
Chapter 7

Option Pricing

7.1 Discrete Time

In the next section we will discuss the Black–Scholes formula. To prepare for
that, we will consider the much simpler problem of pricing options when there
are a finite number of time periods and two possible outcomes at each stage. The
restriction to two outcomes is not as bad as one might think. One justification
for this is that we are looking at the process on a very slow time scale, so at most
one interesting event happens (or not) per time period. We begin by considering
a very simple special case.
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Example 7.1 (Two-period binary tree). Suppose that a stock price starts at
100 at time 0. At time 1 (one day or one month or one year later) it will either
be worth 120 or 90. If the stock is worth 120 at time 1, then it might be worth
140 or 115 at time 2. If the price is 90 at time 1, then the possibilities at time
2 are 120 and 80. Suppose now that you are offered a European call option
with strike price 100 and expiry 2. This means you have an option to buy
the stock (but not an obligation to do so) for 100 at time 2, i.e., after seeing
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the outcome of the first and second stages. If the stock price is 80, you will
not exercise the option to purchase the stock and your profit will be 0. In the
other cases you will choose to buy the stock at 100 and then immediately sell
it at X2 to get a payoff of X2 − 100 where X2 is the stock price at time 2.
Combining the two cases we can write the payoff in general as (X2 − 100)+,
where z+ = max{z, 0} denotes the positive part of z. Our problem is to figure
out what is the right price for this option.

At first glance this may seem impossible since we have not assigned probabil-
ities to the various events. However, it is a miracle of “pricing by the absence of
arbitrage” that in this case we do not have to assign probabilities to the events
to compute the price. To explain this we start by considering a small piece of
the tree. When X1 = 90, X2 will be 120 (“up”) or 80 (“down”) for a profit
of 30 or a loss of 10, respectively. If we pay c for the option, then when X2 is
up we make a profit of 20 − c, but when it is down we make −c. The last two
sentences are summarized in the following table

stock option
up 30 20− c
down −10 −c

Suppose we buy x units of the stock and y units of the option, where negative
numbers indicate that we sold instead of bought. One possible strategy is to
choose x and y so that the outcome is the same if the stock goes up or down:

30x + (20− c)y = −10x + (−c)y

Solving, we have 40x + 20y = 0 or y = −2x. Plugging this choice of y into
the last equation shows that our profit will be (−10 + 2c)x. If c > 5, then we
can make a large profit with no risk by buying large amounts of the stock and
selling twice as many options. Of course, if c < 5, we can make a large profit by
doing the reverse. Thus, in this case the only sensible price for the option is 5.

A scheme that makes money without any possibility of a loss is called an
arbitrage opportunity. It is reasonable to think that these will not exist
in financial markets (or at least be short-lived) since if and when they exist
people take advantage of them and the opportunity goes away. Using our new
terminology we can say that the only price for the option which is consistent
with absence of arbitrage is c = 5, so that must be the price of the option (at
time 1 when X1 = 90).

Before we try to tackle the whole tree to figure out the price of the option
at time 0, it is useful to look at things in a different way. Generalizing our
example, let ai,j be the profit for the ith security when the jth outcome occurs.

Theorem 7.1. Exactly one of the following holds:

(i) There is a betting scheme x = (x1, x2, . . . , xn) so that
∑m

i=1 xiai,j ≥ 0 for
each j and

∑m
i=1 xiai,k > 0 for some k.
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(ii) There is a probability vector p = (p1, p2, . . . , pn) with pj > 0 so that∑n
j=1 ai,jpj = 0 for all i.

Here a vector x satisfying (i) is an arbitrage opportunity. We never lose any
money but for at least one outcome we gain a positive amount. Turning to (ii),
the vector p is called a martingale measure since if the probability of the jth
outcome is pj , then the expected change in the price of the ith stock is equal to
0. Combining the two interpretations we can restate Theorem 1 as:

Theorem 7.2. There is no arbitrage if and only if there is a strictly positive
probability vector so that all the stock prices are martingale.

Why is this true? One direction is easy. If (i) is true, then for any strictly
positive probability vector

∑m
i=1

∑n
j=1 xiai,jpj > 0, so (ii) is false.

Suppose now that (i) is false. The linear combinations
∑m

i=1 xiai,j when
viewed as vectors indexed by j form a linear subspace of n-dimensional Euclidean
space. Call it L. If (i) is false, this subspace intersects the positive orthant
O = {y : yj ≥ 0 for all j} only at the origin. By linear algebra we know that L
can be extended to an n− 1 dimensional subspace H that only intersects O at
the origin.

