
Chapter 5

Continuous Distributions

5.1 Density Functions

In many situations random variables can take any value on the real line or in a
subset of the real line such as the nonnegative numbers or the interval [0, 1]. For
concrete examples, consider the height or weight of a person chosen at random
or the time it takes a person to drive from Los Angeles to San Francisco. A
random variable X is said to have a continuous distribution with density
function f if for all a ≤ b we have

P (a ≤ X ≤ b) =
∫ b

a

f(x) dx (5.1)

Geometrically, P (a ≤ X ≤ b) is the area under the curve f between a and b.

For the purposes of understanding and remembering formulas, it is useful to
think of f(x) as P (X = x) even though the last event has probability zero. To
explain the last remark and to prove P (X = x) = 0, note that taking a = x
and b = x + ∆x in (2.1) we have

P (x ≤ X ≤ x + ∆x) =
∫ x+∆x

x

f(y) dy ≈ f(x)∆x

when ∆x is small. Letting ∆x → 0, we see that P (X = x) = 0, but f(x) tells
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156 CHAPTER 5. CONTINUOUS DISTRIBUTIONS

us how likely it is for X to be near x. That is,

P (x ≤ X ≤ x + ∆x)
∆x

≈ f(x)

In order for P (a ≤ X ≤ b) to be nonnegative for all a and b and for P (−∞ <
X < ∞) = 1 we must have

f(x) ≥ 0 and
∫

f(x) dx = 1 (5.2)

Here, and in what follows, if the limits of integration are not specified, the
integration is over all values of x from −∞ to ∞. Any function f that satisfies
(5.2) is said to be a density function. Some important density functions are:

Example 5.1. Uniform distribution. Given a < b we define

f(x) =

{
1

b−a a < x < b

0 otherwise

The idea here is that we are picking a value “at random” from (a, b). That is,
values outside the interval are impossible, and all those inside have the same
probability (density).

a b

1
b− a

Figure 5.1: Density function for the uniform on [0, 1].

If we set f(x) = c when a < x < b and 0 otherwise then∫
f(x) dx =

∫ b

a

c dx = c(b− a)

So we have to pick c = 1/(b − a) to make the integral 1. The most important
special case occurs when a = 0 and b = 1. Random numbers generated by a
computer are typically uniformly distributed on (0, 1). Another case that comes
up in applications is a = −1/2 and b = 1/2. If we take a measurement and round
it off to the nearest integer then it is reasonable to assume that the “round-off
error” is uniformly distributed on (−1/2, 1/2).

Example 5.2. Exponential distribution. Given λ > 0 we define

f(x) =

{
λe−λx x ≥ 0
0 otherwise
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Figure 5.2: Exponential density with λ = 0.25.

To check that this is a density function, we note that∫ ∞

0

λe−λx dx = −e−λx
∣∣∞
0

= 0− (−1) = 1

Exponentially distributed random variables often come up as waiting times be-
tween events; for example, the arrival times of customers at a bank or ice cream
shop. Sometimes we will indicate that X has an exponential distribution with
parameter λ by writing X = exponential(λ).
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Figure 5.3: Power law density with ρ = 2.

Example 5.3. Power laws.

f(x) =

{
(ρ− 1)x−ρ x ≥ 1
0 otherwise

Here ρ > 1 is a parameter that governs how fast the probabilities go to 0 at ∞.
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To check that this is a density function, we note that∫ ∞

1

(ρ− 1)x−ρ dx = −x−(ρ−1)
∣∣∣∞
1

= 0− (−1) = 1

These distributions are often used in situations where P (X > x) does not go to
0 very fast as x →∞. For example, the Italian economist Pareto used them to
describe the distribution of family incomes.

A fourth example, and perhaps the most important distribution of all, is the
normal distribution. However, because some treatments might skip this chapter,
we delay its consideration until Section 6.4.

Expected value

Given a discrete random variable X and a function r(x), the expected value
of r(X) is defined by

Er(X) =
∑

x

r(x)P (X = x).

To define the expected value for a continuous random variables, we replace the
probability function by the density function and the sum by an integral.

Er(X) =
∫

r(x)f(x) dx (5.3)

As in section 1.6, if r(x) = xk, EXk is called the kth moment of X and the
variance m is defined by

var (X) = E(X − EX)2 = E(X2)− (EX)2

Example 5.4. Uniform distribution. Suppose X has density function f(x) =
1/(b− a) for a < x < b and 0 otherwise. Then

EX =
a + b

2
var (X) =

(b− a)2

12
(5.4)

Notice that (a + b)/2 is the midpoint of the interval and hence is the natural
choice for the average value of X. The variance only depends on the length of
the interval not its location.

We begin with the case a = 0, b = 1.

EX =
∫ 1

0

x dx =
x2

2

∣∣∣∣1
0

= 1/2

E(X2) =
∫ 1

0

x2 dx =
x3

3

∣∣∣∣1
0

= 1/3

var (X) = E(X2)− (EX)2 = (1/3)− (1/2)2 = 1/12
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To extend to the general case we recall from Section 1.6 that if Y = c + dX
then

E(Y ) = c + dEX var (Y ) = d2 var (X) (5.5)

Taking c = a and d = b− a,

EY = a +
b− a

2
=

a + b

2

var (Y ) =
(b− a)2

12
Example 5.5. Exponential distribution. Suppose X has density function
f(x) = λe−λx for x ≥ 0 and 0 otherwise.

EX = 1/λ var (X) = 1/λ2 (5.6)

To explain the form of the answers, we note that if Y is exponential(1) then
X = Y/λ is exponential(λ), and then use (5.5) to conclude EX = EY/λ and
var (X) = var (Y )/λ2. Because the mean is inversely proportional to λ, λ is
sometimes called the rate.

