
Chapter 3

Conditional Probability

3.1 Definition

Suppose we are told that the event A with P (A) > 0 occurs. As explained in
Section 1.3, then the sample space is reduced from Ω to A and by (1.6) and the
probability that B will occur given that A has occurred is

P (B|A) =
P (B ∩A)

P (A)
(3.1)

Example 3.1. Suppose we roll two dice. Let A = “the sum is 8,” and B =
“the first die is 3.” A = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}, so P (A) = 5/36.
A ∩B = {(3, 5)}, so

P (B|A) =
1/36
5/36

=
1
5

The same result holds if B = “The first die is k” and 2 ≤ k ≤ 6. Carrying this
reasoning further, we see that given the outcome lies in A, all five possibilities
have the same probability. This should not be surprising. The original probabil-
ity is uniform over the 36 possibilities, so when we condition on the occurrence
of A, its five outcomes are equally likely.

As the last example may have suggested, the mapping B → P (B|A) is a
probability. That is, it is a way of assigning numbers to events that satisfies the
axioms introduced in Chapter 1. To prove this, we note that

(i) 0 ≤ P (B|A) ≤ 1 since 0 ≤ P (B ∩A) ≤ P (A).

(ii) P (Ω|A) = P (Ω ∩A)/P (A) = 1

(iii) and (iv). If Bi are disjoint then Bi ∩ A are disjoint and (∪iBi) ∩ A =
∪i(Bi ∩A), so using the definition of conditional probability and parts (iii) and
(iv) of the definition of probability we have

P (∪iBi|A) =
P (∪i(Bi ∩A))

P (A)
=

∑
i P (Bi ∩A)

P (A)
=

∑
i

P (Bi|A)
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From the last observation it follows that P (·|A) has the same properties that
ordinary probabilities do, for example, if C = Bc

P (C|A) = 1− P (B|A) (3.2)

Actually for this to hold, it is enough that B and C complement each other
inside A, i.e., (B ∩ C) ∩A = ∅ and (B ∪ C) ⊃ A.

Example 3.2. Alice and Bob are playing a gambling game. Each rolls one die
and the person with the higher number wins. If they tie then they roll again.
If Alice just won, what is the probability she rolled a 5?

Let A = “Alice wins,” and Ri she rolls an i. If we write outcomes with
Alice’s roll first and Bob’s second, the event A

(2,1) (3,1) (4,1) (5,1) (6,1)
(3,2) (4,2) (5,2) (6,2)

(4,3) (5,3) (6,3)
(5,4) (6,4)

(6,5)

There are 1 + 2 + 3 + 4 + 5 = 21 outcomes in A and if we condition on A they
are all equally likely. A∩R5 has four outcomes, so P (R5|A) = 4/21. In general,
P (Ri|A) = (i− 1)/21 for 1 ≤ i ≤ 6.

Example 3.3. A person picks 13 cards out of a deck of 52. Let A1 = “he
hass at least one Ace,” H = “he has the Ace of hearts,” and E1 = “he receives
exactly one Ace.” Find P (E1|A1) and P (E1|H). Do you think these will be
equal? If not then which one is larger?

Let E0 = “he has no Ace.”

p0 = P (E0) =
C48,13

C52,13
p1 = P (E1) =

4C48,12

C52,13

Since E1 ⊂ A1 and A1 = Ec
0,

P (E1|A1) =
P (E1)
P (A1)

=
p1

1− p0

Since E1 ∩H means you get the Ace of Hearts and no other ace

P (E1|H) =
P (E1 ∩H)

P (H)
=

C48,12/C52,13

1/4
= p1

To compare the probabilities we observe

P (E1|A1) =
p1

1− p0
> p1 = P (E1|H)
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Letting A2 = “he has at least two Aces and using (3.2) we have

P (A2|A1) < P (A2|H)

Intuitively, the event H is harder to achieve than A1 so conditioning on it
increases our chance of having other aces.

Multiplying the definition of conditional probability in (2.1) on each side by
P (A) gives the multiplication rule

P (A)P (B|A) = P (B ∩A) (3.3)

Example 3.4. Suppose we draw two cards out of a deck of 52. What is the
probability both cards are spades?

Let A = “the first card is a spade,” B = “the second card is a spade.” P (A) =
1/13. To compute P (B|A) we note that if A has occurred then only 12 of the
remaining 51 cards are spades, so P (B|A) = 12/51 and

P (A ∩B) = P (A)P (B|A) =
13
52

· 12
51

Note that in this example we computed P (B|A) by thinking about the situation
that exists after A has occurred, rather than using the definition P (B|A) =
P (A∩B)/P (A). Indeed, it is more common to use P (A) and P (B|A) to compute
P (A ∩B) than to use P (A) and P (A ∩B) to compute P (B|A).

Example 3.5. The Cornell hockey team is playing in a four team tournament.
In the first round they have any easy opponent that they will beat 80% of the
time but if they win that game they will play against a tougher team where
their probability of success is 0.4. What is the probability that they will win
the tournament?

0.8

0.2

0.4

0.6

Win

Lose
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Win-win 0.32

Win-lose 0.48
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If A and B are the events of victory in the first and second games then P (A) =
0.8 and P (B|A) = 0.4, so the probability that they will win the tournament is

P (A ∩B) = P (A)P (B|A) = 0.8(0.4) = 0.32

The reasoning in the last two examples extends easily to three events:

P (A1 ∩A2 ∩A3) = P (A1)P (A2|A1)P (A3|A1 ∩A2)

since the right-hand side is equal to

P (A1) ·
P (A1 ∩A2)

P (A1)
· P (A1 ∩A2 ∩A3)

P (A1 ∩A2)

Example 3.6. In the town of Mythica 90% of students graduate high school,
60% of high school graduates complete college, and 20% of college graduates
get graduate or professional degrees. What fraction of students get advanced
degrees?

Answer = (0.9)(0.6)(0.2) = 0.108.

The formula for three events generalizes to any number of events.

Example 3.7. What is the probability of a flush, i.e., all cards of the same suit
when we draw 5 cards out of a deck of 52?