Since H has dimension n− 1, it can be written as H = {y :
∑n

j=1 yjpj = 0}.
Since for each fixed i the vector ai,j is in L ⊂ H, (ii) holds. To see that all the
pj > 0 we leave it to the reader to check that if not, there would be a non-zero
vector in O that would be in H.

To apply Theorem 1 to our simplified example we begin by noting that in
this case ai,j is given by

j = 1 j = 2
stock i = 1 30 −10
option i = 2 20− c −c

By Theorem 2 if there is no arbitrage, then there must be an assignment of
probabilities pj so that

30p1 − 10p2 = 0 (20− c)p1 + (−c)p2 = 0

From the first equation we conclude that p1 = 1/4 and p2 = 3/4. Rewriting the
second we have

c = 20p1 = 20 · (1/4) = 5

To generalize from the last calculation to finish our example we note that
the equation 30p1 − 10p2 = 0 says that under pj the stock price is a martingale
(i.e., the average value of the change in price is 0), while c = 20p1 + 0p2 says
that the price of the option is then the expected value under the martingale
probabilities. Using these ideas we can quickly complete the computations in
our example. When X1 = 120 the two possible scenarios lead to a change of
+20 or −5, so the relative probabilities of these two events should be 1/5 and
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4/5. When X0 = 100 the possible price changes on the first step are +20 and
−10, so their relative probabilities are 1/3 and 2/3. Drawing a picture of the
possibilities, we have
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so the value of the option is

1
15
· 40 +

4
15
· 15 +

1
6
· 20 =

80 + 120 + 100
30

= 10

The last derivation may seem a little devious, so we will now give a second
derivation of the price of the option. In the scenario described above, our
investor has four possible actions:

A0. Put $1 in the bank and end up with $1 in all possible scenarios.

A1. Buy one share of stock at time 0 and sell it at time 1.

A2. Buy one share at time 1 if the stock is at 120, and sell it at time 2.

A3. Buy one share at time 1 if the stock is at 90, and sell it at time 2.

These actions produce the following payoffs in the indicated outcomes

time 1 time 2 A0 A1 A2 A3 option
120 140 1 20 20 0 40
120 115 1 20 −5 0 15
90 120 1 −10 0 30 20
90 80 1 −10 0 −10 0

Noting that the payoffs from the four actions are themselves vectors in four-
dimensional space, it is natural to think that by using a linear combination of
these actions we can reproduce the option exactly. To find the coefficients we
write four equations in four unknowns,

z0 + 20z1 + 20z2 = 40
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z0 + 20z1 − 5z2 = 15
z0 − 10z1 + 30z3 = 20
z0 − 10z1 − 10z3 = 0 (7.1)

Subtracting the second equation from the first and the fourth from the third
gives 25z2 = 25 and 40z3 = 20 so z2 = 1 and z3 = 1/2. Pugging in these values,
we have two equations in two unknowns:

z0 + 20z1 = 20 z0 − 10z1 = 5

Taking differences, we conclude 30z1 = 15, so z1 = 1/2 and z0 = 10.
The reader may have already noticed that z0 = 10 is the option price. This

is no accident. What we have shown is that with $10 cash we can buy and
sell shares of stock to produce the outcome of the option in all cases. In the
terminology of Wall Street, z1 = 1/2, z2 = 1, z3 = 1/2 is a hedging strategy
that allows us to replicate the option. Once we can do this it follows that
the fair price must be $10. To do this note that if we could sell it for $12 then
we can take $10 of the cash to replicate the option and have a sure profit of $2.



218 CHAPTER 7. OPTION PRICING

7.2 Continuous Time

To do option pricing in continuous time we need a model of the stock price,
and for this we have to first explain Brownian motion. Let X1, X2, . . . be
independent and take the values 1 and −1 with probability 1/2 each. EX = 0
and EX2 = 1 so if we let Sn = X1 + · · · + Xn then Sn/

√
n converges to χ

a standard normal distribution. Intuitively, Brownian motion is what results
when we look not only at time n but also at how the process got there. To
be precise, we let t ≥ 0 and consider S[nt]/

√
n where [nt] is the largest integer

≤ nt. In words we multiply n by t and then round down to the nearest whole
number. When n=1000 the picture looks like:
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Figure 7.1: Simulation of Brownian motion.

