
Chapter 4

Markov Chains

4.1 Definitions and Examples

The importance of Markov chains comes from two facts: (i) there are a large
number of physical, biological, economic, and social phenomena that can be
described in this way, and (ii) there is a well-developed theory that allows us to
do computations. We begin with a famous example, then describe the property
that is the defining feature of Markov chains.

Example 4.1. Gambler’s ruin. Consider a gambling game in which on any
turn you win $1 with probability p = 0.4 or lose $1 with probability 1−p = 0.6.
Suppose further that you adopt the rule that you quit playing if your fortune
reaches $N . Of course, if your fortune reaches $0 the casino makes you stop.

Let Xn be the amount of money you have after n plays. I claim that your
fortune, Xn has the “Markov property.” In words, this means that given the
current state, any other information about the past is irrelevant for predicting
the next state Xn+1. To check this, we note that if you are still playing at time
n, i.e., your fortune Xn = i with 0 < i < N , then for any possible history of
your wealth in−1, in−2, . . . i1, i0

P (Xn+1 = i + 1|Xn = i,Xn−1 = in−1, . . . X0 = i0) = 0.4

since to increase your wealth by one unit you have to win your next bet and the
outcome of the previous bets has no useful information for predicting the next
outcome.

Turning now to the formal definition, we say that Xn is a discrete time
Markov chain with transition matrix p(i, j) if for any j, i, in−1, . . . i0

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = p(i, j) (4.1)

Equation (4.1), also called the “Markov property” says that the conditional
probability Xn+1 = j given the entire history Xn = i,Xn−1 = in−1, . . . X1 =
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i1, X0 = i0 is the same as the conditional probability Xn+1 = j given only the
previous state Xn = i. This is what we mean when we say that “given the
current state any other information about the past is irrelevant for predicting
Xn+1.”

In formulating (4.1) we have restricted our attention to the temporally
homogeneous case in which the transition probability

p(i, j) = P (Xn+1 = j|Xn = i)

does not depend on the time n. Intuitively, the transition probability gives the
rules of the game. It is the basic information needed to describe a Markov chain.
In the case of the gambler’s ruin chain, the transition probability has

p(i, i + 1) = 0.4, p(i, i− 1) = 0.6, if 0 < i < N

p(0, 0) = 1 p(N,N) = 1

When N = 5 the matrix is
0 1 2 3 4 5

0 1.0 0 0 0 0 0
1 0.6 0 0.4 0 0 0
2 0 0.6 0 0.4 0 0
3 0 0 0.6 0 0.4 0
4 0 0 0 0.6 0 0.4
5 0 0 0 0 0 1.0

Example 4.2. Wright–Fisher model. We consider a fixed population of N
genes that can be one of two types: A or a. These types are called alleles. In
the simplest version of this model the population at time n + 1 is obtained by
drawing with replacement from the population at time n. In this case if we
let Xn be the number of A alleles at time n, then Xn is a Markov chain with
transition probability

p(i, j) =
(

N

j

) (
i

N

)j (
1− i

N

)N−j

0 ≤ i, j ≤ N

since the right-hand side is the binomial distribution for N independent trials
with success probability i/N . Note that when i = 0, p(0, 0) = 1, and when
i = N , p(N,N) = 1.
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In the Gambler’s Ruin chain and the Wright-Fisher model the states 0 and N
are absorbing states. Once we enter these states we can never leave. The long
run behavior of these models is not very interesting, they will eventually enter
one of the absorbing states and stay there forever. To make the Wright-Fisher
model more interesting and more realistic, we can introduce the possibility of
mutations: an A that is drawn ends up being an a in the next generation with
probability u, while an a that is drawn ends up being an A in the next generation
with probability v. In this case the probability an A is produced by a given draw
is

ρi =
i

N
(1− u) +

N − i

N
v

i.e., we can get an A by drawing an A and not having a mutation or by drawing
an a and having a mutation. Since the draws are independent the transition
probability still has the binomial form

p(i, j) =
(

N

j

)
(ρi)j(1− ρi)N−j (4.2)

Moving from biology to physics:

Example 4.3. Ehrenfest chain. We imagine two cubical volumes of air con-
nected by a small hole. In the mathematical version, we have two “urns,” i.e.,
two of the exalted trash cans of probability theory, in which there are a total of
N balls. We pick one of the N balls at random and move it to the other urn.
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Let Xn be the number of balls in the “left” urn after the nth draw. It should
be clear that Xn has the Markov property; i.e., if we want to guess the state
at time n + 1, then the current number of balls in the left urn Xn, is the only
relevant information from the observed sequence of states Xn, Xn−1, . . . X1, X0.
To check this we note that

P (Xn+1 = i + 1|Xn = i,Xn−1 = in−1, . . . X0 = i0) =
N − i

N

since to increase the number we have to pick one of the N − i balls in the other
urn. The number can also decrease by 1 with probability i/N . In symbols, we
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have computed that the transition probability is given by

p(i, i + 1) = (N − i)/N, p(i, i− 1) =
i

N
for 0 ≤ i ≤ N

with p(i, j) = 0 otherwise. When N = 5, for example, the matrix is

0 1 2 3 4 5

0 0 5/5 0 0 0 0
1 1/5 0 4/5 0 0 0
2 0 2/5 0 3/5 0 0
3 0 0 3/5 0 2/5 0
4 0 0 0 4/5 0 1/5
5 0 0 0 0 5/5 0

Here we have written 1 as 5/5 to emphasize the pattern in the diagonals of the
matrix.

Moving from science to business:

Example 4.4. Inventory chain. An electronics store sells a video game
system. If at the end of the day, the number of units they have on hand is 1
or 0, they order enough new units so their total on hand is 5. This chain is
an example of an s, S inventory control policy with s = 1 and S = 5. That is,
when the stock on hand falls to s or below we order enough to bring it back up
to S.

For simplicity we assume that the new merchandise arrives before the store
opens the next day. Let Xn be the number of units on hand at the end of the
nth day. If we assume that the number of customers who want to buy a video
game system each day is 0, 1, 2, or 3 with probabilities .3, .4, .2, and .1, then
we have the following transition matrix:

0 1 2 3 4 5
0 0 0 .1 .2 .4 .3
1 0 0 .1 .2 .4 .3
2 .3 .4 .3 0 0 0
3 .1 .2 .4 .3 0 0
4 0 .1 .2 .4 .3 0
5 0 0 .1 .2 .4 .3

To explain the entries we note that if Xn ≥ 2 then no ordering is done so what
we have at the end of the day is the supply minus the demand. If Xn = 2 and
the demand is 3 or more, or if Xn = 3 and the demand is 4, we end up with 0
units at the end of the day and at least one unhappy customer. If Xn = 0 or 1
then we will order enough so that at the beginning of the day we have 5, so the
result at the end of the day is the same as if Xn = 5.
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Markov chains are described by giving their transition probabilities. To
create a chain, we can write down any n × n matrix, provided that the entries
satisfy:

(i) p(i, j) ≥ 0, since they are probabilities.

(ii)
∑

j p(i, j) = 1, since when Xn = i, Xn+1 will be in some state j.

The equation in (ii) is read “sum p(i, j) over all possible values of j.” In words
the last two conditions say: the entries of the matrix are nonnegative and each
row of the matrix sums to 1.

Any matrix with properties (i) and (ii) gives rise to a Markov chain, Xn.
To construct the chain we can think of playing a board game. When we are
in state i, we roll a die (or generate a random number on a computer) to pick
the next state, going to j with probability p(i, j). To illustrate this we will now
introduce some simple examples.

Example 4.5. Weather chain. Let Xn be the weather on day n in Ithaca,
NY, which we assume is either: 1 = rainy, or 2 = sunny. Even though the
weather is not exactly a Markov chain, we can propose a Markov chain model
for the weather by writing down a transition probability

1 2
1 .6 .4
2 .2 .8

The table says, for example, the probability a rainy day (state 1) is followed by
a sunny day (state 2) is p(1, 2) = 0.6.

Example 4.6. Social mobility. Let Xn be a family’s social class in the nth
generation, which we assume is either 1 = lower, 2 = middle, or 3 = upper. In
our simple version of sociology, changes of status are a Markov chain with the
following transition probability

1 2 3
1 .7 .2 .1
2 .3 .5 .2
3 .2 .4 .4

Example 4.7. Brand preference. Suppose there are three types of laundry
detergent, 1, 2, and 3, and let Xn be the brand chosen on the nth purchase.
Customers who try these brands are satisfied and choose the same thing again
with probabilities 0.8, 0.6, and 0.4 respectively. When they change they pick
one of the other two brands at random. The transition probability is

1 2 3
1 .8 .1 .1
2 .2 .6 .2
3 .3 .3 .4
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Example 4.8. Two-stage Markov chains. In a Markov chain the distribu-
tion of Xn+1 only depends on Xn. This can easily be generalized to case in which
the distribution of Xn+1 only depends on (Xn, Xn−1). For a concrete example
consider a basketball player who makes a shot with the following probabilities:

1/2 if he has missed the last two times

2/3 if he has hit one of his last two shots

3/4 if he has hit both of his last two shots

To formulate a Markov chain to model his shooting, we let the states of the
process be the outcomes of his last two shots: {HH, HM,MH,MM} where M
is short for miss and H for hit. The transition probability is

HH HM MH MM
HH 3/4 1/4 0 0
HM 0 0 2/3 1/3
MH 2/3 1/3 0 0
MM 0 0 1/2 1/2

To explain suppose the state is HM , i.e., Xn−1 = H and Xn = M . In this case
the next outcome will be H with probability 2/3. When this occurs the next
state will be (Xn, Xn+1) = (M,H) with probability 2/3. If he misses an event
of probability 1/3, (Xn, Xn+1) = (M,M).

