
Lecture 2:

Parameter Learning in
Fully Observed Graphical Models

Sam Roweis

Monday July 24, 2006
Machine Learning Summer School, Taiwan

Likelihood Functions

• So far we have focused on the (log) probability function p(x|θ)
which assigns a probability (density) to any joint configuration of
variables x given fixed parameters θ.

• But in learning we turn this on its head: we have some fixed data
and we want to find parameters.

• Think of p(x|θ) as a function of θ for fixed x:

Z(θ;x) = p(x|θ)

`(θ;x) = log p(x|θ)

This function is called the (log) “likelihood”.

• Chose θ to maximize some loss function L(θ) which includes `(θ):

L(θ) = `(θ;D) maximum likelihood (ML)

L(θ) = `(θ;D) + log p(θ) maximum a posteriori (MAP)/penalizedML

(also cross-validation, Bayesian estimators, BIC, AIC, ...)

Maximum Likelihood

• For IID data:

p(D|θ) =
∏

m

p(xm|θ)

`(θ;D) =
∑

m

log p(xm|θ)

• Idea of maximum likelihod estimation (MLE): pick the setting of
parameters most likely to have generated the data we saw:

θ∗ML = argmaxθ `(θ;D)

• Commonly used as a “baseline” model in statistics.
Often leads to “intuitive”, “appealing”, or “natural” estimators.

• For a start, the IID assumption makes the log likelihood into a sum,
so its derivative can be easily taken term by term.

Example: Bernoulli Trials

• We observe M iid coin flips: D=H,H,T,H,. . .

• Model: p(H) = θ p(T) = (1 − θ)

• Likelihood:

`(θ;D) = log p(D|θ)

= log
∏

m

θxm
(1 − θ)1−xm

= log θ
∑

m

xm + log(1 − θ)
∑

m

(1 − xm)

= log θNH + log(1 − θ)NT

• Take derivatives and set to zero:
∂`

∂θ
=

NH

θ
−

NT

1 − θ

⇒ θ∗ML =
NH

NH + NT

Example: Univariate Normal

• We observe M iid real samples: D=1.18,-.25,.78,. . .

• Model: p(x) = (2πσ2)−1/2 exp{−(x − µ)2/2σ2}

• Likelihood (using probability density):

`(θ;D) = log p(D|θ)

= −
M

2
log(2πσ2) −

1

2

∑

m

(xm − µ)2

σ2

• Take derivatives and set to zero:
∂`
∂µ = (1/σ2)

∑

m(xm − µ)

∂`
∂σ2 = − M

2σ2 + 1
2σ4

∑

m(xm − µ)2

⇒ µML = (1/M)
∑

m xm

σ2
ML = (1/M)

∑

m x2
m − µ2

ML

Example: Linear Regression

Y

X

x

y

x

x

x
x

x

x

x

x

x
x x

x

xx
x

x

x

x
x

x
x

x

x

Example: Linear Regression

• At a linear regression node, some parents (covariates/inputs) and
all children (responses/outputs) are continuous valued variables.

• For each child and setting of discrete parents we use the model:

p(y|x, θ) = gauss(y|θ>x, σ2)

• The likelihood is the familiar “squared error” cost:

`(θ;D) = −
1

2σ2

∑

m

(ym − θ>xm)2

• The ML parameters can be solved for using linear least-squares:

∂`

∂θ
= −

∑

m

(ym − θ>xm)xm

⇒ θ∗ML = (X>X)−1X>Y

• “Sufficient statistics” are input correlation matrix and input-output
cross-correlation vector.

MLE for Directed GMs

• For a directed GM, the likelihood function has a nice form:

log p(D|θ) = log
∏

m

∏

i

p(xm
i |xπi, θi) =

∑

m

∑

i

log p(xm
i |xπi, θi)

• The parameters decouple; so we can maximize likelihood
independently for each node’s function by setting θi.

• Only need the values of xi and its parents in order to estimate θi.

• In general, for fully observed data if we know how to estimate
params at a single node we can do it for the whole network.

1X

2X 3X

X 4

1X

2X

1X

3X

1X

X 4

2X 3X

(a) (b)

Reminder: Classification

• Given examples of a discrete class label y and some features x.

• Goal: compute label (y) for new inputs x.

• Two approaches:
Generative: model p(x, y) = p(y)p(x|y);
use Bayes’ rule to infer conditional p(y|x).
Discriminative: model discriminants f (y|x) directly and take max.

• Generative approach is related to conditional density estimation

while discriminative approach is closer to regression.