1 · 12
51

· 11
50

· 10
49

· 9
48

The first time we can draw anything. On the second draw we must pick one
of the other 12 cards in that suit among the 51 that remain. If we succeed on
the second draw then there are 11 good cards out of 50, etc.

Conditional probabilities are the sources of many “paradoxes” in probability.
One of these attracted worldwide attention in 1990 when Marilyn vos Savant
discussed it in her weekly column in the Sunday Parade magazine.

Example 3.8. The Monty Hall problem. The problem is named for the
host of the television show Let’s Make A Deal in which contestants were often
placed in situations like the following: Three curtains are numbered 1, 2, and
3. Behind one curtain is a car; behind the other two curtains are donkeys. You
pick a curtain, say #1. To build some suspense the host opens up one of the
two remaining curtains, say #3, to reveal a donkey. What is the probability you
will win given that there is a donkey behind #3? Should you switch curtains
and pick #2 if you are given the chance?

Many people argue that “the two unopened curtains are the same so they
each will contain the car with probability 1/2, and hence there is no point in
switching.” As we will now show, this naive reasoning is incorrect. To compute
the answer, we will suppose that the host always chooses to show you a donkey
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and picks at random if there are two unchosen curtains with donkeys. Assuming
you pick curtain #1, there are three possibilities

#1 #2 #3 host’s action
case 1 donkey donkey car opens #2
case 2 donkey car donkey opens #3
case 3 car donkey donkey opens #2 or #3

Now P (case 2, open door #3) = 1/3 and

P (case 3, open door #3) = P (case 3)P (open door #3|case 3) =
1
3
· 1
2

=
1
6

Adding the two ways door #3 can be opened gives P (open door #3) = 1/2 and
it follows that

P (case 3|open door #3) =
P (case 3, open door #3)

P (open door #3)
=

1/6
1/2

=
1
3

Although it took a number of steps to compute this answer, it is “obvious.”
When we picked one of the three doors initially we had probability 1/3 of picking
the car, and since the host can always open a door with a donkey the new
information does not change our chance of winning.

The paradox actually predates the game show in the following form. Three
prisoners, Al, Bob, and Charlie, are in a cell. At dawn two will be set free and
one will be hanged, but they do not know who will be chosen. The guard offers
to tell Al the name of one of the other two prisoners who will go free but Al
stops him, screaming, “No, don’t! That would increase my chances of being
hanged to 1/2.”

Example 3.9. Cognitive dissonance. An economist, M. Keith Chen, has
recently uncovered a version of the Monty Hall problem in the theory of cogni-
tive dissonance. For a half-century, experimenters have been using the so-called
free choice paradigm to test our tendency to rationalize decisions. In an experi-
ment typical of the genre, Yale psychologists measured monkeys preferences by
observing how quickly each monkey sought out different colors of M&Ms.

In the first step, the researchers gave the monkey a choice between say red
and blue. If the monkey chose red, then it was given a choice between blue
and green. Nearly two-thirds of the time it rejected blue in favor of green,
which seemed to jibe with the theory of choice rationalization: once we reject
something, we tell ourselves we never liked it anyway.

Putting aside this interpretation it is natural to ask: What would happen if
monkeys were acting at random? The six orderings RGB, RBG, GRB, GBR,
BGR, and BRG would have equal probability. In the first three cases red is
preferred to blue, but in 2/3s of those cases green is preferred to blue. Just as
in the Monty Hall problem, we think that the probability of preferring blue to
green is 1/2 due to symmetry, but the probability is 1/3. This time however
conditioning on red being preferred to green reduced the original probability of
1/2 to 1/3, whereas in the Monty Hall problem the probability was initially 1/3
and did not change.
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3.2 Two-Stage Experiments

We begin with several examples and then describe the collection of problems we
will treat in this section.

Example 3.10. An urn contains 5 red and 10 black balls. We draw two balls
from the urn without replacement. What is the probability that the second ball
drawn is red?

This is easy to see if we draw a picture. The first split in the tree is based
on the outcome of the first draw and the second on the outcome of the final.
The outcome of the first draw dictates the probabilities for the second one. We
multiply the probabilities on the edges to get probabilities of the four endpoints,
and then sum the ones that correspond to Red to get the answer: 4/42+10/42 =
1/3.

1/3

2/3

4/14

10/14

5/14

9/14

red

black
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red 4/42

black 10/42

red 10/42

black 18/42

To do this with formulas, let Ri be the event of a red ball on the ith draw
and let B1 be the event of a black ball on the first draw. Breaking things down
according to the outcome of the first test, then using the multiplication rule, we
have

P (R2) = P (R2 ∩R1) + P (R2 ∩B1)
= P (R2|R1)P (R1) + P (R2|B1)P (B1)
= (1/3)(4/14) + (2/3)(5/14) = 14/42 = 1/3

From this we see that P (R2|R1) < P (R1) < P (R2|B1) but the two probabilities
average to give P (R1). This calculation makes the result look like a miracle but
it is not. If we number the 15 balls in the urn, then by symmetry each of them
is equally likely to be the second ball chosen. Thus the probability of a red on
the second, eighth, or fifteenth draw is always the same.

Example 3.11. Based on past experience, 70% of students in a certain course
pass the midterm exam. The final exam is passed by 80% of those who passed
the midterm, but only by 40% of those who fail the midterm. What fraction of
students pass the final?
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Drawing a tree as before with the first split based on the outcome of the
midterm and the second on the outcome of the final, we get the answer: 0.56 +
0.12 = 0.68

0.7

0.3
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0.6

Midterm

Pass

Fail

Final

Pass 0.56

Fail 0.14

Pass 0.12

Fail 0.18
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To do this with formulas, let A be the event that the student passes the final
and let B be the event that the student passes the midterm. Breaking things
down according to the outcome of the first test, then using the multiplication
rule.

P (A) = P (A ∩B) + P (A ∩Bc)

= P (A|B)P (B) + P (A|Bc)P (Bc)

= (0.8)(0.7) + (0.4)(0.3) = 0.68

Example 3.12. Al flips 3 coins and Betty flips 2. Al wins if the number of
Heads he gets is more than the number Betty gets. What is the probability Al
will win?