The Hot Hand is a phenomenon known to everyone who plays or watches
basketball. After making a couple of shots, players are thought to “get into a
groove” so that subsequent successes are more likely. Purvis Short of the Golden
State Warriors describes this more poetically as

“You’re in a world all your own. It’s hard to describe. But the
basket seems to be so wide. No matter what you do, you know the
ball is going to go in.”

Unfortunately for basketball players, data collected by Tversky and Gliovich
(Chance vol. 2 (1989), No. 1, pages 16–21) shows that this is a misconception.
The next table gives data for the conditional probability of hitting a shot after
missing the last three, missing the last two, . . . hitting the last three, for nine
players of the Philadelphia 76ers: Darryl Dawkins (403), Maurice Cheeks (339),
Steve Mix (351), Bobby Jones (433), Clint Richardson (248), Julius Erving
(884), Andrew Toney (451), Caldwell Jones (272), and Lionel Hollins (419).
The numbers in parentheses are the number of shots for each player.
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P (H|3M) P (H|2M) P (H|1M) P (H|1H) P (H|2H) P (H|3H)
.88 .73 .71 .57 .58 .51
.77 .60 .60 .55 .54 .59
.70 .56 .52 .51 .48 .36
.61 .58 .58 .53 .47 .53
.52 .51 .51 .53 .52 .48
.50 .47 .56 .49 .50 .48
.50 .48 .47 .45 .43 .27
.52 .53 .51 .43 .40 .34
.50 .49 .46 .46 .46 .32

In fact, the data supports the opposite assertion: after missing a player is more
conservative about the shots that they take and will hit more frequently.
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4.2 Multistep Transition Probabilities

The previous section introduced several examples to think about. The basic
question concerning Markov chains is what happens in the long run? In the
case of the weather chain, does the probability that day n is sunny converge to
a limit? In the case of the social mobility and brand preference chain, do the
fractions of the population in the three income classes (or that buy each of the
three types of detergent) stabilize as time goes on? The first step in answering
these questions is to figure out what happens in the Markov chain after two or
more steps.

The transition probability p(i, j) = P (Xn+1 = j|Xn = i) gives the probabil-
ity of going from i to j in one step. Our goal in this section is to compute the
probability of going from i to j in m > 1 steps:

pm(i, j) = P (Xn+m = j|Xn = i)

For a concrete example, we start with the transition probability of the social
mobility chain:

1 2 3
1 .7 .2 .1
2 .3 .5 .2
3 .2 .4 .4

To warm-up we consider:

Example 4.9. Suppose the family starts in the middle class (state 2) in gen-
eration 0. What is the probability that the generation 1 rises to the upper class
(state 3) and generation 2 falls to the lower class (state 1)?

Intuitively, the Markov property implies that starting from state 2 the probabil-
ity of jumping to 1 and then to 3 is given by p(2, 3)p(3, 1). To get this conclusion
from the definitions, we note that using the definition of conditional probability,

P (X2 = 1, X1 = 3|X0 = 2) =
P (X2 = 1, X1 = 3, X0 = 2)

P (X0 = 2)

Multiplying and dividing by P (X1 = 3, X0 = 2):

=
P (X2 = 1, X1 = 3, X0 = 2)

P (X1 = 3, X0 = 2)
· P (X1 = 3, X0 = 2)

P (X0 = 2)

Using the definition of conditional probability:

= P (X2 = 1|X1 = 3, X0 = 2) · P (X1 = 3|X0 = 2)

By the Markov property (4.1) the last expression is

P (X2 = 1|X1 = 3) · P (X1 = 3|X0 = 2) = p(2, 3)p(3, 1)

Moving on to the real question:
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Example 4.10. Suppose the family starts in the middle class (state 2) in gen-
eration 0. What is the probability that generation 2 will be in the lower class
(state 1)?

To do this we simply have to consider the three possible states for generation 1
and use the previous computation.

P (X2 = 1|X0 = 2) =
3∑

k=1

p(2, k)p(k, 1)

= (.3)(.7) + (.5)(.3) + (.2)(.2)
= .21 + .15 + .04 = .40

There is nothing special here about the states 2 and 1 here. By the same
reasoning,

P (X2 = j|X0 = i) =
3∑

k=1

p(i, k) p(k, j)

The right-hand side of the last equation gives the (i, j)th entry of the matrix p
is multiplied by itself.

To explain this, we note that to compute p2(2, 1) we multiplied the entries
of the second row by those in the first column: . . .

.3 .5 .2
. . .

 .7 . .
.3 . .
.2 . .

 =

 . . .
.40 . .
. . .


If we wanted p2(1, 3) we would multiply the first row by the third column:.7 .2 .1

. . .

. . .

 . . .1
. . .2
. . .4

 =

. . .15
. . .
. . .


When all of the computations are done we have.7 .2 .1

.3 .5 .2

.2 .4 .4

 .7 .2 .1
.3 .5 .2
.2 .4 .4

 =

.57 .28 .15
.40 .39 .21
.34 .40 .26


The two step transition probability p2 = p·p. Based on this you can probably

leap to the next conclusion:

Theorem 4.1. The m-step transition probability

pm(i, j) = P (Xn+m = j|Xn = i) (4.3)

is the mth power of the transition matrix p, i.e., p · p · · · p, where there are m
terms in the product.
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The key ingredient in proving this is the:

Chapman–Kolmogorov equation

pm+n(i, j) =
∑

k

pm(i, k) pn(k, j) (4.4)

Once this is proved, (4.3) follows, since taking n = 1 in (4.4), we see that
pm+1 = pm · p.

Why is (4.4) true? To go from i to j in m + n steps, we have to go from i to
some state k in m steps and then from k to j in n steps. The Markov property
implies that the two parts of our journey are independent.

•
•
•
•

•
•
•
•

•
•
•
•
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Proof of (4.4). The independence in the second sentence of the previous
explanation is the mysterious part. To show this, we combine Examples 4.9 and
4.10. Breaking things down according to the state at time m,

P (Xm+n = j|X0 = i) =
∑

k

P (Xm+n = j, Xm = k|X0 = i)

Repeating the computation in Example 4.9, the definition of conditional prob-
ability implies:

P (Xm+n = j, Xm = k|X0 = i) =
P (Xm+n = j, Xm = k, X0 = i)

P (X0 = i)

Multiplying and dividing by P (Xm = k, X0 = i) gives:

=
P (Xm+n = j, Xm = k, X0 = i)

P (Xm = k, X0 = i)
· P (Xm = k, X0 = i)

P (X0 = i)

Using the definition of conditional probability we have:

= P (Xm+n = j|Xm = k, X0 = i) · P (Xm = k|X0 = i)

By the Markov property (4.1) the last expression is

= P (Xm+n = j|Xm = k) · P (Xm = k|X0 = i) = pm(i, k)pn(k, j)
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and we have proved (4.4).

Having established (4.4), we now return to computations. We begin with
the weather chain (

0.6 0.4
0.2 0.8

) (
0.6 0.4
0.2 0.8

)
=

(
0.44 0.56
0.28 0.72

)
Mutiplying again p2 · p = p3(

0.44 0.56
0.28 0.72

) (
0.6 0.4
0.2 0.8

)
=

(
0.376 0.624
0.312 0.688

)
and then p3 · p = p4(

0.376 0.624
0.312 0.688

) (
0.6 0.4
0.2 0.8

)
=

(
0.3504 0.6496
0.3248 0.6752

)
To increase the time faster we can use (4.4) to conclude that p4 · p4 = p8:(

0.3504 0.6496
0.3248 0.6752

) (
0.3504 0.6496
0.3248 0.6752

)
=

(
0.33377 0.66623
0.33311 0.66689

)
Multiplying again p8 · p8 = p16(

0.33333361 0.66666689
0.33333319 0.66666681

)

Based on the last calculation, one might guess that as n gets large the matrix
becomes closer and closer to (

1/3 2/3
1/3 2/3

)
This is true and will be explained in the next section.
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4.3 Stationary distributions

Our first step is to consider

What happens when the initial state is random? Breaking things down
according to the value of the initial state and using the definition of conditional
probability

P (Xn = j) =
∑

i

P (X0 = i,Xn = j)

=
∑

i

P (X0 = i)P (Xn = j|X0 = i)

If we introduce q(i) = P (X0 = i), then the last equation can be written as

P (Xn = j) =
∑

i

q(i)pn(i, j) (4.5)

In words, we multiply the transition matrix on the left by the vector q of initial
probabilities. If there are k states, then pn(x, y) is a k × k matrix. So to make
the matrix multiplication work out right, we should take q as a 1× k matrix or
a “row vector.”

