Function p_{x} of a Geometric Distribution as:

$$
p_{x}(k)=P(\{X=k\})=\left[[1-p]^{[k-1]}\right] p \mid[k=1,2, \cdots]
$$

Explanation of the formula:
0) [k]: The number of "repetitions" of the experiment, until a "success" occurs.

1) $\left[[1-p]^{[k-1]}\right]$: The probability of a "failure," repeated $[k-1]$ times.
2) $[p]$: The probability of a "success," repeated 1 time, after the execution of [$k-1]$ "failures."