Let W be the event that Al wins. We will break things down according to the
number of heads Betty gets. Let Bi be the event that Betty gets i Heads, and
let Aj be the event that Al gets j Heads. By considering the four outcomes of
flipping two coins it is easy to see that

P (B0) = 1/4 P (B1) = 1/2 P (B2) = 1/4

while considering the eight outcomes for three coins leads to

P (W |B0) = P (A1 ∪A2 ∪A3) = 7/8
P (W |B1) = P (A2 ∪A3) = 4/8
P (W |B2) = P (A3) = 1/8

This gives us the raw material for drawing our picture
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1/4

2/4

1/4

0
7/8

1/8

1
4/8

4/8

2
1/8

7/8

Betty’s Heads

Betty

Al

Betty

Al

Betty

Al
winner

7/32

1/32

8/32

8/32

1/32

7/32

Adding up the ways Al can win we get 7/32+8/32+1/32 = 1/2. To check this
draw a line through the middle of the picture and note the symmetry between
top and bottom.

To do this with formulas, note that W ∩Bi, i = 0, 1, 2 are disjoint and their
union is W , so

P (W ) =
2∑

i=0

P (W ∩Bi) =
2∑

i=0

P (W |Bi)P (Bi)

since P (W ∩Bi) = P (A|Bi)P (Bi) by the multiplication rule (3.3). Plugging in
the values we computed,

P (W ) =
1
4
· 7
8

+
2
4
· 4
8

+
1
4
· 1
8

=
7 + 8 + 1

32
=

1
2

The previous analysis makes it look miraculous that we have a fair game.
However it is true in general.

Example 3.13. Al flips n + 1 coins and Betty flips n. Al wins if the number
of Heads he gets is more than the number Betty gets. What is the probability
Al will win?

Consider the situation after Al has flipped n coins and Betty has flipped n.
Using X and Y to denote the number of heads for Al and Betty at that time,
there are the three possibilities X > Y , X = Y , X < Y . In the first case Al has
already won. In the third he cannot win. In the second he wins with probability
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1/2. Using symmetry if P (X > Y ) = P (X < Y ) = p then P (X = Y )1− 2p, so
the probability Al wins is p + (1− 2p)/2 = 1/2.

Abstracting the structure of the last problem, let B1, . . . , Bk be a partition,
that is, a collection of disjoint events whose union is Ω.