For a concrete example consider the weather chain (Example 4.5) and sup-
pose that the initial distribution is q(1) = 0.3 and q(2) = 0.7. In this case

(
0.3 0.7

) (
0.6 0.4
0.2 0.8

)
=

(
0.32 0.68

)
since

0.3(0.6) + 0.7(0.2) = 0.32
0.3(0.4) + 0.7(0.8) = 0.68

For a second example consider the social mobility chain (Example 4.6) and
suppose that the initial distribution: q(1) = .5, q(2) = .2, and q(3) = .3. Multi-
plying the vector q by the transition probability gives the vector of probabilities
at time 1. (

.5 .2 .3
) .7 .2 .1

.3 .5 .2

.2 .4 .4

 =
(
.47 .32 .21

)
To check the arithmetic note that the three entries on the right-hand side are

.5(.7) + .2(.3) + .3(.2) = .35 + .06 + .06 = .47

.5(.2) + .2(.5) + .3(.4) = .10 + .10 + .12 = .32

.5(.1) + .2(.2) + .3(.4) = .05 + .04 + .12 = .21

If the distribution at time 0 is the same as the distribution at time 1, then by
the Markov property it will be distribution at all times n ≥ 1. Because of this
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q is called a stationary distribution. Stationary distributions have a special
importance in the theory of Markov chains, so we will use a special letter π to
denote solutions of the equation

π · p = π.

To have a mental picture of what happens to the distribution of probability
when one step of the Markov chain is taken, it is useful to think that we have
q(i) pounds of sand at state i, with the total amount of sand

∑
i q(i) being one

pound. When a step is taken in the Markov chain, a fraction p(i, j) of the sand
at i is moved to j. The distribution of sand when this has been done is

q · p =
∑

i

q(i)p(i, j)

If the distribution of sand is not changed by this procedure q is a stationary
distribution.

General two state transition probability.

1 2
1 1− a a
2 b 1− b

We have written the chain in this way so the stationary distribution has a simple
formula

π(1) =
b

a + b
π(2) =

a

a + b
(4.6)

As a first check on this formula we note that in the weather chain a = 0.4 and
b = 0.2 which gives (1/3, 2/3) as we found before. We can prove this works in
general by drawing a picture:

•
1b

a + b
•
2 a

a + b

a
−→
←−
b

In words, the amount of sand that flows from 1 to 2 is the same as the amount
that flows from 2 to 1 so the amount of sand at each site stays constant. To
check algebraically that this is true:

b

a + b
(1− a) +

a

a + b
b =

b− ba + ab

a + b
=

b

a + b
b

a + b
a +

a

a + b
(1− b) =

ba + a− ab

a + b
=

a

a + b
(4.7)
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Formula (4.6) gives the stationary distribution for any two state chain, so
we progress now to the three state case and consider the brand preference chain
(Example 4.7). The equation πp = π says

(
π1 π2 π3

) .8 .1 .1
.2 .6 .2
.3 .3 .4

 =
(
π1 π2 π3

)
which translates into three equations

.8π1 + .2π2 + .3π3 = π1

.1π1 + .6π2 + .3π3 = π2

.1π1 + .2π2 + .4π3 = π3

Note that the columns of the matrix give the numbers in the rows of the equa-
tions. The third equation is redundant since if we add up the three equations
we get

π1 + π2 + π3 = π1 + π2 + π3

If we replace the third equation by π1 + π2 + π3 = 1 and subtract π1 from each
side of the first equation and π2 from each side of the second equation we get

−.2π1 + .2π2 + .3π3 = 0
.1π1 − .4π2 + .3π3 = 0

π1 + π2 + π3 = 1 (4.8)

At this point we can solve the equations by hand or using a calcualtor.

By hand. We note that the third equation implies π3 = 1 − π1 − π2 and
substituting this in the first two gives

−.5π1 − .1π2 + .3 = 0
−.2π1 − .7π2 + .3 = 0

which we rearrange to give

0.3 = .5π1 + .1π2

0.3 = .2π1 + .7π2

Multiplying the first equation by .7 and adding −.1 times the second gives

1.8 = (.35− .02)π1 or π1 = 18/33 = 6/11

Multiplying the first equation by .2 and adding −.5 times the second gives

−0.09 = (0.02− .35)π2 or π2 = 9/33 = 3/11

Since the three probabilities add up to 1, π3 = 2/11.
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Using the TI83 calculator is easier. To begin we write (4.8) in matrix
form as (

π1 π2 π3

) −.2 .1 1
.2 −.4 1
.3 .3 1

 =
(
0 0 1

)
If we let A be the 3×3 matrix in the middle this can be written as πA = (0, 0, 1).
Multiplying on each side by A−1 we see that

π = (0, 0, 1)A−1

which is the third row of A−1. Entering A into our calculator computing the
inverse and reading the third row we find that the stationary distribution is

(.545454, .272727, .181818)

Converting the answer to fractions using the first entry in the math menu gives

(6/11, 3/11, 2/11)

Example 4.11. Social Mobility (continuation of 4.6).

1 2 3
1 .7 .2 .1
2 .3 .5 .2
3 .2 .4 .4

Using the first two equations and the fact that the sum of the π’s is 1

.7π1 + .3π2 + .2π3 = π1

.2π1 + .5π2 + .4π3 = π2

π1 + π2 + π3 = 1

This translates into πA = (0, 0, 1) with

A =

−.3 .2 1
.3 −.5 1
.2 .4 1


Note that here and in the previous example the first two columns of A consist
of the first two columns of the transition probability with 1 subtracted from
the diagonal entries, and the final column is all 1’s. Computing the inverse and
reading the last row gives

(.468085, .340425, .191489)

Converting the answer to fractions using the first entry in the math menu gives

(22/47, 16/47, 9/47)
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Example 4.12. Basketball (continuation of 4.8).

To find the stationary matrix in this case we can follow the same procedure.
A consists of the first three columns of the transition matrix with 1 subtracted
from the diagonal, and a final column of all 1’s.

−1/4 1/4 0 1
0 −1 2/3 1

2/3 1/3 −1 1
0 0 1/2 1

The answer is given by the fourth row of A−1:

(.5, .1875, .1875, .125)

Thus the long run fraction of time the player hits a shot is π(HH) + π(MH) =
0.6875.

Example 4.13. Inventory chain (continuation of 4.4).

As in the two previous examples, A consists of the first five columns of the
transition matrix with 1 subtracted from the diagonal, and a final column of all
1’s.

−1 0 .1 .2 .4 1
0 −1 .1 .2 .4 1
.3 .4 −.7 0 0 1
.1 .2 .4 −.7 0 1
0 .1 .2 .4 −.7 1
0 0 .1 .2 .4 1

The answer is given by the sixth row of A−1:

(.090862, .155646, .231006, .215605, .201232, .105646)

Converting the answer to fractions using the first entry in the math menu gives

(177/1948, 379/2435, 225/974, 105/487, 98/487, 1029/9740)

but the decimal version is probably more informative.

Example 4.14. Ehrenfest chain (continuation of 4.3).

Consider first the case N = 5. As in the three previous examples, A consists
of the first five columns of the transition matrix with 1 subtracted from the
diagonal, and a final column of all 1’s.

−1 1 0 0 0 1
.2 −1 .8 0 0 1
0 .4 −1 .6 0 1
0 0 .6 −1 .4 1
0 0 0 .8 −1 1
0 0 0 0 1 1
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The answer is given by the sixth row of A−1:

(.03125, .15625, .3125, .3125, .15625, .03125)

Even without a calculator we can recognize these as

(1/32, 5/32, 10/32, 10/32, 5/32, 1/32)

the probabilities of 0 to 5 heads when we flip five coins.
Based on this we can guess that in general

π(k) =
(

N

k

)
/2N

Proof by computation. For 0 < k < N we can end up in state k only by
coming up from k − 1 or down from k so

π(k − 1)p(k − 1, k) + π(k + 1)p(k + 1, k)

=

(
N

k−1

)
2N

· N − k + 1
N

+

(
N

k+1

)
2N

· k + 1
N

=
1

2N

(
(N − 1)!

(k − 1)!(N − k)!
+

(N − 1)!
(k)!(N − k + 1)!