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

x1

x2

Probabilistic Classification: Bayes Classifiers

• Generative model: p(x, y) = p(y)p(x|y).
p(y) are called class priors.
p(x|y) are called class conditional feature distributions.

• For the prior we use a Bernoulli or multinomial:
p(y = k|π) = πk with

∑

k πk = 1.

• Classification rules:
ML: argmaxy p(x|y) (can behave badly if skewed priors)
MAP: argmaxy p(y|x) = argmaxy log p(x|y) + log p(y) (safer)

• Fitting: maximize
∑

n log p(xn, yn) =
∑

n log p(xn|yn) + log p(yn)
1) Sort data into batches by class label.
2) Estimate p(y) by counting size of batches (plus regularization).
3) Estimate p(x|y) separately within each batch using ML.

(also with regularization).

Three Key Regularization Ideas

• To avoid overfitting, we can put priors on the parameters of the
class and class conditional feature distributions.

• We can also tie some parameters together so that fewer of them
are estimated using more data.

• Finally, we can make factorization or independence assumptions
about the distributions. In particular, for the class conditional
distributions we can assume the features are fully dependent, partly
dependent, or independent (!).

1X 2X mX

Y

(a)

1X 2X mX

Y

(b)

X

Y

(c)

Gaussian Class-Conditional Distributions

• If all features are continuous, a popular choice is a
Gaussian class-conditional.

p(x|y = k, θ) = |2πΣ|−1/2 exp

{

−
1

2
(x − µk)Σ−1(x− µk)

}

• Fitting: use the following amazing and useful fact.
The maximum likelihood fit of a Gaussian to some data is the

Gaussian whose mean is equal to the data mean and whose

covariance is equal to the sample covariance.

[Try to prove this as an exercise in understanding likelihood, algebra, and calculus all at once!]

• Seems easy. And works amazingly well.
But we can do even better with some simple regularization...

Regularized Gaussians

• Idea 1: assume all the covariances are the same (tie parameters).
This is exactly Fisher’s linear discriminant analysis.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

(a)

x1

x2

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

(b)

x1

x2

• Idea 2: Make independence assumptions to get diagonal or
identity-multiple covariances. (Or sparse inverse covariances.)
More on this in a few minutes...

• Idea 3: add a bit of the identity matrix to each sample covariance.
This “fattens it up” in directions where there wasn’t enough data.
Equivalent to using a “Wishart prior” on the covariance matrix.

Gaussian Bayes Classifier

• Maximum likelihood estimates for parameters:
priors πk: use observed frequencies of classes (plus smoothing)
means µk: use class means
covariance Σ: use data from single class or pooled data
(xm − µym) to estimate full/diagonal covariances

• Compute the posterior via Bayes’ rule:

p(y = k|x, θ) =
p(x|y = k, θ)p(y = k|π)

∑

j p(x|y = j, θ)p(y = j|π)

=
exp{µ>

kΣ−1x− µ>
kΣ−1µk/2 + log πk}

∑

j exp{µ>
j Σ−1x− µ>

j Σ−1µj/2 + log πj}

= eβ>
k x/

∑

j e
β>
j x

= exp{β>
k x}/Z

where βk = [Σ−1µk ; (µ>
kΣ−1µk + log πk)] and we have augmented

x with a constant component always equal to 1 (bias term).

Softmax/Logit

• The squashing function is known as the softmax or logit:

φk(z) ≡
ezk

∑

j ezj
g(η) =

1

1 + e−η

• It is invertible (up to a constant):

zk = log φk + c η = log(g/1 − g)

• Derivative is easy:
∂φk

∂zj
= φk(δkj − φj)

dg

dη
= g(1 − g)

−2 0 2 4 6 8 10 12

0

2

4

6

8

10

−5 0 5
0

0.2

0.4

0.6

0.8

1

z

φ z()

Log Linear Geometry

• Taking the ratio of any two posteriors (the “odds”) shows that the
contours of equal pairwise probability are linear surfaces in the
feature space:

p(y = k|x, θ)

p(y = j|x, θ)
= exp

{

(βk − βj)
>x

}

• The pairwise discrimination contours p(yk) = p(yj) are orthogonal
to the differences of the means in feature space when Σ = σI.
For general Σ shared b/w all classes the same is true in the
transformed feature space w = Σ−1x.

• The priors do not change the geometry, they only shift the
operating point on the logit by the log-odds log(πk/πj).

• Thus, for equal class-covariances, we obtain a linear classifier.