C
C
C
C
C
C
C
C

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

B1 B2 B3 B4

B5

``````````````````````
A

Using the fact that the sets A∩Bi are disjoint, and the multiplication rule,
we have

P (A) =
k∑

i=1

P (A ∩Bi) =
k∑

i=1

P (A|Bi)P (Bi) (3.4)

a formula that is sometimes called the law of total probability.
The name of this section comes from the fact that we think of our experiment

as occurring in two stages. The first stage determines which of the B’s occur,
and when Bi occurs in the first stage, A occurs with probability P (A|Bi) in the
second. As the next example shows, the two stages are sometimes clearly visible
in the problem itself.

Example 3.14. Roll a die and then flip that number of coins. What is the
probability of A = “we get exactly 3 Heads”?

Let Bi = “the die shows i.” P (Bi) = 1/6 for i = 1, 2, . . . , 6 and

P (A|B1) = 0 P (A|B2) = 0 P (A|B3) = 2−3

P (A|B4) = C4,3 2−4 P (A|B5) = C5,3 2−5 P (A|B6) = C6,3 2−6

So plugging into (3.4),

P (A) =
1
6

{
1
8

+
4
16

+
10
32

+
20
64

}
=

1
6

{
8 + 16 + 20 + 20

64

}
=

1
6

Example 3.15. Suppose we roll three dice. What is the probability that the
sum is 9?
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Let A = “the sum is 9,” Bi = “the first die shows i,” and Cj = “the sum of
the second and third dice is j.” Now P (A|Bi) = P (C9−i) and we know the
probabilities for the sum of two dice:

j 2 3 4 5 6 7 8 9 10 11 12
P (Cj) 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Using (3.4), now we have

P (A) =
6∑

i=1

P (Bi)P (A|Bi) =
1
6

(P (C8) + P (C7) + · · ·+ P (C3))

=
1
6

(
5
36

+
6
36

+
5
36

+
4
36

+
3
36

+
2
36

)
=

25
216

0.05

0.10

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 3.1: Distribution of the sum of three dice.

In the same way we can compute the probability of Ak = “The sum of
three dice is k”. To check the symmetry in the table, note that if the numbers
on top are i1 + i2 + i3 = k, then the sum of the numbers on the bottom are
(7− i1) + (7− i2) + (7− i3) = 21− k.

k 3,18 4,17 5,16 6,15 7,14 8,13 9,12 10,11
P (Ak) 1

216
3

216
6

216
10
216

15
216

21
216

25
216

27
216

The graph in Figure 3.1 shows the shape of the distribution. Note that the
triangular shape of the sum of two dice has become a little more rounded.
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Example 3.16. Craps. In this game, if the sum of the two dice is 2, 3, or 12
on his first roll, the player loses; if the sum is 7 or 11, he wins; if the sum is
4, 5, 6, 8, 9, or 10, this number becomes his “point” and he wins if he “makes
his point,” i.e., his number comes up again before he throws a 7. What is the
probability the player wins?

The first step in analyzing craps is to compute the probability that the player
makes his point. Suppose his point is 5 and let Ek be the event that the sum is
k. There are 4 outcomes in E5 ((1, 4), (2, 3), (3, 2), (4, 1)), 6 in E7, and hence
26 not in E5 ∪ E7. Letting × stand for “the sum is not 5 or 7,” we see that

P (5) =
4
36

P (× 5) =
26
36

· 4
36

P (×× 5) =
(

26
36

)2 4
36

From the first three terms it is easy to see that for k ≥ 0

P (× on k rolls then 5) =
(

26
36

)k 4
36

Summing over the possibilities, which represent disjoint ways of rolling 5 before
7, we have

P (5 before 7) =
∞∑

k=0

(
26
36

)k 4
36

=
4
36

· 1
1− 26

36

since
∞∑

k=0

xk =
1

1− x
(3.5)

Simplifying, we have P (5 before 7) = (4/36)/(10/36) = 4/10. Such a simple
answer should have a simple explanation, and it does. Consider an urn with
four balls marked 5, six marked 7, and twenty-six marked with x. Drawing with
replacement until we draw either a 5 or 7 is the same as drawing once from an
urn with 10 balls with four balls marked 5 and six marked 7.

5 5 5 5 x x x x x x x x
7 7 7 7 7 7 x x x x x x
x x x x x x x x x x x x

Another way of saying this is that if we ignore the outcomes that result in a
sum other than 5 or 7, we reduce the sample space from Ω to E = E5 ∪ E7

and the distribution of the first outcome that lands in E follows the conditional
probability P (·|E). Since E5 ∩ E = E5 we have

P (E5|E) =
P (E5)
P (E)

=
4/36
10/36

=
4
10
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The last argument generalizes easily to give the probabilities of making any
point:

k 4 5 6 8 9 10
|Ek| 3 4 5 5 4 3
P(k before 7) 3/9 4/10 5/11 5/11 4/10 3/9

To compute the probability of A = “he wins,” we let Bk = “the first roll is k,”
and observe that (3.4) implies

P (A) =
12∑

k=2

P (A ∩Bk) =
12∑

k=2

P (Bk)P (A|Bk)

When k = 2, 3, or 12 comes up on the first roll we lose, so

P (A|Bk) = 0 and P (A ∩Bk) = 0

When k = 7 or 11 comes up on the first roll we win, so

P (A|Bk) = 1 and P (A ∩Bk) = P (Bk)

When the first roll is k = 4, 5, 6, 8, 9, or 10, P (A|Bk) = P (k before 7) and
P (A ∩Bk) is

3
36

· 3
9

k = 4, 10
4
36

· 4
10

k = 5, 9
5
36

· 5
11

k = 6, 8

Adding up the terms in the sum in the order in which they were computed,

P (A) =
6
36

+
2
36

+ 2
(

1
36

+
4 · 2
36 · 5

+
5 · 5

36 · 11

)
=

4
18

+ 2
(

55 + 88 + 125
36 · 11 · 5

)
=

220 + 268
18 · 11 · 5

=
488
990

= 0.4929 (3.6)

which is not very much less than 1/2 = 495/990.

Example 3.17. Al and Bob take turns throwing one dart to try to hit a bulls-
eye. Al hits with probability 1/4 while Bob hits with probability 1/3. If Al goes
first what is the probability he will hit the first bullseye?

Let p be the answer. By considering one cycle of the game we see

p = 1/4 + (3/4)(1/3)(0) + (3/4)(2/3)p

In words, Al wins if he hits the bullseye on the first try. If he misses and Al hits
then he loses. If they both miss then it is Al’s turn and the game starts over,
so Al’s probability of success is p. Solving the equation we have p/2 = 1/4 or
p = 1/2.

Back to craps. This reasoning in the last example can be used to compute
the probability q that a player rolls a 5 before 7. By considering the outcome
of the first roll q = 4/36 + (6/36)0 + (26/36)q and solving we have q = 4/10.
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Example 3.18. NCAA basketball tournament. Since 1985 the tourna-
ment has had 64 teams, four regions with 16 seeded teams. This is a knockout
tournament, i.e., after each game the loser is eliminated. The table below will
present data for 1985-2004, 20 seasons. Since there are four regions, this means
that each seeding has had a total of 80 trials. The table describes relative suc-
cess of the various seeds in advancing in the tournament to the rounds of 32,
sweet 16, elite 8, the final 4, the 2 teams in the championship game, and to win