)
=

1
2N

(
N

k

) (
k

N
+

N − k

N

)
= π(k)

The only way to end up at 0 is by coming down from 1 so

π(1)p(1, 0) =
N

2N
· 1
N

= π(0)

Similarly, the only way to end up at N is by coming up from N − 1 so

π(N − 1)p(N − 1, N) =
N

2N
· 1
N

= π(0)

Proof by thinking. To determine the initial state, (a) flip N coins, with heads
= in the left urn, and tails = in the right. A transition of the chain corresponds
to (b) picking a coin at random and turning it over. It is clear that the end
result of (a) and (b) has all 2N outcomes equally likely, so the state at time 1
is the same as the state at time 0.
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4.4 Limit Behavior

In this section we will give conditions that guarantee that as n gets large pn(i, j)
approaches its stationary distribution. We begin with the

Convergence in the two state case. Let p0 be the initial probability of
being in state 1, and let pn be the probability of being in state 1 after n steps.

Theorem 4.2. For a two state Markov chain with transition probability

1− a a
b 1− b

where 0 < a + b < 2, we have

|pn − b/(a + b)| = |p0 − b/(a + b)| · |1− a− b|n (4.9)

In words, the transition probability converges to equilibrium exponentially fast.
In the case of the weather chain |1− a− b| = 0.4, so the difference between pn

and the limit b/(a + b) goes to 0 faster than (0.4)n.

Proof. Using the Markov property we have for any n ≥ 1 that

pn = pn−1(1− a) + (1− pn−1)b

In words, the chain is in state 1 at time n if it was in state 1 at time n−1 (with
probability pn−1) and stays there (with probability 1− a), or if it was in state
2 (with probability 1− pn−1) and jumps from 2 to 1 (with probability b). Since
the probability of being in state 1 is constant when we start in the stationary
distribution, see the first equation in (4.7):

b

a + b
=

b

a + b
(1− a) +

(
1− b

a + b

)
b

Subtracting this equation from the one for pn we have

pn −
b

a + b
=

(
pn−1 −

b

a + b

)
(1− a) +

(
b

a + b
− pn−1

)
b

=
(

pn−1 −
b

a + b

)
(1− a− b)

If 0 < a + b < 2 then |1− a− b| < 1 and we have∣∣∣∣pn −
b

a + b

∣∣∣∣ =
∣∣∣∣pn−1 −

b

a + b

∣∣∣∣ · |1− a− b|

In words, the difference |pn− b/(a+ b)| will shrink by a factor |1−a− b| at each
step. Iterating the last equation gives the desired result.
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There are two cases a = b = 0 and a = b = 1 in which pn(i, j) does not
converge to π(i). In the first case the matrix is(

1 0
0 1

)
so the state never changes. This is called the identity matrix and denoted by
I, since for any 2 × 2 matrix m, I ·m = m and m · I = m. In the second case
the matrix is

p =
(

0 1
1 0

)
so the chain always jumps. In this case p2 = I, p3 = p, p4 = I, etc. To see that
something similar can happen in a “real example.”

Example 4.15. Ehrenfest chain. Consider the chain defined in Example
4.3 and for simplicty, suppose there are three balls. In this case the transition
probability is

0 1 2 3
0 0 3/3 0 0
1 1/3 0 2/3 0
2 0 2/3 0 1/3
3 0 0 3/3 0

In the second power of p the zero pattern is shifted:

0 1 2 3
0 1/3 0 2/3 0
1 0 7/9 0 2/9
2 2/9 0 7/9 0
3 0 2/3 0 1/3

To see that the zeros will persist, note that if initially we have an odd number
of balls in the left urn, then no matter whether we add or subtract one ball
the result will be an even number. Thus Xn alternates between being odd
and even. To see why this prevents convergence note that p2n(i, i) > 0 while
p2n+1(i, i) = 0.

A second thing that can prevent convergence is shown by

Example 4.16. Reducible chain.

0 1 2 3
0 2/3 1/3 0 0
1 1/5 4/5 0 0
2 0 0 1/2 1/2
3 0 0 1/6 5/6
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In this case if we start at 0 or 1 it is impossible to get to states 2 or 3 and vice
versa, so the 2× 2 blocks of 0’s will persist forever in the matrix.

A remarkable fact about Markov chains (on finite state spaces) is that if we
avoid these two problems then there is a unique stationary distribution π and
pn(i, j)→ π(j). The two conditions are

• p is said to be irreducible if for each i and j it is possible to get from i
to j, i.e., pm(i, j) > 0 for some m ≥ 1.

• a state i is sad to be aperiodic if the greatest common divisor of Ji =
{n ≥ 1 that have pn(i, i) > 0} is 1.

In general the greatest common divisor of Ji is called the period of state i. In
the Ehrenfest chain it is only possible to go from i to i in an even number of
steps so all states have period 2. The next example explains why the definition
is formulated in terms of the greatest common divisor.

Example 4.17. Triangle and Square. The state space is {−2,−1, 0, 1, 2, 3}
and the transition probability is

−2 −1 0 1 2 3
−2 0 0 1 0 0 0
−1 1 0 0 0 0 0
0 0 1/2 0 1/2 0 0
1 0 0 0 0 1 0
2 0 0 0 0 0 1
3 0 0 1 0 0 0

In words, from 0 we are equally likely to go to 1 or −1. From −1 we go
with probability one to −2 and then back to 0, from 1 we go to 2 then to 3 and
back to 0. The name refers to the fact that −1 → −2 → 0 is a triangle and
1→ 2→ 3→ 0 is a square.

� -

?�
�
�
�
�
��

?�

6

-1 0 1

-2 3 2

1/2 1/2
•

•

•

•

•

•

In this case it is easy to check that

J0 = {3, 4, 6, 7, 9, 10, 11, 12, . . .}

so the greatest common divisor of J0 is 1. In this case and in general for aperiodic
states J0 contains all integers beyond some point.
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With the key definitions made we can now state the

Convergence Theorem. If p is irreducible and has an aperiodic state then
there is a unique stationary distribution π and for any i and j

pn(i, j)→ π(j) as n→∞ (4.10)

An easy, but important, special case is

Corollary. If for some n pn(i, j) > 0 for all i and j then there is a unique
stationary distribution π and

pn(i, j)→ π(j) as n→∞ (4.11)

Proof. In this case p is irreducible since it is possible to get from any state to
any other in n steps. All states are aperiodic since we also have pn+1(i, j) > 0,
so n, n + 1 ∈ Ji and hence the greatest common divisor of all the numbers in Ji

is 1.

The Corollary with n = 1 shows that the convergence theorem applies to the
Wright-Fisher model with mutation, weather chain, social mobility, and brand
preference chains that are Examples 4.2, 4.5, 4.6, and 4.7. The Convergence
Theorem does not apply to the Gambler’s Ruin chain (Example 4.1) or the
Wright-Fisher model with no mutations since they have absorbing states and
hence are not irreducible. We have already noted that the Ehrenfest chain
(Example 4.3) does not converge since all states have period 2. This leaves the
inventory chain (Example 4.4):

0 1 2 3 4 5
0 0 0 .1 .2 .4 .3
1 0 0 .1 .2 .4 .3
2 .3 .4 .3 0 0 0
3 .1 .2 .4 .3 0 0
4 0 .1 .2 .4 .3 0
5 0 0 .1 .2 .4 .3

We have two results we can use:

Checking (4.10). To check irreducibility we note that starting from 0, 1, or
5 we can get to 2, 3, 4 and 5 in one step and to 0 and 1 in two steps by going
through 1 or 2. From 2 or 3 we can get to 0, 1, and 2 in one step and to 3, 4,
and 5 in two steps by going through 0. Finally from 4 we can get to 1, 2, 3, and
4 in one step and to 0 or 5 in two steps by going through 2 or 0 respectively.
To check aperiodicity, we note that p(5, 5) > 0 so 5 is aperiodic.
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Checking (4.11). With a calculator we can compute p2:

0 1 2 3 4 5
0 .05 .12 .22 .28 .24 .09
1 .05 .12 .22 .28 .24 .09
2 .09 .12 .16 .14 .28 .21
3 .15 .22 .27 .15 .12 .09
4 .10 .19 .29 .26 .13 .03
5 .05 .12 .22 .28 .24 .09

All entries are positive so (4.11) applies.

Doubly Stochastic Chains. A Markov chain is defined by the condition that∑
j p(i, j) = 1. Suppose that in addition, we have

∑
i p(i, j) = 1. If the chain

has N states then the stationary distribution is π(i) = 1/N since∑
i

π(i)p(i, j) =
1
N

∑
i

p(i, j) =
1
N

To illustrate this consider

Example 4.18. Tiny Board Game. Consider a cricular board game with
only six spaces {0, 1, 2, 3, 4, 5}. On each turn we decide how far to move by
flipping two coins and then moving one space for each heads. Here we consider
5 to be adjacent to 0, so if we are there and get two heads then the result is
5 + 2 mod 6 = 1, where i + k mod 6 is the remainder when i + k is divided by
6. In this case the transition probability is

0 1 2 3 4 5
0 1/4 1/2 1/4 0 0 0
1 0 1/4 1/2 1/4 0 0
2 0 0 1/4 1/2 1/4 0
3 0 0 0 1/4 1/2 1/4
4 1/4 0 0 0 1/4 1/2
5 1/2 1/4 0 0 0 1/4

It is clear that the columns add to one, so the stationary distribution is uniform.
To check the hypothesis of the convergence theorem, we note that after 3 turns
we will have moved between 0 and 6 spaces so p3(i, j) > 0.