To compute the moments we need the integration by parts formula:∫ b

a

g(x)h′(x) dx = g(x)h(x)|ba −
∫ b

a

g′(x)h(x) dx (5.7)

Integrating by parts with g(x) = x, h′(x) = λe−λx, so g′(x) = 1 and h(x) =
−e−λx.

EX =
∫ ∞

0

xλe−λx dx

= −xe−λx
∣∣∞
0

+
∫ ∞

0

e−λx dx

= 0 + 1/λ

To check the last step note that −xe−λx = 0 when x = 0 and when x → ∞
−xe−λx → 0 since the exponential decreases to 0 much faster than x grows.

To compute E(X2) we integrate by parts with g(x) = x2, h′(x) = λe−λx, so
g′(x) = 2x and h(x) = −e−λx.

E(X2) =
∫ ∞

0

x2 λe−λx dx

= −x2e−λx
∣∣∞
0

+
∫ ∞

0

2xe−λx dx

= 0 +
2
λ

∫ ∞

0

xλe−λx dx =
2
λ2

by the result for EX. Combining the last two results:

var (X) =
2
λ2

−
(

1
λ

)2

=
1
λ2
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Example 5.6. Power laws. Let ρ > 1 and f(x) = (ρ− 1)x−ρ for x ≥ 1. with
f(x) = 0 otherwise. To compute EX

EX =
∫ ∞

1

x(ρ− 1)x−ρ dx =
ρ− 1
ρ− 2

if ρ > 2. EX = ∞ if 1 < ρ ≤ 2. The second moment

E(X2) =
∫ ∞

1

x2(ρ− 1)x−ρ dx =
ρ− 1
ρ− 3

if ρ > 3. E(X2) = ∞ if 1 < ρ ≤ 2. If ρ > 3

var (X) =
ρ− 1
ρ− 3

−
(

ρ− 1
ρ− 2

)2

=
ρ− 1

(ρ− 2)(ρ− 3)

If, for example, ρ = 4, EX = 3/2, E(X2) = 3 and var (X) = 3− (3/2)2 = 3/4.
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5.2 Distribution Functions

Any random variable (discrete, continuous, or in between) has a distribution
function defined by F (x) = P (X ≤ x). If X has a density function f(x) then

F (x) = P (−∞ < X ≤ x) =
∫ x

−∞
f(y) dy

That is, F is an antiderivative of f , and a special one F (x) → 0 as x → −∞
and F (x) → 1 as x →∞.

One of the reasons for computing the distribution function is explained by
the next formula. If a < b then {X ≤ b} = {X ≤ a} ∪ {a < X ≤ b} with the
two sets on the right-hand side disjoint so

P (X ≤ b) = P (X ≤ a) + P (a < X ≤ b)

or, rearranging,

P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a) (5.8)

The last formula is valid for any random variable. When X has density function
f , it says that ∫ b

a

f(x) dx = F (b)− F (a)

i.e., the integral can be evaluated by taking the difference of any antiderivative
at the two endpoints.

To see what distribution functions look like, and to explain the use of (5.8),
we return to our examples.

a (a + b)/2 b

1

1/2

0 ���
�����

��

Figure 5.4: Distribution function for the uniform on [a, b].

Example 5.7. Uniform distribution. f(x) = 1/(b− a) for a < x < b.

F (x) =


0 x ≤ a

(x− a)/(b− a) a ≤ x ≤ b

1 x ≥ b
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162 CHAPTER 5. CONTINUOUS DISTRIBUTIONS

To check this, note that P (a < X < b) = 1 so P (X ≤ x) = 1 when x ≥ b
and P (X ≤ x) = 0 when x ≤ a. For a ≤ x ≤ b we compute

P (X ≤ x) =
∫ x

−∞
f(y) dy =

∫ x

a

1
b− a

dy =
x− a

b− a

In the most important special case a = 0, b = 1 we have F (x) = x for 0 ≤ x ≤ 1.

Example 5.8. Exponential distribution. f(x) = λe−λx for x ≥ 0.

F (x) =

{
0 x ≤ 0
1− e−λx x ≥ 0
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Figure 5.5: Exponential distribution function, λ = 0.25.

The first line of the answer is easy to see. Since P (X > 0) = 1 we have
P (X ≤ x) = 0 for x ≤ 0. For x ≥ 0 we compute

P (X ≤ x) =
∫ x

−∞
f(y) dy =

∫ x

0

λe−λy dy

= −e−λy
∣∣x
0

= −e−λx − (−1)

Suppose X has an exponential distribution with parameter λ. If t ≥ 0 then
P (X > t) = 1− P (X ≤ t) = 1− F (t) = e−λt, so if s ≥ 0 then

P (T > t + s|T > t) =
P (T > t + s)

P (T > t)
=

e−λ(t+s)

e−λt
= e−λs = P (T > s)

This is the lack of memory property of the exponential distribution. Given
that you have been waiting t units of time, the probability you must wait an
additional s units of time is the same as if you had not been waiting at all.

Example 5.9. Power laws. f(x) = (ρ− 1)x−ρ for x ≥ 1 where ρ > 1.

F (x) =

{
0 x ≤ 1
1− x−(ρ−1) x ≥ 1
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Figure 5.6: Power law distribution function, ρ = 2.

The first line of the answer is easy to see. Since P (X > 1) = 1, we have
P (X ≤ x) = 0 for x ≤ 1. For x ≥ 1 we compute

P (X ≤ x) =
∫ x

−∞
f(y) dy =

∫ x

1

(ρ− 1)y−ρ dy

= −y−(ρ−1)
∣∣∣x
1

= 1− x−(ρ−1)

To illustrate the use of (5.8) we note that if ρ = 3 then

P (2 < X ≤ 4) = (1− 4−2)− (1− 2−2) =
1
4
− 1

16
=

3
16

Distribution functions are somewhat messier in the discrete case.