the tournament. The numbers are decreasing across each row. For readability
once a number becomes 0 the remaining entries are left blank.

For reasons that will become clear as you read the table we have listed the
seeds in the order dictated by how the games are played. That is, in the first
round the sum of the seeds of the two teams is always 17, and the number of
times the teams advance will add up to 80. In the round of 16 statistics if we
divide the 16 numbers into four groups of four, each will add up to 80, etc.

seed 32 16 8 4 2 winner
1 80 68 56 34 17 11
16 0
8 37 9 6 3 1 1
9 43 3 1 0
4 64 36 12 7 2 1
13 16 3 0
5 54 28 4 3 2 0
12 26 13 1 0
3 67 38 18 11 7 2
14 13 2 0
6 56 30 11 3 2 1
11 24 10 3 1 0
2 76 51 37 18 9 4
15 4 0
7 48 13 5 0
10 32 16 6 0

total 640 320 160 80 40 20

From this table we can compute the probabilities for the first four seeds to win
a game in each round, given that it reached that round.

64 32 16 8 4 2
1 1.0 0.85 0.823 0.607 0.5 0.647
2 0.95 0.671 0.725 0.486 0.5 0.444
3 0.838 0.567 0.474 0.611 0.636 0.285
4 0.8 0.563 0.333 0.583 0.286 0.5

Here 68/80 = 0.85, 56/68 = 0.823, etc. As we should expect the conditional
probabilities generally decrease from left to right and from top to bottom. We
leave it to the reader to ponder the meaning of the exceptions, some of which
may be due only to the small sample sizes.
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3.3 Bayes’ Formula

The title of the section is a little misleading since we will regard Bayes’ formula
as a method for computing conditional probabilities and will only reluctantly
give the formula after we have done several examples to illustrate the method.

Example 3.19. Exit polls. In the California gubernatorial election in 1982,
several TV stations predicted, on the basis of questioning people when they
exited the polling place, that Tom Bradley, then mayor of Los Angeles, would
win the election. When the votes were counted, however, he lost to George
Deukmejian by a considerable margin. What caused the exti polls to be wrong?

To give our explanation we need some notation and some numbers. Suppose
we choose a person at random, let B = “the person votes for Bradley” and
suppose that P (B) = 0.45. There were only two candidates, so this makes the
probability of voting for Deukmejian P (Bc) = 0.55. Let A = “the voter stops
and answers a question about how they voted” and suppose that P (A|B) = 0.4,
P (A|Bc) = 0.3. That is, 40% of Bradley voters will respond compared to 30% of
the Deukmejian voters. We are interested in computing P (B|A) = the fraction
of voters in our sample that voted for Bradley. By the definition of conditional
probability (1.6),

P (B|A) =
P (B ∩A)

P (A)
=

P (B ∩A)
P (B ∩A) + P (Bc ∩A)

To evaluate the two probabilities, we use the multiplication rule (3.3)

P (B ∩A) = P (B)P (A|B) = 0.45 · 0.4 = 0.18
P (Bc ∩A) = P (Bc)P (A|Bc) = 0.55 · 0.3 = 0.165

From this it follows that

P (B|A) =
0.18

0.18 + 0.165
= 0.5217

and from our sample it looks as if Bradley will win. The problem with the exit
poll is that the difference in the response rates makes our sample not represen-
tative of the population as a whole.

Turning to the mechanics of the computation, note that 18% of the voters
are for Bradley and respond, while 16.5% are for Deukmejian and respond, so
the fraction of Bradley voters in our sample is 18/(18 + 16.5). In words, there
are two ways an outcome can be in A – it can be in B or in Bc – and the
conditional probability is the fraction of the total that comes from the first way.



3.3. BAYES’ FORMULA 97

.18 .165

B Bc

.4
.3

.45 .55

Example 3.20. Mammogram posterior probabilities. Approximately 1%
of women aged 40-50 have breast cancer. A woman with breast cancer has a
90% chance of a positive test from a mammogram, while a woman without has
a 10% chance of a false positive result. What is the probability a woman has
breast cancer given that she just had a positive test?

Let B = “the woman has breast cancer and A = “a positive test.” We want
to calculate P (B|A). Computing as in the previous example,

P (B|A) =
P (B ∩A)

P (A)
=

P (B ∩A)
P (B ∩A) + P (Bc ∩A)

To evaluate the two probabilities, we use the multiplication rule (3.3)

P (B ∩A) = P (B)P (A|B) = 0.01 · 0.9 = 0.009
P (Bc ∩A) = P (Bc)P (A|Bc) = 0.99 · 0.1 = 0.099

From this it follows that

P (B|A) =
0.009

0.009 + 0.099
=

9
108

or a little less than 9%. This situation comes about because it is much easier
to have a positive results from a false positive for a healthy woman which has
probability 0.099, than from a woman with breast cancer having a positive test,
which has probability 0.009.

This answer is somewhat surprising. Indeed, when ninety-five physicians
were asked this question their average answer was 75%. The two statisticians
who carried out this survey indicated that physicians were better able to see the
answer when the data was presented in frequency format. 10 out of 1000 women
have breast canner. Of these 9 will have a positive mammogram. However, of
the remaining 990 women without breast cancer 99 will have a positive test,
and again we arrive at the answer 9/(9 + 99).

Example 3.21. Hemophilia. Ellen has a brother with hemophilia, but two
parents who do not have the disease. Since hemophilia is caused by a recessive
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allele h on the X chromosome, we can infer that her mother is a carrier (that
is, the mother has the hemophilia allele h on one of her X chromosomes and
the healthy allele H on the other), while her father has the healthy allele on his
one X chromosome. Since Ellen received one X chromosome from her father
and one from her mother, there is a 50% chance that she is a carrier, and if so,
there is a 50% chance that her sons will have the disease. If she has two sons
without the disease, what is the probability she is a carrier?

�
�

�
�

�@
@

@
@

@
Ellen X?X0

Father X0Y

XhY Brother

X1Xh Mother

Let B be the event that she is a carrier and A be the event that she has two
healthy sons. Computing as in the two previous examples,

P (B|A) =
P (B ∩A)

P (A)
=

P (B ∩A)
P (B ∩A) + P (Bc ∩A)

To evaluate the two probabilities we use the multiplication rule (3.3). Since the
probability of having two healthy sons when she is a carrier is 1/4, and is 1
when she is not.

P (B ∩A) = P (B)P (A|B) =
1
2
· 1
4

=
1
8

P (Bc ∩A) = P (Bc)P (A|Bc) =
1
2
· 1 =

1
2

From this it follows that

P (B|A) =
1/8

1/8 + 1/2
=

1
5

Example 3.22. Three factories make 20%, 30%, and 50% of the computer