Example 4.19. Mathematician’s Monopoly. The game Monopoly is played
on a game board that has 40 spaces arranged around the outside of a square. The
squares have names like Reading Railroad and Park Place but we will number
the squares 0 (Go), 1 (Baltic Avenue), . . . 39 (Boardwalk). In Monopoly you
roll two dice and move forward a number of spaces equal to the sum. For the
moment, we will ignore things like Go to Jail, Chance, and other squares that
make the transitions complicated and formulate the dynamics as following. Let
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rk be the probability that the sum of two dice is k (r2 = 1/36, r3 = 2/36, . . .
r7 = 6/36, . . ., r12 = 1/36) and let

p(i, j) = rk if j = i + k mod 40

where i + k mod 40 is the remainder when i + k is divided by 40. To explain
suppose that we are sitting on Park Place i = 37 and roll k = 6. 37 + 6 = 43
but when we divide by 40 the remainder is 3, so p(37, 3) = r6 = 5/36.

This example is larger but has the same structure as the previous example.
Each row has the same entries but shift one unit to the right each time with the
number that goes off the right edge emerging in the 0 column. This structure
implies that each entry in the row appears once in each column and hence the
sum of the entries in the column is 1, and the stationary distribution is uniform.
To check the hypothesis of the convergence theorem note that in four rolls you
can move forward by 8 to 48 squares, so p4(i, j) > 0 for all i and j.

The real game of Monopoly has two complications:

• Square 30 is “Go to Jail,” which sends you to square 10. You can buy
your way out of jail but in the results we report below, we assume that
you are cheap. If you roll a double then you get out for free. If you don’t
get doubles in three tries you have to pay.

• There are three Chance squares at 7, 12, and 36 (diamonds on the graph),
and three Community Chest squares at 2, 17, 33 (squares on the graph),
where you draw a card, which can send you to another square.

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40

Figure 4.1: Stationary distribution for Monopoly squares, except “In Jail”.

The graph in Figure 4.1 gives the long run frequencies of being in different
squares on the Monopoly board at the end of your turn, as computed by simu-
lation. To make things easier to see we have removed the 9.46% chance of being
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In Jail to make the probabilities easier to see. The value reported for 10 is the
2.14% probability of Just Visiting Jail, i.e., being brought there by the roll of
the dice. Square 30, Go to Jail, has probability 0 for the obvious reasons. The
other three lowest values occur for Chance squares. Due to the transition from
30 to 10, frequencies for squares near 20 are increased relative to the average
of 2.5% while those after 30 or before 10 are decreased. Squares 0 (Go) and 5
(Reading Railroad) are exceptions to this trend since there are Chance card that
instruct you to go there.

Example 4.20. Landing on Go. What is the long run probability that during
one trip around the board in Mathematician’s Monopoly that we land on Go?

Intuitive Solution. Consider instead an infinite board with squares 0, 1, 2, . . .
Rolling two dice we move an average of 7 square per turn, so in the long run we
visit 1/7 of the squares.

Formal Solution. Let Xn = 0 if we visit square n on the infinite board. For
the squares m we do not visit, we define Xm to be the number of steps to the
next square we hit. For example if the first three rolls were 4, 6, and 3.

Xn 0 3 2 1 0 5 4 3 2 1 0 2 1 0
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Let qk be the probability we move forward k squares on one roll and suppose
q0 = 0. Then Xn is a Markov chain with

pj,j−1 = 1 j > 0
p0,k−1 = qk

To check the second note that in the example the first roll is 4 but X1 = 3.
Let rk =

∑∞
j=k+1 qj . We claim that rp = r. To check this, note that to end at

k ≥ 0 there are two possibilities: come down from k + 1 or jump up from 0, so

(rp)k = rk+1 · 1 + r0 · qk+1 = rk

since r0 =
∑∞

j=1 qj = 1 and qk+1 +
∑∞

j=k+2 qj = rk.
To turn r into a stationary distribution we need to divide by

∑∞
k=0 rk. To

evaluate the sum we write

∞∑
k=0

∞∑
j=k+1

qj =
∞∑

j=0

j−1∑
k=0

qj =
∞∑

j=0

jqj = µ

Thus the stationary distribution is πk = rk/µ.
When qk is the probability the sum of two dice is k, then Xn is irreducible

on the state space {0, 1, . . . 11}. p(0, 0) = q1 > 0 so Xn is a periodic and we can
conclude P (Xn = 0)→ 1/µ = 1/7.
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4.5 Gambler’s Ruin

As we have said earlier, the long run behavior of the Gambler’s Ruin chain and
the Wright-Fisher model with no mutation are not very exciting. After a while
the chain enters one of the absorbing states (0 and N) and stays there forever.
Our first question is what is the probability that the chain gets absorbed at N
before hitting 0, i.e., what is the probability that the gambler reaches his goal?

Example 4.21. Flipping coins. A gambler is betting $1 each time on the
outcome of the flip of a fiar coin. He has $10 and will stop when he has $25.
What is the probability he will reach his goal before he runs out of money?

Even though we are only interested in what happens when we start at 10, to
solve this problem we must compute h(x) = the probability of reaching N before
0 starting from x. Of course h(0) = 0 and h(N) = 1. For 0 < x < N , considering
what happens on the first step gives

h(x) =
1
2
h(x− 1) +

1
2
h(x + 1)

In words h(x) is the average of h(x−1) and h(x+1). Multiplying by 2, moving
h(x− 1) to the left, and one of the h(x)’s to the right we have

h(x)− h(x− 1) = h(x + 1)− h(x)

This says that the slope of h is constant or the graph of h is a straight line.
Since h(0) = 0 and h(N) = 1, the slope must be 1/N and

h(x) = x/N (4.12)

Thus the answer to our question is 10/25.
To see that this is reasonable, note that since we are playing a fair game (i.e.,

the average winnings on any play is 0) the average amount of money we have
at any time is the $10 we started with. When the game ends we will have $25
with probability p and $0 with probability 1− p. For the expected value to be
$10 we must have p = 10/25. This calculation extends esily to the general case:
when the game ends we will have $N with probability p and $0 with probability
1− p. If we start with $x then the expected value at the end should also be $x
and we must have p = x/N .

Example 4.22. Wright-Fisher model. As described in Example 4.2, if we
let Xn be the number of A alleles at time n, then Xn is a Markov chain with
transition probability

p(x, y) =
(

N

y

) ( x

N

)j (
1− x

N

)N−y

0 and N are absorbing states. What is the probability the chain ends up in N
starting from x.



134 CHAPTER 4. MARKOV CHAINS

Extending the reasoning in the previous example, we see that if h(x) is the
probability of getting absorbed in state N when we start in state x then h(0) = 0,
h(N) = 1, and for 0 < x < N

h(x) =
∑

y

p(x, y)h(y) (4.13)

In words if we jump from x to y on the first step then our absorption probability
becomes h(y).

In the Wright-Fisher model p(x, y) is the binomial distribution for N in-
dependent trials with success probability x/N , so the expected number of A’s
after the transition is x, i.e., the expected number of A’s remains constant in
time. Using the reasoning from the previous example, we guess

h(y) = y/N

Clearly, h(0) = 0 and h(N) = 1. To check (4.13) we note that∑
y

p(x, y)y/N = x/N

since the mean of the binomial is x.
The formula h(y) = y/N says that if we start with y A’s in the propulation

then the probability we will end with a population of all A’s (an event called
“fixation” in genetics) is y/N , the fraction of the population that is A. The
case y = 1 is a famous result due to Kimura: the probability of fixation of a
new mutation is 1/N . If we suppose that each individual experiences mutations
at rate µ, then since there are N individuals, new mutations occur at a total
rate Nµ. Since each mutation achieves fixation with probability 1/N , the rate
at which mutations become fixed is µ independent of the size of population.

Example 4.23. Roulette. Suppose now that the gambler is playing roulette
where he will win $1 with probability p = 18/38 and lose $1 with probability
1 − p = 20/38 each time. He has $25 and will stop when he has $50. What is
the probability he will reach his goal before he runs out of money? Note if this
was a fair game his success probability would be 0.5.