To understand the nature of the limit process we note that

S[nt]√
n

=
S[nt]√

[nt]
·
√

[nt]√
n

The first term approaches a standard normal distribution and the second
√

t so
Sn/

√
n converges to

√
tχ, a normal with mean 0 and variance t. Repeating the

reasoning in the last paragraph we can see that if s < t then (S[nt] − S[ns])/
√

n
converges to a normal with mean zero and variance t− s. Noting that (S[nt] −
S[ns]) is independent of S[ns] suggests the following definition of the limiting
process which we call Brownian motion.

• Bt has a normal distribution with mean 0 and variance t

• If 0 < t1 < . . . < tn then Bt1 , Bt2 −Bt1 , . . . Btn −Btn−1 are independent

In modeling stock prices it is natural to assume that the daily percentage
changes in the price are independent. For this reason and the mundane fact
that stock prices must be > 0 we model the stock as what is called geometric
Brownian motion.

Xt = X0 · exp(µt + σBt) (7.2)
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µ is the exponential growth rate of the stock, and σ is its volatility. In writing
the model we have assumed that the growth rate and volatility of the stock
are constant. If we also assume that the interest rate r is constant, then the
discounted stock price is

e−rtXt = X0 · exp((µ− r)t + σBt)

Here we have to multiply by e−rt, since $1 at time t has the same value as e−rt

dollars today.
Our problem is to determine the fair price of a European call option (Xt −

K)+ with strike price K and expiry t. Extrapolating wildly from Theorem 2, we
can say that any consistent set of prices must come from a martingale measure.
This implies

µ = r − σ2/2 (7.3)

To compute the value of the call option, we need to compute its value in the
model in (7.2) for this special value of µ. Using the fact that log(Xt/X0) has a
normal(µt, σ2t) distribution, one can show

Black–Scholes formula. The price of the European call option (XT −K)+ is
given by

X0Φ(σ
√

t− α)− e−rtKΦ(−α)

where Φ is the distribution function of a standard normal and

α = {log(K/X0e
µt)}/σ

√
t

To try to come to grips with this ugly formula note that K/X0e
µt is the

ratio of the strike price to the expected value of the stock at time t under the
martingale probabilities, while σ

√
t is the standard deviation of log(Xt/X0).

Example 7.2 (Microsoft call options). The February 23, 1998, Wall Street
Journal listed the following prices for July call options on Microsoft stock.

strike 75 80 85
price 11 8 1/8 5 1/2

On this date Microsoft stock was trading at 81 5/8, while the annual interest
rate was about 4% per year. Should you buy the call option with strike 80?

Solution. The answer to this question will depend on your opinion of the
volatility of the market over the period. Suppose that we follow a traditional
rule of thumb and decide that σ = 0.3; i.e., over a one-year period a stock’s
price might change by about 30% of its current value. In this case the drift rate
for the martingale measure is

µ = r − σ2/2 = .04− (.09)/2 = .04− .045 = −.005
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and so the log ratio is

log(K/X0e
µt) = log(80/(81.625e−.005(5/12)) = log(80/81.455) = −.018026

Five months corresponds to t = 5/12, so the standard deviation

σ
√

t = .3
√

5/12 = .19364

and α = −.018026/.19364 = −.09309. Plugging in now, we have a price of

81.625Φ(.19365 + .09309)− e−.04(5/12)80Φ(.09309)
= 81.625Φ(.28674)− 78.678Φ(.09309)
= 81.625(.6128)− 78.678(.5371) = 50.02− 42.25 = 7.76

This is somewhat lower than the price quoted in the paper. There are
two reasons for this. First, the options listed in the Wall Street Journal are
American call options. The holder has the right to exercise at any time during
the life of the option. Since one can ignore the additional freedom to exercise
early, American options are at least as valuable as their European counterparts.
Second, and perhaps more importantly, we have not spent much effort on our
estimate of r and σ. None the less as the next example shows the predictions
of the formula are in rough agreement with the observed proces.

Example 7.3 (Intel call options). Again consulting the Wall Street Journal for
February 23, 1998, we find the following prices listed for July call options on
Intel stock, which was trading at 94 3/16.

strike 70 75 80 85 90 95 100 105
price 26 22 18 14 1

2 11 3
8 8 3

4 6 1
2 4 3

8
formula 25.65 21.16 17.01 13.59 10.11 7.11 5.39 4.13