chips for a company. The probability of a defective chip is 0.04, 0.03, and 0.02
for the three factories. We have a defective chip. What is the probability it
came from Factory 1?

Let Bi be the event that the chip came from factory i and let A be the event that
the chip is defective. We want to compute P (B3|A). Adapting the computation
from the two previous examples to the fact that there are now three Bi

P (B|A) =
P (B ∩A)

P (A)
=

P (B ∩A)∑3
i=1 P (Bi ∩A)
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By the definition of conditional probability (1.6),

P (B3|A) = P (B3 ∩A)/P (A)

To evaluate the three probabilities, we use the multiplication rule (3.3)

P (B1 ∩A) = P (B1)P (A|B1) = 0.2 · (0.04) = 0.008
P (B2 ∩A) = P (B2)P (A|B2) = 0.3 · (0.03) = 0.009
P (B3 ∩A) = P (B3)P (A|B3) = 0.5 · (0.02) = 0.010

From this it follows that

P (B1|A) =
P (B1 ∩A)

P (A)
=

0.008
0.008 + 0.009 + 0.010

=
8
27

The calculation can be summarized by the following picture. The conditional
probability P (B3|A) is the fraction of the event A that lies in B3.

.04
.03

.02

B1 B2 B3

0.2 0.3 0.5

.008 .009 .010A

We are now ready to generalize from our examples and state Bayes formula.
In each case, we have a partition of the probability space B1, . . . , Bn, i.e., a
sequence of disjoint sets with ∪n

i=1Bi = Ω. (In the first three examples, B1 = B
and B2 = Bc.) We are given P (Bi) and P (A|Bi) for 1 ≤ i ≤ n and we want to
compute P (B1|A). Reasoning as in the previous examples,

P (B1|A) =
P (B1 ∩A)

P (A)
=

P (B1 ∩A)∑
i P (Bi ∩A)

To evaluate the probabilities, we observe that

P (Bi ∩A) = P (Bi)P (A|Bi)

From this, it follows that

P (B1|A) =
P (B1 ∩A)

P (A)
=

P (B1)P (A|B1)∑n
i=1 P (Bi)P (A|Bi)

(3.7)
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This is Bayes formula. Even though we have numbered it, we advise you not
to memorize it. It is much better to remember the procedures we followed to
compute the conditional probability.

Our last two examples come from law.

Example 3.23. Paternity probabilities. Before there were sophisticated
tests based on DNA samples, the testing of blood type and other hereditary
factors was used in paternity cases to infer, using Bayes formula, the probability
that a particular man is the father. For a concrete example suppose that the
baby’s blood type is B, the mother’s is A, and that of the suspected father,
whom for convenience we will call Bob, is B. Given this information what is
the probability Bob is the father?

To explain how this could happen, we note that the genes that control blood
type can be O, A, or B, with A and B dominant over O but neither A nor B
dominating the other, so we get the following correspondence between genotypes
(the genes on the two chromosomes) and phenotypes (observed blood type):

genotype OO AO AA BO BB AB
phenotype O A A B B AB
proportion .479 .310 .050 .116 .007 .038

From this table, we see that if the baby’s blood type is B then it must be the
case that the mother’s genotype is AO, she contributed an O gene, and the
father contributed a B gene.

Let E (for “evidence”) be the event that the baby’s blood type is B, and F be
the event that Bob is indeed the father. We cannot observe Bob’s genotype, but
using the proportions of the various genotypes from the table, we can compute
that

P (genotype is BO|phenotype is B) = 0.116/0.123

P (E|F ) =
(0.116)0.5 + 0.007

0.123
=

0.065
0.123

= 0.528

There is not too much to argue about in the last computation. When we
compute P (E|F c), we make the first of two questionable assumptions: If Bob
is not the father, then the real father is someone chosen at random from the
population, so

P (E|F c) = (0.116)0.5 + 0.007 = 0.065

To evaluate P (F |E) we thus need to evaluate the prior probability P (F )
that Bob is the father. It would be natural to make P (F ) equal to the fraction
of times that the mother had intercourse with Bob near the time of conception.
However, it is not unusual for the mother to claim this number is 1 and the
alleged father to claim it is 0, so the common practice in these computations is
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to set P (F ) = 1/2 (our second questionable assumption). If we do this, then
P (F ) = P (F c) = 1/2 so

P (F |E) =
P (E|F )P (F )

P (E|F )P (F ) + P (E|F c)P (F c)

=
0.065/0.123

0.065/0.123 + 0.065
=

1
1.123

= 0.8904

Example 3.24. O.J. Simpson trial. DNA testing has considerably more
power than blood tests. RFLP’s (restriction fragment length polymorphisms)
are typed by digesting DNA with ”restriction” enzymes and then determining
the lengths of the fragments. These lengths are highly variable (polymorphic)
in humans, so the use of eight or nine such markers results in incredibly small
probabilities. For example, Robin Cotton of Cellmark Diagnostics testified that
blood found on a sock near Simpson’s bed had the genetic type of Nicole Brown
Simpson and the chances of another person having the exact same RFLP alleles
were 1 in 9.7 billion.

For this problem we will concentrate on a less dramatic example that involves
blood found at the murder scence (item #49). Three blood factors were recorded
that matched Simpson’s blood types. The next table which comes from p.10
of Vol. 7, No. 4 of Chance gives the frequencies estimated from the overall
population.

System Item #49 Frequency
ABO A 0.347
EsD 1 0.79
PGM 2+,2− 0.016

Here 2+, 2− indicates that two alleles were present one inherited from each
parent.

Multiplying the probabilities together gives 0.00438 or 1/227, a number that
was approximated in the trial and quoted in the press as 1/200. Letting E
denote this evidence and G the event that Simpson is guilty, and sticking with
the simpler fraction, we see that P (E|Gc) = 1/200. It is an error known as
the “Prosecutor’s Fallacy” to think of this as P (Gc|E), i.e., the probability that
Simpson is innocent given this evidence is 1/200. A second error known as the
“Defendant’s Fallacy” is to note that 1/200 of the population of Los Angeles is
40,000, so the probability that it is O.J. Simpson’s blood is 1/40,000.

Both of these fallacies are based on assuming that unknown probabilities are
uniform on the set of possibilities. The correct way to compute P (G|E) is

P (G|E) =
P (E|G)P (G)

P (E|G)P (G) + P (E|Gc)P (Gc)

but of course this requires giving a value to P (G). It is perhaps for this reason
that Bruce Weir (Nature Genetics, Vol 11, pages 365–368) argues for the use
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of the likelihood ratio P (E|G)/P (E|Gc) = 200, i.e., the evidence is 200 times