Again we let h(x) = the probability of reaching N before 0 starting from x. Of
course h(0) = 0 and h(N) = 1. For 0 < x < N , (4.13) implies

h(x) = (1− p)h(x− 1) + ph(x + 1)

Moving (1− p)h(x− 1) to the left, and ph(x) to the right we have

(1− p)(h(x)− h(x− 1)) = p(h(x + 1)− h(x))

which rearranges to

h(x + 1)− h(x) =
1− p

p
(h(x)− h(x− 1)) (?)
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We know that h(0) = 0. We don’t know h(1), so we let h(1) = c. Using (?)
repeatedly we have

h(2)− h(1) =
1− p

p
(h(1)− h(0) =

(
1− p

p

)
c

h(3)− h(2) =
1− p

p
(h(2)− h(1) =

(
1− p

p

)2

c

h(4)− h(3) =
1− p

p
(h(1)− h(0) =

(
1− p

p

)3

c

From this is should be clear that

h(x + 1)− h(x) =
(

1− p

p

)x

c

Writing r = (1− p)/p to simplify, and recalling h(0) = 0 we have

h(y) = h(y)− h(0) =
y∑

x=1

h(x)− h(x− 1)

= (ry−1 + ry−2 + · · ·+ r + 1)c =
ry − 1
r − 1

· c

since (ry−1 + ry−2 + · · ·+ r +1)(r− 1) = ry − 1. We want h(N) = 1 so we must
have c = (r − 1)/(rN − 1). It follows that

h(y) =
ry − 1
rN − 1

=

(
1−p

p

)y

− 1(
1−p

p

)N

− 1
(4.14)

To see what this says for our roulette example we take p = 18/38, x = 25,
N = 50. In this case (1− p)/p = 10/9 so the probability we succeed is

(10/9)25 − 1
(10/9)50 − 1

=
12.929
193.03

= 0.067

compared to 0.5 for the fair game.
Now let’s turn things around and look at the game from the viewpoint of the

casino, i.e., p = 20/38. Suppose that the casino starts with the rather modest
capital of x = 100. (4.14) implies that the probability they will reach N before
going bankrupt is

(9/10)100 − 1
(9/10)N − 1

If we let N →∞, (9/10)N → 0 so the answer converges to

1− (9/10)100 = 1− 2.656× 10−5

If we increase the capital to $200 then the failure probability is squared, since to
become bankrupt we must first lose $100 and then lose our second $100. In this
case the failure probability is incredibly small: (2.656×10−5)2 = 7.055×10−10.
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4.6 Absorbing Chains

In this section we consider general Markov chains with absorbing states. The
two questions of interest are: ”where does the chain get absorbed?” and ”how
long does it take to get there?” We begin with a simple example.

Example 4.24. Two year college. At a local two year college. 60% of
freshmen become sophomores, 25% remain freshmen, and 15% drop out. 70% of
sophomores graduate and transfer to a four year college, 20% remain sophomores
and 10% drop out. What fraction of new students eventually graduate?

We use a Markov chain with state space 1 = freshman, 2 = sophomore, G
= graduate, D = dropout. The transition probability is

1 2 G D
1 0.25 0.6 0 0.15
2 0 0.2 0.7 0.1
G 0 0 1 0
D 0 0 0 1

Let h(x) be the probability that a student currently in state x eventually grad-
uates. By considering what happens on one step

h(1) = 0.25h(1) + 0.6h(2)
h(2) = 0.2h(2) + 0.7

so h(2) = 0.7/0.8 = 0.875 and h(1) = (0.6)/(0.75)h(2) = 0.7.
To check these answers we will look at powers of the transition probability

p2 =

1 2 G D
1 0.0625 0.27 0.42 0.2475
2 0 0.04 0.84 0.12
G 0 0 1 0
D 0 0 0 1

From this we see that the fraction of freshmen who graduate in two years is
p2(1, G) = 0.42 = 0.6(0.7) = p(1, 2)p(2, G). After three years

p3 =

1 2 G D
1 0.015625 0.0915 0.609 0.283875
2 0 0.008 0.868 0.124
G 0 0 1 0
D 0 0 0 1

while after 6 years very few people are still trying to get their degrees

p6 =

1 2 G D
1 0.000244 0.002161 0.697937 0.283875
2 0 0.000064 0.874944 0.124492
G 0 0 1 0
D 0 0 0 1
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Example 4.25. Tennis. In tennis the winner of a game is the first player to win
four points, unless the score is 4−3, in which case the game must continue until
one player wins by two points. Suppose that the game has reached the point
where one player is trying to get two points ahead to win and that the server
will independently win the point with probability 0.6. What is the probability
the server will win the game if the score is tied 3-3? if she is ahead by one point?
Behind by one point?

We formulate the game as a Markov chain in which the state is the difference
of the scores. The state space is 2, 1, 0,−1,−2 with 2 (win for server) and −2
(win for opponent). The transition probability is

p =

2 1 0 −1 −2
2 1 0 0 0 0
1 .6 0 .4 0 0
0 0 .6 0 .4 0
−1 0 0 .6 0 .4
−2 0 0 0 0 1

If we let h(x) be the probability of the server winning when the score is x then

h(x) =
∑

y

p(x, y)h(y)

with h(2) = 1 and h(−2) = 0. This involves solving three equations in three
unknowns. The computations become much simpler if we look at

p2 =

2 1 0 −1 −2
2 1 0 0 0 0
1 .6 .24 0 .16 0
0 .36 0 .48 0 .16
−1 0 .36 0 .24 .4
−2 0 0 0 0 1

From p2 we see that
h(0) = 0.36 + 0.48h(0)

so h(0) = 0.36/0.52 = 0.6923. By considering the outcome of the first point we
see that h(1) = 0.6 + 0.4h(0) = 0.8769 and h(−1) = 0.6h(0) = 0.4154.

General solution. Suppose that the server wins each point with probability
w. If the game is tied then after two points, the server will have won with
probability w2, lost with probability (1−w)2, and returned to a tied game with
probability 2w(1 − w), so h(0) = w2 + 2w(1 − w)h(0). Since 1 − 2w(1 − w) =
w2 + (1− w)2, solving gives

h(0) =
w2

w2 + (1− w)2
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Figure 4.2: Probability of winning a tied game as a function of the probability
of winning a point.

Absorption times

Example 4.26. An office computer is in one of three states, working (W),
being repaired (R), or scrapped (S). If the computer is working one day the
probability it will be working the next day is .995 and the probability it will
need repair is .005. If it is being repaired then probability it is working the
next day is .9, the probability it still needs repair the next day is .05 and the
probability it will be scrapped is .05. What is the average number of working
days until a computer is scrapped?

Leaving out the absorbing state of being scrapped the reduced transition
probability is

r =
W R

W .995 .005
R .90 .05

To see that this is enough of the matrix to compute what we want note that
rn(W,W ) gives the probability a computer is working on day n, so

∑∞
n=0 rn(W,W )

gives the expected number of days that it is working. To see this, let Yn = 1 if
the computer is working on day n and 0 otherwise, then Y =

∑∞
n=0 Yn is the

number of days the computer is working

EY = E

∞∑
n=0

Yn =
∞∑

n=0

EYn =
∞∑

n=0

rn(W,W )

By analogy with the geometric series
∑∞

n=0 xn = 1/(1 − x) we can guess
that

∞∑
n=0

rn = (I − r)−1 (4.15)
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where I is the identity matrix, and r0 = I. To check this we note that

(I − r)
∞∑

n=0

rn =
∞∑

n=0

rn −
∞∑

n=1

rn = r0 = I

Computing the inverse

(I − r)−1 =
W R

W 3800 20
R 3600 20

we see that on the average a working computer will work for 3800 days and will
spend 20 days being repaired.

(I − r)−1 is sometimes called the fundamental matrix because it is the
key to computing many quantities for absorbing Markov chains.

Example 4.27. A local cable company classifies their customers according to
how many months overdue their bill is: 0,1,2,3. Accounts that are three months
overdue are discontinued (D) if they are not paid. The company estimates that
transitions occur according to the following probabilities:

0 1 2 3 D
0 .9 .1 0 0 0
1 .8 0 .2 0 0
2 .7 0 0 .3 0
3 .6 0 0 0 .4
D 0 0 0 0 1

What is the expected number of months for a new customer (i.e., one who starts
in state 0) to have their service discontinued?

Let r be the reduced 4× 4 matrix of transitions between the non-absorbing
states, 0–3.

(I − r)−1 =

416.66 41.66 8.33 2.5
406.66 41.66 8.33 2.5
366.66 36.66 8.33 2.5
250 25 5 2.5

The first row gives the expected number of visits to each of the four states
starting from 0 so the expected time is 416.66 + 41.66 + 8.33 + 2.5 = 469.16.

Returning to our first two examples:

Example 4.28. Two year college. Consider the transition probability in
Example 4.24. How many years on the average does it take for a freshman to
graduate or dropout?
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Removing the absorbing states from the transition probability, we obtain
the reduced matrix

r =
1 2

1 0.25 0.6
2 0 0.2

From this we compute

(I − r)−1 =
1 2

1 1.33 1
2 0 1.25

so, on the average, a freshman takes 1.33 + 1 = 2.33 years to either graduate or
drop out.

Example 4.29. Tennis. Consider the transition probability in Example 4.25.
Suppose that game is tied 3-3? How many more points do we expect to see
before the game ends?

Removing the absorbing states from the transition probability, we obtain
the reduced matrix

r =

1 0 −1
1 0 .4 0
0 .6 0 .4
−1 0 .6 0

From this we compute

(I − r)−1 =

1 0 −1
1 1.4615 .7692 .307
0 1.1538 1.09230 .769
−1 .6923 1.1538 1.461

so, on the average, a tied game requires 1.1538+1.09230+ .769 = 3.8458 points
to be completed.