Example 5.10. Binomial(3,1/2). Flip three coins and let X be the number
of heads that we see. The probability function is given by

x 0 1 2 3
P (X = x) 1/8 3/8 3/8 1/8

In this case the distribution function is:

F (x) =



0 x < 0
1/8 0 ≤ x < 1
4/8 1 ≤ x < 2
7/8 2 ≤ x < 3
1 3 ≤ x

To check this, note for example that for 1 ≤ x < 2, P (X ≤ x) = P (X ∈
{0, 1}) = 1/8 + 3/8. The reader should note that F is discontinuous at each
possible value of X and the height of the jump there is P (X = x). The little
black dots in Figure 5.7 are there to indicate that at 0 the value is 1/8, at 1 it
is 1/2, etc.
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•

•

•
•

0 1 2 3

1/8

1/2

7/8

Figure 5.7: Distribution function for Binomial(3,1/2).

Theorem 5.1. All distribution functions have the following properties

(i) If x1 < x2 then F (x1) ≤ F (x2) i.e., F is nondecreasing.

(ii) limx→−∞ F (x) = 0

(iii) limx→∞ F (x) = 1

(iv) limy↓x F (y) = F (x), i.e., F is continuous from the right.

(v) limy↑x F (y) = P (X < x)

(vi) limy↓x F (y)− limy↑x F (y) = P (X = x),
i.e., the jump in F at x is equal to P (X = x).

Proof. To prove (i) we note that {X ≤ x1} ⊂ {X ≤ x2}, so (1.4) implies
F (x1) = P (X ≤ x1) ≤ P (X ≤ x2) = F (x2).

For (ii), we note that {X ≤ x} ↓ ∅ as x ↓ −∞ (here ↓ is short for “decreases
and converges to”), so (1.5) implies that P (X ≤ x) ↓ P (∅) = 0.

The argument for (iii) is similar {X ≤ x} ↑ Ω as x ↑ ∞ (here ↑ is short for
“increases and converges to”), so (1.5) implies that P (X ≤ x) ↑ P (Ω) = 1.

For (iv), we note that if y ↓ x then {X ≤ y} ↓ {X ≤ x}, so (1.5) implies that
P (X ≤ y) ↓ P (X ≤ x).

The argument for (v) is similar. If y ↑ x then {X ≤ y} ↑ {X < x} since
{X = x} 6⊂ {X ≤ y} when y < x. Using (1.5) now, (v) follows.

Subtracting (v) from (iv) gives (vi).

Two useful transformations

The first result can often be used to reduce a general continuous distribution
to the special case of a uniform.
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Theorem 5.2. Suppose X has a continuous distribution. Then Y = F (X) is
uniform on (0, 1).

Proof. Even though F may not be strictly increasing, we can define an inverse
of F by

F−1(y) = min{x : F (x) ≥ y}

x

F−1(x)

y

F−1(y)

���

�
�

�
� �

Figure 5.8: Inverse of a distribution function.

Using this definition of F−1, we have

P (Y ≤ y) = P (X ≤ F−1(y)) = F (F−1(y)) = y

the last equality holding since F is continuous.

This is the key to many results in nonparametric statistics. For example,
suppose we have a sample of 10 men’s heights and 10 women’s heights. To test
the hypothesis that men and women have the same height distribution, we can
look at the ranks of the men’s heights in the overall sample of size 20. For
example, these might be 1, 2, 3, 4, 6, 8, 9, 11, 13, and 14. Since applying the
distribution function to the data points does not change the ranks, Theorem 5.2
implies that the distribution of the rank sum does not depend on the underlying
distribution.

Reversing the ideas in the proof of Theorem 5.2, we get a result that is useful
to construct random variables with a specified distribution.

Theorem 5.3. Suppose U has a uniform distribution on (0,1). Then Y =
F−1(U) has distribution function F .

Proof. The definition of F−1 was chosen so that if 0 < x < 1 then

F−1(y) ≤ x if and only if F (x) ≤ y

and this holds for any distribution function F . Taking y = U , it follows that

P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x)

since P (U ≤ u) = u.
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For a concrete example, suppose we want to construct an exponential distribu-
tion with parameter λ. Setting 1−e−λx = y and solving gives − ln(1−y)/λ = x.
So if U is uniform on (0, 1) then − ln(1 − U)/λ has the desired exponential
distribution. Of course since 1 − U is uniform on (0, 1) we could also use
− ln(U)/λ. In the case of a power law, setting 1 − x−(ρ−1) = y and solving
gives (1 − y)−1/(ρ−1) = x. So if U is uniform on (0, 1) then U−1/(ρ−1) has the
desired power law distribution.

Medians

Intuitively, the median is the place where F (x) crosses 1/2. The precise
definition we are about to give is complicated by the fact that {x : F (x) = 1/2}
may be empty or contain more than one point.

m is a median for F if P (X ≤ m) ≥ 1/2 and P (X ≥ m) ≥ 1/2.

We begin with our three favorite examples.

Example 5.11. Uniform distribution. Suppose X has density 1/(b − a)
for a ≤ x ≤ b. As we computed in Example 5.7 the distribution function is
(x− a)/(b− a) for a ≤ x ≤ b. The computation of the median is illustrated in
Figure 5.7. To find the median,we set (x−a)/(b−a) = 1/2, i.e., 2x−2a = b−a
or solving we have x = (b + a)/2. To see that this is the only median, we
observe that if m < (a + b)/2 then P (X ≤ m) < 1/2 while if m > (a + b)/2
then P (X ≥ m) < 1/2. In this case the median is equal to the mean, but this
is a rare occurrence.

Example 5.12. Exponential distribution. Suppose X has density λe−λx

for x ≥ 0. As we computed in Example 5.8, the distribution function is F (x) =
1 − e−λx. To find the median we set P (X ≤ m) = 1/2, i.e., 1 − e−λm = 1/2,
and solve to find m = (ln 2)/λ, compared to the mean 1/λ.