more likely if O.J. Simpson is guilty than if the murderer is a randomly chosen
person.
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3.4 Joint Distributions

In many situations we need to know the relationship between several random
variables X1, . . . , Xn. Here, we will confine our attention to the case n = 2.
Once this case is understood the extension to n > 2 is straightforward. For
one random variable, the distribution is a list of the probabilities of all of the
possible values. The joint distribution of a pair of random variables is a table
of numbers that gives the probabilities for all the possible values of the pair.

Example 3.25. Roll two four-sided dice with the numbers 1, 2, 3, 4 on their
sides. Let X be the maximum of the two numbers that appear and Y be the
sum. By considering the sixteen possible outcomes we find the following joint
distribution of X and Y .

X Y=2 3 4 5 6 7 8
1 1/16 0 0 0 0 0 0
2 0 2/16 1/16 0 0 0 0
3 0 0 2/16 2/16 1/16 0 0
4 0 0 0 2/16 2/16 2/16 1/16

Example 3.26. Suppose we draw 2 balls out of an urn with 6 red, 5 blue and
4 green balls. Let X be the number of red balls we get and Y the number of
blue balls.

There are C15,2 = 105 outcomes. The number of outcomes with i red, j blue,
and 2− (i + j) green balls is C6,iC5,jC4,2−(i+j). Using this formula we have

X Y=0 1 2
0 1·1·6

105 = 6/105 1·5·4
105 = 20/105 1·10·1

105 = 10/105
1 6·1·4

105 = 24/105 6·5·1
105 = 30/105 0

2 15·1·1
105 = 15/105 0 0

Example 3.27. Consider the following hypothetical joint distribution of X,
a person’s grade on the AP calculus exam (a number between 1 and 5), and
their grade Y in their high school calculus course, which we assume was A = 4,
B = 3, or C = 2.

X Y= 4 3 2
5 .1 .05 0
4 .15 .15 0
3 .1 .15 .10
2 0 .05 .10
1 0 0 .05
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Marginal Distributions

The next question to be addressed is: Given the joint distribution of (X, Y ),
how do we recover the distributions of X and Y ? The answer is that the
marginal distributions of X and Y are given by

P (X = x) =
∑

y P (X = x, Y = y)
P (Y = y) =

∑
x P (X = x, Y = y) (3.8)

To explain the first formula in words, if X = x then Y will take on some
value y, so to find P (X = x) we sum the probabilities of the disjoint events
{X = x, Y = y} over all the values of y. To illustrate these formulas we return
to Example 3.25, where we rolled a four sided die and let X be the larger number
and Y the sum. Omitting the probabilities that are 0:

P (X = 1) = P (X = 1, Y = 1) = 1/16
P (X = 2) = P (X = 2, Y = 3) + P (X = 2, Y = 4) = 2/16 + 1/16 = 3/16
P (X = 3) = P (X = 3, Y = 4) + P (X = 3, Y = 5) + P (X = 3, Y = 6)

= 2/16 + 2/16 + 1/16 = 5/16

P (X = 4) =
8∑

y=5

P (X = 4, Y = y) = 2/16 + 2/16 + 2/16 + 1/16 = 7/16

In words we add the probabilities in each row to get the marginal distribution of
X. Similarly we add up the probabilities in each column to get the distribution
of Y .

X Y=2 3 4 5 6 7 8
1 1/16 0 0 0 0 0 0 1/16
2 0 2/16 1/16 0 0 0 0 3/16
3 0 0 2/16 2/16 1/16 0 0 5/16
4 0 0 0 2/16 2/16 2/16 1/16 7/16

1/16 2/16 3/16 4/16 3/16 2/16 1/16

In the urn example

X Y=0 1 2
0 6/105 20/105 10/105 36/105
1 24/105 30/105 0 54/104
2 15/105 0 0 15/105

45/105 50/105 10/105

To check the marginal distribution of Y note that when we draw from an
urn with 6 red, 5 blue and 4 green balls, the probabilities for the number of blue
balls are

0 :
C10,2

105
=

45
105

1 :
C5,1C10,1

105
=

50
105

2 :
C5,2

105
=

10
105

Finally in the AP calculus example, the marginal distributions are
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X Y= 4 3 2
5 .10 .05 0 .15
4 .15 .15 0 .30
3 .10 .15 .10 .35
2 0 .05 .10 .15
1 0 0 .05 .05

.35 .40 .25

Independence

Two random variables are independent if

P (X = x, Y = y) = P (X = x)P (Y = y) (3.9)

In words, two random variables are independent if for each x and y the events
{X = x} and {Y = y} are independent. To use two of our new terms, this occurs
if their joint distribution is the product of the two marginal distributions. In
the dice example

P (X = 1, Y = 4) = 0 < (1/16) · (3/16) = P (X = 1)P (Y = 4)

so the random variables are not independent. In general independence fails if
there is a 0 in the table where the row and column sums are positive. This
simple observation takes care of all of our examples so to further explore the
concept we need a new one.

X Y=0 1
0 0.4 0.3 0.7
1 0.2 0.1 0.3

0.6 0.4

There is no zero in the table but it fails the independence test:

P (X = 0, Y = 0) = 0.4 6= 0.42 = (0.7)(0.6) = (X = 0)P (Y = 0)

If we want to have independent random variables with these marginal distribu-
tions there is only one way to fill in the table.

X Y=0 1
0 0.42 0.28 0.7
1 0.18 0.12 0.3

0.6 0.4

Example 3.28. This example gives a remarkable property of the Poisson distri-
bution. Let A1, . . . , Ak be disjoint events whose union ∪k

i=1Ai = Ω. Suppose we
perform the experiment a random number of times N , where N has a Poisson
distribution with mean λ, and let Xi be the number of times Ai occurs.
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If n = x1 + · · · + xk, then recalling the formula for the multinomial distri-
bution (Example 1.9 in Chapter 2),

P (Xi = xi for 1 ≤ i ≤ k) = e−λ λn

n!
n!

x1! · · ·xk!
P (A1)x1 · · ·P (Ak)xk

= e−λP (A1)
(λP (A1))x1

x1!
· · · e−λP (Ak) (λP (Ak))xk

xk!

since
∑k

i=1 P (Ai) = 1. In words, X1, . . . , Xk are independent Poissons with
parameters λP (Ai).

To see why this is surprising, consider the special case k = 2, i.e., A2 = Ac
1.

If we performed our experiment a fixed number of times then N1 and N2 would
not be independent since N2 = n−N1. It is remarkable that when we perform
our experiment a Poisson number of times, the number of successes tells us
nothing about the number of failures. This result is not only surprising but
also useful. For a concrete example, suppose that a Poisson number of cars
arrive at a fast food restaurant each hour and let Ai be the event that the car
has i passengers. Then the number of cars with i passengers that arrive are
independent Poissons.

Conditional Distribution

For discrete random variables, the definition of conditional probability implies

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
=

P (X = x, Y = y)∑
u P (X = u, Y = y)

(3.10)

If we fix y and look at P (X = x|Y = y) as a function of x, what we have is the
conditional distribution of X given that Y = y.

Example 3.29. To illustrate this formula we look at our AP calculus example:

X Y= 4 3 2
5 .10 .05 0 .15