• If we use different covariances, the decision surfaces are conic
sections and we have a quadratic classifier.

Discrete Bayesian Classifier

• If the inputs are discrete (categorical), what should we do?

• The simplest class conditional model is a joint multinomial (table):

p(x1 = a, x2 = b, . . . |y = c) = ηc
ab...

• This is conceptually correct, but there’s a big practical problem.

• Fitting: ML params are observed counts:

ηc
ab... =

∑

n[yn = c][x1 = a][x2 = b][. . .][. . .]
∑

n[yn = c]

• Consider the 16x16 digits at 256 gray levels.

• How many entries in the table? How many will be zero?
What happens at test time? Doh!

• We obviously need some regularlization.
Smoothing will not help much here. Unless we know about the
relationships between inputs beforehand, sharing parameters is hard
also. But what about independence?

Naive (Idiot’s) Bayes Classifier

• Assumption: conditioned on class,
attributes are independent.

p(x|y) =
∏

i

p(xi|y)

• Sounds crazy right? Right! But it works. 1X 2X mX

Y

(a)
• Algorithm: sort data cases into bins according to yn.

Compute marginal probabilities p(y = c) using frequencies.

• For each class, estimate distribution of ith variable: p(xi|y = c).

• At test time, compute argmaxc p(c|x) using

c(x) = argmaxc p(c|x) = argmaxc [log p(x|c) + log p(c)]

= argmaxc [log p(c) +
∑

i

log p(xi|c)]

Discrete (Multinomial) Naive Bayes

Discrete features xi, assumed independent given the class label y.

p(xi = j|y = k) = ηijk

p(x|y = k, η) =
∏

i

∏

j

η
[xi=j]
ijk

Classification rule:

p(y = k|x, η) =
eβ>

k x

∑

q eβ>
q x

=
πk

∏

i
∏

j η
[xi=j]
ijk

∑

q πq
∏

i
∏

j η
[xi=j]
ijq

ML parameters are class-
conditional frequency counts:

η∗ijk =

∑

m[xi
m = j][ym = k]

∑

m[ym = k]

βk = log[η11k . . . η1jk . . . ηijk . . . log πk] Log-Linear!
x = [x1=1; x1=2; . . . ; xi=j; . . . ; 1]

Gaussian Naive Bayes

• This is just a Gaussian Bayes Classifier with a separate diagonal
covariance matrix for each class.

• Equivalent to fitting a one-dimensional Gaussian to each input for
each possible class.

• Decision surfaces are quadratics, not linear...

Discriminative Models

• Parametrize p(y|x) directly, forget p(x, y) and Bayes’ rule.

• As long as p(y|x) or discriminants f (y|x) are linear functions of x

(or monotone transforms), decision surfaces will be piecewise linear.

• Don’t need to model the density of the features.
Some density models have lots of parameters.
Many densities give same linear classifier.
But we cannot generate new labeled data.

• Optimize a cost function closer to the one we use at test time.

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

x1

x2

Logistic/Softmax Regression

• Model: y is a multinomial random variable whose posterior is the
softmax of linear functions of any feature vector.

p(y = k|x, θ) =
eθ>k x

∑

j e
θ>j x

• Fitting: now we optimize the conditional likelihood:

`(θ;D) =
∑

mk

[ym = k] log p(y = k|xm, θ) =
∑

mk

ym
k log pm

k

∂`

∂θi
=

∑

mk

∂`mk
∂pm

k

∂pm
k

∂zm
i

∂zm
i

∂θi

=
∑

mk

ym
k

pm
k

pm
k (δik − pm

i)xm

=
∑

m

(ym
k − pm

k)xm
0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

x

Chains: Markov Models

• If variables have some temporal/spatial order, we can model their
joint distribution as a dynamical/diffusion system.

• Simple idea: next output depends only on k previous outputs:

yt = f [yt−1,yt−2, . . . ,yt−k]

k is called the order of the Markov Model

y1 y2 y3

y0

yky4 y5

• Add noise to make the system probabilistic:

p(yt|yt−1,yt−2, . . . ,yt−k)

Learning Markov Models

• The ML parameter estimates for a simple Markov model are easy:

p(y1,y2, . . . ,yT) = p(y1 . . .yk)

T
∏

t=k+1

p(yt|yt−1,yt−2, . . . ,yt−k)

log p({y}) = log p(y1 . . .yk) +

T
∑

t=k+1

log p(yt|yt−1,yt−2, . . . ,yt−k)

• Each window of k + 1 outputs is a training case for the model
p(yt|yt−1,yt−2, . . . ,yt−k).