In the context of radioactive decay, which is commonly modeled with an
exponential distribution, the median is sometimes called the half-life, since
half of the particles will have broken down by that time. One reason for interest
in the half-life is that

P (X > k ln 2/λ) = e−k ln 2 = 2−k

or in words, after k half-lives only 1/2k particles remain radioactive.

Example 5.13. Power laws. Suppose X has density (ρ − 1)x−ρ for x ≥ 1,
where ρ > 1. As we computed in Example 5.9 the distribution function is
1−x−ρ. To find the median we set 1−m−ρ = 1/2, i.e., 1/2 = m−ρ and solving
gives m = 21/ρ. This contrasts to the mean (ρ − 1)/(ρ − 2) which is finite for
ρ > 2. For a concrete example note that when ρ = 4 the mean is 3/2 while the
median is 21/4 = 1.189.

We now turn to unusual cases where there may be no solution to P (X ≤
x) = 1/2 or more than one.
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Example 5.14. Multiple solutions: Binomial(3,1/2). The distribution
function was computed in Example 5.10.

F (x) =



0 x < 0
1/8 0 ≤ x < 1
1/2 1 ≤ x < 2
7/8 2 ≤ x < 3
1 3 ≤ x

If 1 ≤ m ≤ 2 then P (X ≤ m) ≥ 1/2 and P (X ≥ m) ≥ 1/2 so the set of medians
is [1, 2]. For a picture see Figure 5.7.

Example 5.15. No solution: Uniform on 1,2,3. Suppose X takes values
1, 2, 3 with probability 1/3 each. The distribution function is

F (x) =


0 x < 1
1/3 1 ≤ x < 2
2/3 2 ≤ x < 3
1 3 ≤ x

•

•

•

1 2 3

1/3

2/3
1/2

Figure 5.9: Distribution function for Uniform on {1, 2, 3}.

To check that 2 is a median, we note that

P (X ≤ 2) = P (X ∈ {1, 2}) = 2/3
P (X ≥ 2) = P (X ∈ {2, 3}) = 2/3

This is the only median, since if x < 2 then P (X ≤ x) ≤ P (X < 2) ≤ 1/3 and
if x > 2 then P (X ≥ x) ≤ P (X > 2) = 1/3.
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5.3 Functions of Random Variables

In this section we will answer the question: If X has density function f and
Y = r(X), then what is the density function for Y ? Before proving a general
result, we will consider an example:

Example 5.16. Suppose X has an exponential distribution with parameter λ.
What is the distribution of Y = X2?

To solve this problem we will use the distribution function. First we recall
from Example 5.8 that P (X ≤ x) = 1− e−λx so if y ≥ 0 then

P (Y ≤ y) = P (X2 ≤ y) = P (X ≤ √
y) = 1− e−λy1/2

Differentiating, we see that the density function of Y is given by

fY (y) =
d

dy
P (Y ≤ y) =

λy−1/2

2
e−λy1/2

for y ≥ 0

and 0 otherwise.

Generalizing from the last example, we get

Theorem 5.4. Suppose X has density f and P (a < X < b) = 1. Let Y =
r(X). Suppose r : (a, b) → (α, β) is continuous and strictly increasing, and let
s : (α, β) → (a, b) be the inverse of r. Then Y has density

g(y) = f(s(y))s′(y) for y ∈ (α, β) (5.9)

Before proving this, let’s see how it applies to the last example. There X has
density f(x) = λe−λx for x ≥ 0 so we can take a = 0 and b = ∞. The
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function r(x) = x2 is indeed continuous and strictly increasing on (0,∞). To
find the inverse function we set y = x2 and solve to get x = y1/2 so s(y) = y1/2.
Differentiating, we have s′(y) = y−1/2/2 and plugging into the formula, we have

g(y) = λe−λy1/2
· y−1/2/2 for y > 0

Proof. If y ∈ (α, β) then

P (Y ≤ y) = P (r(X) ≤ y) = P (X ≤ s(y))

since r is increasing and s is its inverse.
Writing F (x) for P (X ≤ x) and differentiating with respect to y now gives

g(y) =
d

dy
P (Y ≤ y) =

d

dy
F (s(y)) = F ′(s(y))s′(y) = f(s(y))s′(y)

by the chain rule.

For our next example, we will consider a special case of Theorem ??.

Example 5.17. Suppose X has an exponential distribution with parameter 3.
That is, X has density function 3e−3x for x ≥ 0. Find the distribution function
of Y = 1− e−3X .

Here, r(x) = 1 − e−3x is increasing on (0,∞), α = r(0) = 0, and β =
r(∞) = 1. To find the inverse function we set y = 1 − e−3x and solve to get
s(y) = (−1/3) ln(1 − y). Differentiating, we have s′(y) = −(−1/3)/(1 − y). So
plugging into (3.1), the density function of Y is

f(s(y))s′(y) = 3eln(1−y) · 1/3
(1− y)

= 1

for 0 < y < 1. That is, Y is uniform on (0, 1).

Example 5.18. Cauchy distribution. A drunk standing one foot from a
wall shines a flashlight at a random angle that is uniformly distributed between
−π/2 and π/2. Find the density function of the place X where the light hits
the wall.

�
�����

θ

tan(θ)

1

X

The angle Θ is uniformly distributed on [−π/2, π/2] and has density 1/π. As you
can see from the picture r(θ) = tan(θ). The inverse function s(x) = tan−1(x),
has s′(x) = 1/(1 + x) so using 5.9 X has density function

1
π
· 1
1 + x2
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This is the Cauchy density. Its median is 0 but its mean does not exist since

E|X| =
∫

|x|
π(1 + x2)

dx = ∞

To check the last conclusion note that the integrand is ≈ 1/|x| when |x| is large.