The fundamental matrix can also be used to compute the probability of
winning the game. To see this we note that in order to end in state 2, the chain
must wander among the nonabsorbing states for some number of times n and
then jump from some state y to state 2, i.e.,

h(x) =
∑

y

∞∑
n=0

rn(x, y)p(y, 2) = (I − r)−1(x, y)p(y, 2)

In the case of the tennis chain. p(y, 2) = 0 unless y = 1 and in this case
p(1, 2) = 0.6 so

h(x) = 0.6(I − p)−1(x, 1)

Multiplying the first column of the previous matrix by 0.6 we get the answers
we found in Example 4.25:

.8769 .6923 .4154
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4.7 Exercises

Transition Probabilities

1. What values of x, y, z will make these matrices transition probabilities:

a.
.5 .1 x
y .2 .4
.3 z .1

b.
x .1 .7
.2 .3 y
.6 z .2

2. A red urn contains 2 red marbles and 3 blue marbles. A blue urn contains 1
red marble and 4 blue marbles. A marble is selected from an urn, the marble is
returned to the urn from which it was drawn and the next marble is drawn from
the urn with the color that was drawn. (a) Write the transition probability for
this chain. (b) Suppose the first marble is drawn from the red urn. What is the
probability the third one will be drawn from the blue urn?

3. At Llenroc College, 63% of freshmen who are pre-med switch to a liberal
arts major, while 18% of liberal arts majors switch to being pre-med. If the
incoming freshman class is 60% pre-med and 40% liberal arts majors, what
fraction graduate as pre-med?

4. A person is flipping a coin repeatedly. Let Xn be the outcome of the two
previous coin flips at time n, for example the state might be HT to indicate that
the last flip was T and the one before that was H. (a) compute the transition
probability for the chain. (b) Find p2.

5. A taxicab driver moves between the airport A and two hotels B and C
according to the following rules. If he is at the airport, he will go to one of
the two hotels next with equal probability. If at a hotel then he returns to the
airport with probability 3/4 and goes to the other hotel with probability 1/4.
(a) Find the transition matrix for the chain. (b) Suppose the driver begins at
the airport at time 0. Find the probability for each of his three possible locations
at time 2 and the probability he is at hotel B at time 3.

6. Consider a gambler’s ruin chain with N = 4. That is, if 1 ≤ i ≤ 3, p(i, i+1) =
0.4, and p(i, i − 1) = 0.6, but the endpoints are absorbing states: p(0, 0) = 1
and p(4, 4) = 1 Compute p3(1, 4) and p3(1, 0).

7. An outdoor restaurant in a resort town closes when it rains. From past
records it was found that from May to Sptember, when it rains one day the
probaiblity that it rains the next is 0.4; when it does not rain one day it rains
the next with probability 0.1. (a) Write the transition matrix. (b) If it rained
on Thursday what is the probability that it will rain on Saturday? on Sunday?

8. Market research suggests that in a five year period 8% of people with cable
television will get rid of it, and 26% of those without it will sign up for it.
Compare the predictions of the Markov chain model with the following data on
the fraction of people with cable TV: 56.4% in 1990, 63.4% in 1995, and 68.0%
in 2000.
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9. A sociology professor postulates that in each decade 8% of women in the
work force leave it and 20% of the women not in it begin to work. Compare the
predictions of his model with the following data on the percentage of women
working: 43.3% in 1970, 51.5% in 1980, 57.5% in 1990, and 59.8% in 2000.

10. The following transition probability describes the migration patterns of
birds between three habitats

1 2 3
1 .75 .15 .10
2 .07 .85 .08
3 .05 .15 .80

If there are 1000 birds in each habitat at the beginning of the first year, how
many do we expect to be in each habitat at the end of the year? at the end of
the second year?

Convergence to Equilibrium

11. A car rental company has rental offices at both Kennedy and LaGuardia
airports. Assume that a car rented at one airport must be returned to one of
the two airports. If the car was rented at LaGuardia the probability it will be
returned there is 0.8; for Kennedy the probability is 0.7. Suppose that we start
with 1/2 of the cars at each airport and that each week all of the cars are rented
once. (a) What is the fraction of cars at LaGuardia ariport at the end of the
first week? (b) at the end of the second? (c) in the long run?

12. The 1990 census showed that 36% of the households in the District of
Columbia were homeowners while the reaminder were renters. During the next
decade 6% of the homeowners became renters and 12% of the renters became
homeowners. (a) What percentage were homeowners in 2000? in 2010? (b) If
these trends continue what will be the long run fraction of homeowners?

13. Most railroad cars are owned by individual railroad companies. When a
car leaves its home railroad’s trackage, it becomes part of the national pool of
cars and can be used by other railroads. A particular railroad found that each
month 15% of its boxcars on its home trackage left to join the national pool
and 40% of its cars in the national pool were returned to its home trackage. A
company begins on January 1 with all of its cars on its home trackage. What
fraction will be there on March 1? At the end of the year? In the long run what
fraction of a company’s cars will be on its home trackage.

14. A rapid transit system has just started operating. In the first month of
operation, it was found that 25% of commuters are using the system while 75%
are travelling by automobile. Suppose that each month 10% of transit users go
back to using their cars, while 30% of automobile users switch to the transit
system. (a) Compute the three step transition probaiblity p3. (b) What will be
the fractions using rapid transit in the fourth month? (c) In the long run?

15. A regional health study indicates that from one year to the next, 75%
percent of smokers will continue to smoke while 25% will quit. 8% of those
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who stopped smoking will resume smoking while 92% will not. If 70% of the
population were smokers in 1995, what fraction will be smokers in 1998? in
2005? in the long run?

16. The town of Mythica has a “free bikes for the people program.” You can
pick up bikes at the library (L), the coffee shop (C) or the cooperative grocery
store (G). The director of the program has determined that if a bike is picked up
at the library ends up at the coffee shop with probability 0.2 and at the grocery
store with probability 0.3. A bike from the coffee shop will go to the library
with probability 0.4 and to the grocery store with probability 0.1. A bike from
the grocery store will go to the library or the coffee shop with probability 0.25
each. On Sunday there are an equal number of bikes at each place. (a) What
fraction of the bikes are at the three locations on Tuesday? (b) on the next
Sunday? (c) In the long run what fraction are at the three locations?

17. Bob eats lunch at the campus food court every week day. He either eats
Chinese food, Quesadila, or Salad. His transition matrix is

C Q S
C .15 .6 .25
Q .4 .1 .5
S .1 .3 .6

He had Chinese food on Monday. What are the probabilities for his three meal
choices on Friday (four days later).

Asymptotic Behavior: Two state chains

18. Census results reveal that in the United States 80% of the daughters of
working women work and that 30% of the daughters of nonworking women
work. (a) Write the transition probability for this model. (b) In the long run
what fraction of women will be working?

19. Three of every four trucks on the road are followed by a car, while only one
of every five cars is followed by a truck. What fraction of vehicles on the road
are trucks?

20. In a test paper the questions are arranged so that 3/4’s of the time a True
answer is followed by a True, while 2/3’s of the time a False answer is followed
by a False. You are confronted with a 100 question test paper. Approximately
what fraction of the answers will be True.

21. When a basketball player makes a shot then he tries a harder shot the next
time and hits (H) with probability 0.4, misses (M) with probability 0.6. When
he misses he is more conservative the next time and hits (H) with probability
0.7, misses (M) with probability 0.3. (a) Write the transition probability for
the two state Markov chain with state space {H,M}. (b) Find the long-run
fraction of time he hits a shot.

22. A regional health study shows that from one year to the next 76% of the
people who smoked will continue to smoke and 24% will quite. 8% of those
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who do not moke will start smoking while 92% of those who do not smoke will
continue to be nonsmokers. In the long run what fraction of people will be
smokers?

23. In unprofitable times corporations sometimes suspend dividend payments.
Suppose that after a dividend has been paid the next one will be paid with prob-
ability 0.9, while after a dividend is suspended the next one will be suspended
with probability 0.6. In the long run what is the fraction of dividends that will
be paid?

24. A university computer room has 30 terminals. Each day there is a 3%
chance that a given terminal will break and a 72% chance that a given broken
terminal will be repaired. Assume that the fates of the various terminals are
independent. In the long run what is the distribution of the number of terminals
that are broken.

Asymptotic Behavior: Three or more states

25. A plant species has red, pink, or white flowers according to the genotypes
RR, RW, and WW, respectively. If each of these genotypes is crossed with a
pink (RW ) plant then the offspring fractions are

RR RW WW
RR .5 .5 0
RW .25 .5 .25
WW 0 .25 .5

What is the long run fraction of plants of the three types?

26. A certain town never has two sunny days in a row. Each day is classified
as rainy, cloudy, or sunny. If it is sunny one day then it is equally likely to be
cloudy or rainy the next. If it is cloudy or rainy, then it remains the same 1/2
of the time, but if it changes it will go to either of the other possibilities with
probability 1/4 each. In the long run what proportion of days in this town are
sunny? cloudy? rainy?