• Example: for discrete outputs (symbols) and a 2nd-order markov
model we can use the multinomial model:

p(yt = m|yt−1 = a, yt−2 = b) = αmab

The maximum likelihood values for α are:

α∗
mab =

num[t s.t. yt = m, yt−1 = a, yt−2 = b]

num[t s.t. yt−1 = a, yt−2 = b]

Maximum Entropy Markov Models

• We can extend this idea to a “logistic regression through time”
type of conditional model called a maximum entropy markov model.

1

1 T3

2

2

3 Ts s s s

f f f f

• The joint distribution is now a conditional model:

p(sT
1 |x

T
1) =

∏

t

p(st|st−1, ft(x
T
1))

• The features ft can be very nonlocal functions of the underlying
input sequence, for example they can consult things in the past and
in the future.

Directed Tree Graphical Models

• Directed trees are DAGMs in which each variable xi has exactly one
other variable as its parent xπi except the “root” xroot which has
no parents. Thus, the probability of a variable taking on a certain
value depends only on the value of its parent:

p(x) = p(xroot)
∏

i6=root

p(xi|xπi)

• Trees are the next step up from assuming independence.
Instead of considering variables in isolation, consider them in pairs.

NB: each node (except root) has
exactly one parent, but nodes
may have more than one child.

x x

x

x

x

x

1,n 3,n

2,n

4,n

6,n

5,n

Likelihood function

• Notation:
yi ≡ a node xi and its single parent xπi.
Vi ≡ set of joint configurations of node i and its parent xπi

(yroot ≡ xroot and Vroot ≡ vroot)

• Directed model likelihood:

`(θ;D) =
∑

n

log p(xn) =
∑

n

log pr(x
n
r) +

∑

i6=r

log p(xi
n|xπi

n)

=
∑

n

∑

i

∑

v∈Vi

[yn
i = v] log pi(v) indicator trick

=
∑

i

∑

v∈Vi

Ni(v) log pi(v)

where Ni(v) =
∑

n[yn
i = v] and pi(vi) = p(xi|xπi).

• Trees are in the exponential family with yi as sufficient statistics.

Maximum Likelihood Parameters Given Structure

• Trees are just a special case of fully observed graphical models.

• For discrete data xi with values vi, each node stores a conditional
probability table (CPT) over its values given its parent’s value.
The ML parameter estimates are just the empirical histograms of
each node’s values given its parent:

p∗(xi = vi|xπi = vj) =
N (xi = vi,xπi = vj)

∑

vi
N (xi = vi,xπi = vj)

=
Ni(yi)

Nπi(vj)

except for the root which uses marginal counts Nr(vr)/N .

• For continuous data, the most common model is a two-dimensional
Gaussian at each node. The ML parameters are just to set the
mean of pi(yi) to be the sample mean of [xi;xπi] and the
covariance matrix to the sample covariance.

• In practice we should use some kind of smoothing/regularization.

aids

health

baseball

hit

bible

bmw

cancer

car

dealer engine honda

card

graphics video

case

children

christian computercourse

data

disease

disk

drive memory system

display

server

doctor

dos

scsi

driver

earth

orbit

email

phone

oil

evidence

fact

question

fans

files

format ftp

food

msg water

image games

god

jesus

government

jews power rights state war

gun

insurance medicine president

help

hockey

nhl

humanisrael religion

launch

law

league

lunar

mac

mars

patients studies

mission

moon nasa

number

satellite solar space

vitamin

pc

software

players

problem

program

windows

puck

research science

season

shuttle technology

university

team

version

world

win

won

Unobserved Variables

• We have been assuming that we observe all the random variables in
our model at training time, and all the “inputs” at test time.

• But certain variables Q in our models may be unobserved,
either some of the time or always,
either at training time or at test time.

1X 2X 3X X 4 X 5 X6

1Q 2Q 3Q Q4 Q5 Q6

(Graphically, we will use shading to indicate observation.)

Partially Unobserved (Missing) Variables

• If variables are occasionally unobserved they are missing data.
e.g. undefinied inputs, missing class labels, erroneous target values

• In this case, we can still model the joint distribution, but we define
a new cost function in which we sum out or marginalize the missing
values at training or test time:

`(θ;D) =
∑

complete

log p(xc,yc|θ) +
∑

missing

log p(xm|θ)

=
∑

complete

log p(xc,yc|θ) +
∑

missing

log
∑

y

p(xm,y|θ)

[Recall that p(x) =
∑

q p(x, q).]