Example 5.19. How not to water your lawn. The head of a lawn sprinkler,
which is a metal rod with a line of small holes in it, revolves back and forth so
that drops of water shoot out at angles between 0 and π/2 radians (i.e., between
0 and 90 degrees). If we use x to denote the distance from the sprinkler and y
the height off the ground, then a drop of water released at angle θ with velocity
v0 will follow a trajectory

x(t) = (v0 cos θ)t y(t) = (v0 sin θ)t− gt2/2

where g is the gravitational constant, 32 ft/sec2. The drop lands when y(t0) = 0
that is, at time t0 = (2v0 sin θ)/g. At this time

x(t0) =
2v2

0

g
sin θ cos θ =

v2
0

g
sin(2θ)

If we assume that the sprinkler moves evenly back and forth between 0 and π/2,
it will spend an equal amount of time at each angle. Letting K = v2

0/g, this
leads us to the following question:

If Θ is uniform on [0, π/2] then what is the distribution of Z = K sin(2Θ)?

The first difficulty we must confront when solving this problem is that sin(2x) is
increasing on [0, π/4] and decreasing on [π/4, π/2]. The solution to this problem
is simple, however. The function sin(2x) is symmetric about π/4, so if we let X
be uniform on [0, π/4] then Z = K sin(2Θ) and Y = K sin(2X) have the same
distribution. To apply (5.9) we let r(x) = K sin(2x) and solve y = K sin(2x) to
get s(y) = (1/2) sin−1(y/K). Plugging into (5.9) and recalling

d

dx
sin−1(x) =

1√
1− x2

we see that Y has density function

f(s(y))s′(y) =
4
π
· 1
2
√

1− y2/K2
· 1
K

=
2

π
√

K2 − y2

when 0 < y < K and 0 otherwise. The title of this example comes from the fact
that the density function goes to ∞ as y → K so the lawn gets very soggy at
the edge of the sprinkler’s range. This is due to the fact that s′(K) = ∞, which
in turn is caused by r′(π/4) = 0.
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5.4 Joint Distributions

Two random variables are said to have joint density function f if for any
A ⊂ R2

P ((X, Y ) ∈ A) =
∫∫

A

f(x, y) dx dy (5.10)

where f(x, y) ≥ 0 and
∫∫

f(x, y) dx dy = 1.
In words, we find the probability that (X, Y ) lies in A by integrating f over

A. As we will see a number of times below, it is useful to think of f(x, y) as
P (X = x, Y = y) even though the last event has probability 0. As in Section
5.1, the precise interpretation of f(x, y) is

P (x ≤ X ≤ x + ∆x, y ≤ Y ≤ y + ∆y) =
∫ x+∆x

x

∫ y+∆y

y

f(u, v) dv du

≈ f(x, y)∆x∆y

when ∆x and ∆y are small, so f(x, y) indicates how likely it is for (X, Y ) to be
near (x, y).

For a concrete example of a joint density function, consider

Example 5.20.

f(x, y) =

{
e−y 0 < x < y < ∞
0 otherwise

The story behind this example will be told later in Example 5.28. To check
that f is a density function, we observe that∫ ∞

0

∫ y

0

e−y dx dy =
∫ ∞

0

ye−y dy

and integrating by parts with g(y) = y, h′(y) = e−y (so g′(y) = 1, h(y) = −e−y).∫ ∞

0

ye−y dy = −ye−y
∣∣∞
0

+
∫ ∞

0

e−ydy = 0 + (−e−y)
∣∣∞
0

= 1

To illustrate the use of (5.10) we will now compute P (X ≤ 1), which can be
written as P ((X, Y ) ∈ A) where A = {(x, y) : x ≤ 1}. The formula in (5.10)
tells us that we find P ((X, Y ) ∈ A) by integrating the joint density over A.
However, the joint density is only positive on B = {(x, y) : 0 < x < y < ∞} so
we only need to integrate over A ∩ B = {(x, y) : 0 < x ≤ 1, x < y}, and doing
this we find

P (X ≤ 1) =
∫ 1

0

∫ ∞

x

e−y dy dx

To evaluate the double integral we begin by observing that∫ ∞

x

e−y dy = (−e−y)
∣∣∞
x

= 0− (−e−x) = e−x

so P (X < 1) =
∫ 1

0
e−x dx = (−e−x)|10 = 1− e−1.
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Example 5.21. Uniform on a ball. Pick a point at random from the ball
B = {(x, y) : x2 + y2 ≤ 1}. By “at random from B” we mean that a choice
outside of B is impossible and that all the points in B should be equally likely.
In terms of the joint density this means that f(x, y) = 0 when (x, y) 6∈ B and
there is a constant c > 0 so that f(x, y) = c when (x, y) ∈ B.

Our f(x, y) ≥ 0. To make the integral of f equal to 1, we have to choose c
appropriately. Now,∫∫

f(x, y) dx dy =
∫∫

B

c dx dy = c (area of B) = cπ

So we choose c = 1/π to make the integral 1 and define

f(x, y) =

{
1/π x2 + y2 ≤ 1
0 otherwise

The arguments that led to the last conclusion generalize easily to show that if
we pick a point “at random” from a set S with area a then

f(x, y) =

{
1/a (x, y) ∈ S

0 otherwise
(5.11)

Example 5.22. Buffon’s needle. A floor consists of boards of width 1. If
we drop a needle of length L ≤ 1 on the floor, what is the probability it will
touch one of the cracks (i.e., the small spaces between the boards)? To make
the question simpler to answer, we assume that the needle and the cracks have
width zero.