27. A midwestern university has three types of health plans: a health main-
tenance organization (HMO), a preferred provider organization (PPO), and a
traditional fee for service plan (FFS). In 2000, the prcentages for the three
plans were HMO:30%, PPO:25%, and FFS:45%. Experience dictates that
people change plans according to the following transition matrix

HMO PPO FFS
HMO .85 .1 .05
PPO .2 .7 .1
FFS .1 .3 .6

(a) What will be the precentages for the three plans in 2001? (b) What is the
long run fraction choosing each of the three plans?
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28. A sociologist studying living patterns in a certain region determines that
the pattern of movement between urban (U), suburban (S), and rural areas (R)
is given by the following transition matrix.

U S R
U 0.86 0.08 0.06
S 0.05 0.88 0.07
R 0.03 0.05 0.92

In the long run what fraction of the population will live in the three areas.

29. In a large metropolitan area, commuters either drive alone (A), carpool
(C), or take public transportation (T). A study showed that 80% of those who
drive alone will continue to do so next year, while 15% will switch to carpooling
and 5% will use public transportation. 90% of those who carpool will continue,
while 5% will drive alone and 5% will use public transportation. 85% of those
who use public transportation will continue, while 10% will carpool, and 5%
will drive alone. Write the transition probability for the model. In the long run
what fraction of commuters will use the three types of transportation?

30. In a particular county voters declare themselves as members of the Republi-
can, Democrat, or Green party. No voters change directly from the Republican
to Green party or vice versa. In a given year 15% of Republicans and 5% of
Green party mmembers will become Democrats, while 5% of Democrats switch
to the Republican party and 10% to the Green party. Write the transition
psrobability for the model. In the long run what fraction of voters will belong
to the three parties.

31. (a) Three telephone companies A, B, and C compete for customers. Each
year A loses 5% of its customes to B and 20% to C; B loses 15% of its customers
to A and 20% to C; C loses 5% its customes to A and 10% to B. (a) Write the
transition matrix for the model. (b) What is the limiting market share for each
of these companies?

32. An auto insurance company classifies its customers in three categories:
poor, satisfactory and preferred. No one moves from poor to preferred or from
preferred to poor in one year. 40% of the customers in the poor category become
satisfactory, 30% of those in the satisfactory category moves to preferred, while
10% become poor; 20% of those in the preferred category are downgraded to
satisfatory. (a) Write the transition matrix for the model. (b) What is the
limiting fraction of drivers in each of these categories?

33. A professor has two light bulbs in his garage. When both are burned out,
they are replaced, and the next day starts with two working light bulbs. Suppose
that when both are working, one of the two will go out with probability .02 (each
has probability .01 and we ignore the possibility of losing two on the same day).
However, when only one is there, it will burn out with probability .05. What is
the long-run fraction of time that there is exactly one bulb working?
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34. An individual has three umbrellas, some at her office, and some at home. If
she is leaving home in the morning (or leaving work at night) and it is raining,
she will take an umbrella, if one is there. Otherwise, she gets wet. Assume that
independent of the past, it rains on each trip with probability 0.2. To formulate
a Markov chain, let Xn be the number of umbrellas at her current location. (a)
Find the transition probability for this Markov chain. (b) Calculate the limiting
fraction of time she gets wet.

35. At the end of a month, a large retail store classifies each of its customer’s
accounts according to current (0), 30–60 days overdue (1), 60–90 days overdue
(2), more than 90 days overdue (3). Their experience indicates that the accounts
move from state to state according to a Markov chain with transition probability
matrix:

0 1 2 3
0 .9 .1 0 0
1 .8 0 .2 0
2 .5 0 0 .5
3 .1 0 0 .9

In the long run what fraction of the accounts are in each category?

36. At the beginning of each day, a piece of equipment is inspected to determine
its working condition, which is classified as state 1 = new, 2, 3, or 4 = broken.
We assume the state is a Markov chain with the following transition matrix:

1 2 3 4
1 .95 .05 0 0
2 0 .9 .1 0
3 0 0 .875 .125

(a) Suppose that a broken machine requires three days to fix. To incorporate
this into the Markov chain we add states 5 and 6 and suppose that p(4, 5) = 1,
p(5, 6) = 1, and p(6, 1) = 1. Find the fraction of time that the machine is
working. (b) Suppose now that we have the option of performing preventative
maintenance when the machine is in state 3, and that this maintenance takes one
day and returns the machine to state 1. This changes the transition probability
to

1 2 3
1 .95 .05 0
2 0 .9 .1
3 1 0 0

Find the fraction of time the machine is working under this new policy.

37. To make a crude model of a forest we might introduce states 0 = grass, 1
= bushes, 2 = small trees, 3 = large trees, and write down a transition matrix
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like the following:
0 1 2 3

0 1/2 1/2 0 0
1 1/24 7/8 1/12 0
2 1/36 0 8/9 1/12
3 1/8 0 0 7/8

The idea behind this matrix is that if left undisturbed a grassy area will see
bushes grow, then small trees, which of course grow into large trees. However,
disturbances such as tree falls or fires can reset the system to state 0. Find the
limiting fraction of land in each of the states.

38. Five white balls and five black balls are distributed in two urns in such a
way that each urn contains five balls. At each step we draw one ball from each
urn and exchange them. Let Xn be the number of white balls in the left urn at
time n. (a) Compute the transition probability for Xn. (b) Find the stationary
distribution and show that it corresponds to picking five balls at random to be
in the left urn.

Absorbing Chains

39. Two competing companies are trying to buy up all of the farms in a certain
area to build houses. In each year 10% of farmers sell to company 1, 20% sell
to company 2, and 70% keep farming. Neither company ever sells any of the
farms that they own. Eventually all of the farms will be sold. How many will
be owned by company 1?

40. A warehouse has a capacity to hold four items. If the warehouse is neither
full nor empty, the number of items in the warehouse changes whenever a new
item is produced or an item is sold. Suppose that (no matter when we look)
the probability that the next event is “a new item is produced” is 2/3 and that
the new event is a “sale” is 1/3. If there is currently one item in the warehouse,
what is the probability that the warehouse will become full before it becomes
empty.

41. The Macrosoft company gives each of its employees the title of programmer
(P) or project manager (M). In any given year 70% of programmers remain in
that position 20% are promoted to project manager and 10% are fired (state
X). 95% of project managers remain in that position while 5% are fired. How
long on the average does a programmer work before they are fired?

42. At a nationwide travel agency, newly hired employees are classifed as be-
ginners (B). Every six months the performance of each agent is reviewed. Past
records indicate that transitions through the ranks to intermediate (I) and qual-
ified (Q) are according to the following Markov chain, where F indicates workers
that were fired:

B I Q F
B .45 .4 0 .15
I 0 .6 .3 .1
Q 0 0 1 0
F 0 0 0 1
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(a) What fraction are eventually promoted? (b) What is the expected time until
a beginner is fired or becomes qualified?

43. At a manufacturing plant, employees are classified as trainee (R), technician
(T) or supervisor (S). Writing Q for an employee who quits we model their
progress through the ranks as a Markov chain with transition probability

R T S Q
R .2 .6 0 .2
T 0 .55 .15 .3
S 0 0 1 0
Q 0 0 0 1

(a) What fraction of recruits eventually make supervisor? (b) What is the
expected time until a trainee auits or becomes supervisor?

44. The two previous problems have the following form:

1 2 A B
1 1− a− b a 0 b
2 0 1− c− d c d
A 0 0 1 0
B 0 0 0 1

Show that (a) the probability of being absorbed in A rather than B is ac/(a +
b)(c + d) and (b) the expected time to absorption starting from 1 is 1/(a + b) +
a/(a + b)(c + d).

45. The Markov chain associated with a manufacturing process may be de-
scribed as follows: A part to be manufactured will begin the process by entering
step 1. After step 1, 20% of the parts must be reworked, i.e., returned to step
1, 10% of the parts are thrown away, and 70% proceed to step 2. After step 2,
5% of the parts must be returned to the step 1, 10% to step 2, 5% are scrapped,
and 80% emerge to be sold for a profit. (a) Formulate a four-state Markov chain
with states 1, 2, 3, and 4 where 3 = a part that was scrapped and 4 = a part
that was sold for a profit. (b) Compute the probability a part is scrapped in
the production process.

46. Six children (Dick, Helen, Joni, Mark, Sam, and Tony) play catch. If Dick
has the ball he is equally likely to throw it to Helen, Mark, Sam, and Tony. If
Helen has the ball she is equally likely to throw it to Dick, Joni, Sam, and Tony.
If Sam has the ball he is equally likely to throw it to Dick, Helen, Mark, and
Tony. If either Joni or Tony gets the ball, they keep throwing it to each other. If
Mark gets the ball he runs away with it. (a) Find the transition probability. (b)
Suppose Dick has the ball at the beginning of the game. What is the probability
Mark will end up with it?