Let X be the distance from the center of the needle to the nearest crack and
Θ be the angle ∈ [0, π) that the top half of the needle makes with the crack.
(We make this choice to have sinΘ > 0.) We assume that all the ways the
needle can land are equally likely, that is, the joint distribution of (X, Θ) is

f(x, θ) =

{
2/π if x ∈ [0, 1/2), θ ∈ [0, π)
0 otherwise

The formula for the joint density follows from (5.11). We are picking a point
“at random” from a set S with area π/2, so the joint density is 2/π on S.
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By drawing a picture (like the one above), one sees that the needle touches
the crack if and only if (L/2) sinΘ ≥ X. (5.10) tells us that the probability of
this event is obtained by integrating the joint density over

A = {(x, θ) ∈ [0, 1/2)× [0, π) : x ≤ (L/2) sin θ}

so the probability we seek is∫∫
A

f(x, θ) dx dθ =
∫ π

0

∫ (L/2) sin θ

0

2
π

dx dθ

=
2
π

∫ π

0

L

2
sin θ dθ =

L

π
(− cos θ)

∣∣∣∣π
0

= 2L/π

Buffon wanted to use this as a method of estimating π. Taking L = 1/2 and
performing the experiment 10,000 times on a computer, we found that 1 over
the fraction of times the needle hit the crack was 3.2310, 3.1368, and 3.0893
in the three times we tried this. We will see in Chapter 5 that these numbers
are typical outcomes and that to compute π to 4 decimal places would require
about 108 (or 100 million) tosses.

Remark. Before leaving the subject of joint densities, we would like to make
one remark that will be useful later. If X and Y have joint density f(x, y) then
P (X = Y ) = 0. To see this, we observe that

∫∫
A

f(x, y) dx dy is the volume of
the region over A underneath the graph of f , but this volume is 0 if A is the
line x = y.

Joint distribution function

The joint distribution of two random variables is occasionally described by
giving the joint distribution function:

F (x, y) = P (X ≤ x, Y ≤ y)

The next example illustrates this notion but also shows that sometimes the
density function is easier to write down.

Example 5.23. Suppose (X, Y ) is uniformly distributed over the square {(x, y) :
0 < x < 1, 0 < y < 1}. That is,

f(x, y) =

{
1 0 < x < 1, 0 < y < 1
0 otherwise

Here, we are picking a point “at random” from a set with area 1, so the formula
follows from (5.11).

By patiently considering the possible cases, one finds that

F (x, y) =



0 if x < 0 or y < 0
xy if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1
x if 0 ≤ x ≤ 1 and y > 1
y if x > 1 and 0 ≤ y ≤ 1
1 if x > 1 and y > 1
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The answer is probably easier to understand in a picture:

0

0

0

0

xy

x

0

y

1

0 1

0

1

Figure 5.10: Distribution function for the uniform on [0, 1]2.

The first case should be clear: If x < 0 or y < 0 then {X ≤ x, Y ≤ y} is
impossible since X and Y always lie between 0 and 1. For the second case we
note that when 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

P (X ≤ x, Y ≤ y) =
∫ x

0

∫ y

0

1 dv du = xy

In the third case, since values of Y > 1 are impossible,

P (X ≤ x, Y ≤ y) = P (X ≤ x, Y ≤ 1) = x

by the formula for the second case. The fourth case is similar to the third, and
the fifth is trivial. X and Y are always smaller than 1 so if x > 1 and y > 1
then {X ≤ x, Y ≤ y} has probability 1.

We will not use the joint distribution function in what follows. For complete-
ness, however, we want to mention two of its important properties. The first
formula is the two-dimensional generalization of P (a < X ≤ b) = F (b)− F (a).

P (a1 < X ≤ b1, a2 < Y ≤ b2)
= F (b1, b2)− F (a1, b2)− F (b1, a2) + F (a1, a2) (5.12)

Proof. The reasoning we use here is much like that employed in studying the
probabilities of unions in Section 1.6. By adding and subtracting the probabil-
ities on the right, we end up with the desired area counted exactly once.

Using A as shorthand for P ((X, Y ) ∈ A), etc., and consulting the picture.

F (b1, b2) = A +B +C +D
−F (a1, b2) = −B −D
−F (b1, a2) = −C −D

F (a1, a2) = +D
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D

C

B

A

a1

a2

b1 b2

Adding the last four equations gives the one in (5.12).

The next formula tells us how to recover the joint density function from
the joint distribution function. To motivate the formula, we recall that in one
dimension F ′ = f since F (x) =

∫ x

∞ f(u) du.

∂2F

∂x∂y
= f (5.13)

To explain why this formula is true, we note that

F (x, y) =
∫ x

−∞

∫ y

−∞
f(u, v) dv du

and differentiating twice kills the two integrals. To check that (5.13) works in
Example 5.23, F (x, y) = xy when 0 < x < 1 and 0 < y < 1, so ∂2F

∂x∂y = 1 there
and it is 0 otherwise.
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5.5 Marginal and Conditional Distributions

In the discrete case the marginal distributions are obtained from the joint dis-
tribution by summing

P (X = x) =
∑

y

P (X = x, Y = y) P (Y = y) =
∑

x

P (X = x, Y = y)

In the continuous case if X and Y have joint density f(x, y), then the marginal
densities of X and Y are given by

fX(x) =
∫

f(x, y) dy fY (y) =
∫

f(x, y) dx (5.14)

The verbal explanation of the first formula is similar to that of the discrete case:
if X = x then Y will take on some value y, so to find P (X = x) we integrate
the joint density f(x, y) over all possible values of y.

To illustrate the use of these formulas we look at Example 5.20.

Example 5.24.

f(x, y) =

{
e−y 0 < x < y < ∞
0 otherwise

In this case

fX(x) =
∫ ∞

x

e−y dy = (−e−y)
∣∣∞
x

= e−x

since (5.14) tells us to integrate f(x, y) over all values of y but we only have
f > 0 when y > x. Similarly,

fY (y) =
∫ y

0

e−y dx = ye−y

The next result is the continuous analogue of (??):

Theorem 5.5. Two random variables with joint density f are independent if
and only if

f(x, y) = fX(x)fY (y)

that is, if the joint density is the product of the marginal densities.

We will now consider three examples that parallel the ones used in the dis-
crete case.

Example 5.25.

f(x, y) =

{
e−y 0 ≤ x ≤ y < ∞
0 otherwise
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We calculated the joint distribution in the previous example but we can
settle the question without computation. f(3, 2) = 0 while fX(3) and fY (2) are
both positive so

f(3, 2) = 0 < fX(3)fY (2)

and Theorem 5.5 implies that X and Y are not independent. In general, if the
set of values where f > 0 is not a rectangle then X and Y are not independent.

Example 5.26.

f(x, y) =

{
(1 + x + y)/2 0 ≤ x, y ≤ 1
0 otherwise

In this case the set where f > 0 is a rectangle, so the joint distribution passes
the first test and we have to compute the marginal densities

fX(x) =
∫ 1

0

(1 + x + y)/2 dy =
(

1 + x

2

)
y +

y2

4

∣∣∣∣1
0

=
x

2
+

3
4

fY (y) =
y

2
+

3
4

by symmetry

These formulas are valid for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 respectively. To check
independence we have to see if

(?)
1 + x + y

2
=

(
x

2
+

3
4

)
·
(

y

2
+

3
4

)
A simple way to see that (?) is wrong is simply to note that when x = y = 0
it says that 1/2 = 9/16. Some readers (or instructors) may note that, strictly
speaking, it is not enough for the condition to fail at one point, but the formulas
here are continuous so failing at one point means they also fail near the point.

Example 5.27.

f(x, y) =


y−3/2 cos x

(e− 2 + e−1)
esin x−(1/2y) 0 < x < π/2, y > 0

0 otherwise

In this case, the integration does not look like much fun, so we adopt another
approach.

Theorem 5.6. If f(x, y) can be written as g(x)h(y) then there is a constant c
so that fX(x) = cg(x) and fY (y) = h(y)/c. It follows that f(x, y) = fX(x)fY (y)
and hence X and Y are independent.

In words, if we can write f(x, y) as a product of a function of x and a function
of y then these functions must be constant multiples of the marginal densities.
Theorem 5.6 takes care of our example since

f(x, y) =
(

cos x esin x

(e− 2 + e−1)

)
(y−3/2e−(1/2y))
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Proof. We begin by observing

fX(x) =
∫

f(x, y) dy = g(x)
∫

h(y) dy

fY (y) =
∫

f(x, y) dx = h(y)
∫

g(x) dx

1 =
∫ ∫

f(x, y) dx dy =
∫

g(x) dx

∫
h(y) dy

So if we let c =
∫

h(y) dy then the last equation implies
∫

g(x) dx = 1/c, and
the first two give us fX(x) = cg(x) and fY (y) = h(y)/c.

Conditional distributions

Introducing fX(x|Y = y) as notation for the conditional density of X
given Y = y (which we think of as P (X = x|Y = y)), we have

fX(x|Y = y) =
f(x, y)
fY (y)

=
f(x, y)∫
f(u, y) du

(5.15)

In words, we fix y, consider the joint density function as a function of x, and
then divide by the integral to make it a probability density. To see how formula
(5.15) works, we return to Example 5.15.

Example 5.28.

f(x, y) =

{
e−y 0 < x < y < ∞
0 otherwise

In this case we have computed fY (y) = ye−y (in Example 5.24) so

fX(x|Y = y) =
e−y

ye−y
=

1
y

for 0 < x < y

That is, the conditional distribution is uniform on (0, y). This should not be
surprising since the joint density does not depend on x.

To compute the other conditional distribution we recall fX(x) = e−x so

fY (y|X = x) =
e−y

e−x
= e−(y−x) for y > x

That is, given X = x, Y −x is exponential with parameter 1. From this it follows
that if Z1, Z2 are independent exponential(1) then X = Z1, Y = Z1 + Z2 has
the joint distribution given above. If we condition on X = x then Z1 = x and
Y = x + Z2.

The multiplication rule says

P (X = x, Y = y) = P (X = x)P (Y = y|X = x)
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Substituting in the analogous continuous quantities, we have

f(x, y) = fX(x)fY (y|X = x) (5.16)

The next example demonstrates the use of (5.16) to compute a joint distribution.

Example 5.29. Suppose we pick a point uniformly distributed on (0, 1), call
it X, and then pick a point Y uniformly distributed on (0, X).

To find the joint density of (X, Y ) we note that

fX(x) = 1 for 0 < x < 1
fY (y|X = x) = 1/x for 0 < y < x

So using (5.16), we have

f(x, y) = fX(x)fY (y|X = x) = 1/x for 0 < y < x < 1

To complete the picture we compute

fY (y) =
∫

f(x, y) dx =
∫ 1

y

1
x

dx = − ln y

fX(x|Y = y) =
f(x, y)
fY (y)

=
1/x

− ln y
for y < x < 1

Again the conditional density of X given Y = y is obtained by fixing y, regarding
the joint density function as a function of x, and then normalizing so that the
integral is 1. The reader should note that although X is uniform on (0, 1) and
Y is uniform on (0, X), X is not uniform on (Y, 1) but has a greater probability
of being near Y .
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5.6 Exercises

Density functions

1. Suppose X has density function f(x) = c(3 − |x|) when −3 < x < 3. What
value of c makes this a density function?

2. Consider f(x) = c(1 − x2) for −1 < x < 1, 0 otherwise. What value of c
should we take to make f a density function?

3. Suppose X has density function 6x(1 − x) for 0 < x < 1 and 0 otherwise.
Find (a) EX, (b) E(X2), and (c) var (X).

4. Suppose X has density function x2/9 for 0 < x < 3 and 0 otherwise. Find
(a) EX, (b) E(X2), and (c) var (X).

5. Suppose X has density function x−2/3/21 for 1 < x < 8 and 0 otherwise.
Find (a) EX, (b) E(X2), and (c) var (X).

Distribution functions

6. F (x) = 3x2 − 2x3 for 0 < x < 1 (with F (x) = 0 if x ≤ 0 and F (x) = 1 if
x ≥ 1) defines a distribution function. Find the corresponding density function.

7. Let F (x) = e−1/x for x ≥ 0, F (x) = 0 for x ≤ 0. Is F a distribution function?
If so, find its density function.

8. Let F (x) = 3x − 2x2 for 0 ≤ x ≤ 1, F (x) = 0 for x ≤ 0, and F (x) = 1 for
x ≥ 1. Is F a distribution function? If so, find its density function.

9. Suppose X has density function f(x) = x/2 for 0 < x < 2, 0 otherwise. Find
(a) the distribution function, (b) P (X < 1), (c) P (X > 3/2), (d) the median.

10. Suppose X has density function f(x) = 4x3 for 0 < x < 1, 0 otherwise.
Find (a) the distribution function, (b) P (X < 1/2), (c) P (1/3 < X < 2/3), (d)
the median.

11. Suppose X has density function x−1/2/2 for 0 < x < 1, 0 otherwise. Find
(a) the distribution function, (b) P (X > 3/4), (c) P (1/9 < X < 1/4), (d) the
median.

12. Suppose P (X = x) = x/21 for x = 1, 2, 3, 4, 5, 6. Find all the medians of
this distribution.

13. Suppose X has a Poisson distribution with λ = ln 2. Find all the medians
of X.

14. Suppose X has a geometric distribution with success probability 1/4, i.e.,
P (X = k) = (3/4)k−1(1/4). Find all the medians of X.

15. Suppose X has density function 3x−4 for x ≥ 1. (a) Find a function g so
that g(X) is uniform on (0, 1). (b) Find a function h so that if U is uniform on
(0, 1), h(U) has density function 3x−4 for x ≥ 1.
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16. Suppose X1, . . . , Xn are independent and have distribution function F (x).
Find the distribution functions of (a) Y = max{X1, . . . , Xn} and (b) Z =
min{X1, . . . , Xn}

17. Suppose X1, . . . , Xn are independent exponential(λ). Show that

min{X1, . . . , Xn} = exponential(nλ)

Functions of random variables

18. Suppose X has density function f(x) for a ≤ x ≤ b and Y = cX + d where
c > 0. Find the density function of Y .

19. Show that if X = exponential(1) then Y = X/λ is exponential(λ).

20. Suppose X is uniform on (0, 1). Find the density function of Y = Xn.

21. Suppose X has density x−2 for x ≥ 1 and Y = X−2. Find the density
function of Y .

22. Suppose X has an exponential distribution with parameter λ and Y = X1/α.
Find the density function of Y . This is the Weibull distribution.

23. Suppose X has an exponential distribution with parameter 1 and Y = ln(X).
Find the distribution function of X. This is the double exponential distribution.

24. Suppose X is uniform on (0, π/2) and Y = sinX. Find the density function
of Y . The answer is called the arcsine law because the distribution function
contains the arcsine function.

25. Suppose X has density function f(x) for −1 ≤ x ≤ 1, 0 otherwise. Find the
density function of (a) Y = |X|, (b) Z = X2.

26. Suppose X has density function x/2 for 0 < x < 2, 0 otherwise. Find
the density function of Y = X(2 − X) by computing P (Y ≥ y) and then
differentiating.

Joint distributions

27. Suppose X and Y have joint density f(x, y) = c(x+ y) for 0 < x, y < 1. (a)
What is c? (b) What is P (X < 1/2)?

28. Suppose X and Y have joint density f(x, y) = 6xy2 for 0 < x, y < 1. What
is P (X + Y < 1)?

29. Suppose X and Y have joint density f(x, y) = 2 for 0 < y < x < 1. (a)
Find P (X − Y > z).

30. Suppose X and Y have joint density f(x, y) = 1 for 0 < x, y < 1. Find
P (XY ≤ z).

31. Two people agree to meet for a drink after work but they are impatient and
each will only wait 15 minutes for the other person to show up. Suppose that
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they each arrive at independent random times uniformly distributed between 5
p.m. and 6 p.m. What is the probability they will meet?

32. Suppose X and Y have joint density f(x, y) = e−(x+y) for x, y > 0. Find
the distribution function.

33. Suppose X is uniform on (0, 1) and Y = X. Find the joint distribution
function of X and Y .

34. A pair of random variables X and Y take values between 0 and 1 and have
P (X ≤ x, Y ≤ y) = x3y2 when 0 ≤ x, y ≤ 1. Find the joint density function.

35. Given the joint distribution function FX,Y (x, y) = P (X ≤ x, Y ≤ y), how
do you recover the marginal distribution Function FX(x) = P (X ≤ x)?

36. Suppose X and Y have joint density f(x, y). Are X and Y independent if
(a) f(x, y) = xe−x(1+y) for x, y ≥ 0?
(b) f(x, y) = 6xy2 when x, y ≥ 0 and x + y ≤ 1?
(c) f(x, y) = 2xy + x when 0 < x < 1 and 0 < y < 1?
(d) f(x, y) = (x + y)2 − (x− y)2 when 0 < x < 1 and 0 < y < 1?

In each case f(x, y) = 0 otherwise.

37. Suppose a point (X, Y ) is chosen at random from the disk x2 +y2 ≤ 1. Find
(a) the marginal density of X, (b) the conditional density of Y given X = x.

38. Suppose X and Y have joint density f(x, y) = x + 2y3 when 0 < x < 1
and 0 < y < 1. (a) Find the marginal densities of X and Y . (b) Are X and Y
independent?

39. Suppose X and Y have joint density f(x, y) = 6y when x > 0, y > 0, and
x + y < 1. (a) Find the marginal densities of X and Y , (b) the conditional
density of X given Y = y.

40. Suppose X and Y have joint density f(x, y) = 10x2y when 0 < y < x < 1.
(a) Find the marginal densities of X and Y . (b) the conditional density of Y
given X = x.
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