4 .15 .15 0 .30
3 .10 .15 .10 .35
2 0 .05 .10 .15
1 0 0 .05 .05

.35 .40 .25

It follows from the definition of conditional probability that

P (X = 5|Y = 4) = P (X = 5, Y = 4)/P (Y = 4) = 0.10/0.35 = 2/7
P (X = 4|Y = 4) = P (X = 4, Y = 4)/P (Y = 4) = 0.15/0.35 = 3/7
P (X = 3|Y = 4) = P (X = 3, Y = 4)/P (Y = 4) = 0.10/0.35 = 2/7

In words, 2/7’s of the students who get A’s in the course get a 5 on the exam,
3/7’s get a 4, and 2/7’s get a 3. Operationally, we divide the entries in the
second column by their sum to turn them into a probability distribution. We
leave it to the reader to check
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x 5 4 3 2 1
P (X = x|Y = 3) 1/8 3/8 3/8 1/8 0
P (X = x|Y = 2) 0 0 2/5 2/5 1/5

Conditional Expectation

The conditional expectation is mean of the conditional distribution

E(X|Y = y) =
∑

x

xP (X = x|Y = y)

In the previous example

E(X|Y = 4) = (5(.10) + 4(.15) + 3(.10))/.35 = 4
E(X|Y = 3) = (5(.05) + 4(.15) + 3(.15) + 2(.05)/.40 = 3.5
E(X|Y = 2) = (3(.10) + 2(.10) + 1(.05))/.25 = 2.2

Simpson’s paradox is the phenomenon that means of subgroups can show
much different patterns than the eman of the group as a whole. For a real life
example, consider the average SAT verbal score. It was 504 in 1981 and 21 years
later in 2002 it was again 504. However when we break things down by ethnic
groups, we see that all of them increased their scores:

1981 2002
non-hispanic whites 519 527
African Americans 412 431
Mexican Americans 438 446
Asian Americans 474 501

The explanation is simple: minorities made up a much larger portion of the test-
ing population in 2002 than in 1981, and although they have shown significant
improvement their averages are lower than non-hispanic whites which reduces
the overall mean.
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3.5 Exercises

Conditional probability

1. A friend flips two coins and tells you that at least one is Heads. Given this
information, what is the probability that the first coin is Heads?

2. A friend rolls two dice and tells you that there is at least one 6. What is the
probability the sum is at least 9?

3. Suppose we roll two dice. What is the probability that the sum is 7 given
that neither die showed a 6?

4. Suppose you draw five cards out of a deck of 52 and get 2 spades and 3
hearts. What is the probability the first card drawn was a spade?

5. Two people, whom we call South and North, draw 13 cards out of a deck of
52. South has two Aces. What is the probability that North has (a) none? (b)
one? (c) the other two?

6. An urn contains 8 red, 7 blue, and 5 green balls. You draw out two balls and
they are different colors. Given this, what is the probability the two balls were
red and blue?

7. Suppose 60% of the people subscribe to newspaper A, 40% to newspaper B,
and 30% to both. If we pick a person at random who subscribes to at least one
newspaper, what is the probability she subscribes to newspaper A?

8. In a town 40% of families have a dog and 30% have a cat. 25% of families
with a dog also have a cat. (a) What fraction of people have a dog or cat? (b)
What is the probability a family with a cat has a dog?

9. Plumber Bob does 40% of the plumbing jobs in a small town. 30% of the
people in town are unhappy with their plumbers but 50% of Bob’s customers
are unhappy with his work. If your neighbor is not happy with his plumber,
what is the probability it was Bob?

10. An ectopic preganancy is twice as likely if a woman smokes cigarettes. If 25%
of women of childbearing age are smokers, what fraction of ectopic preganancies
occur to smokers?

11. Brown eyes are dominant over blue. That is, there are two alleles B and
b. bb individuals have blue eyes but other combinations has brown eyes. Your
parents and you have brown eyes but your brother has blue. So you can infer
that both of your parents are heterozygotes, i.e., have genetic type Bb. Given
this information what is the probability you are a homozygote.

12. Suppose that the probability a married man votes is 0.45, the probability a
married woman votes is 0.4, and the probability a woman votes given that her
husband does is 0.6. What is the probability (a) both vote, (b) a man votes
given that his wife does?
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13. Two events have P (A) = 1/4, P (B|A) = 1/2, and P (A|B) = 1/3. Compute
P (A ∩B), P (B), P (A ∪B).

14. A, B, and C are events with P (A) = 0.3, P (B) = 0.4, P (C) = 0.5, A and B
are disjoint, A and C are independent, and P (B|C) = 0.1. Find P (A∪B∪C).

Two-stage experiments

15. From a signpost that says MIAMI two letters fall off. A friendly drunk
puts the two letters back into the two empty slots at random. What is the
probability that the sign still says MIAMI?

16. Two balls are drawn from an urn with balls numbered from 1 up to 10.
What is the probability that the two numbers will differ by more (>) than
three?

17. How can 5 black and 5 white balls be put into two urns to maximize the
probability a white ball is drawn when we draw from a randomly chosen urn?

18. Suppose we draw k cards out of a deck. What is the probability that we do
not draw an Ace? Is the answer larger or smaller than (3/4)k?

19. You and a friend each roll two dice. What is the probability you will both
have the same two numbers?

20. In a dice game the “dealer” rolls two dice, the player rolls two dice, and the
player wins if his total is larger (>) than the dealer’s. What is the probability
the player wins?

21. What is the most likely total for the sum of four dice and what is its
probability?

22. Charlie draws five cards out of a deck of 52. If he gets at least three of one
suit, he discards the cards not of that suit and then draws until he again has
five cards. For example, if he gets three hearts, one club, and one spade, he
throws the two nonhearts away and draws two more. What is the probability
he will end up with five cards of the same suit?

23. Suppose 60% of the people in a town will get exposed to flu in the next
month. If you are exposed and not inoculated then the probability of your
getting the flu is 80%, but if you are inoculated that probability drops to 15%.
Of two executives at Beta Company, one is inoculated and one is not. What is
the probability at least one will not get the flu? Assume that the events that
determine whether or not they get the flu are independent.

24. John takes the bus with probability 0.3 and the subway with probability
0.7. He is late 40% of the time when he takes the bus but only 20% of the time
when he takes the subway. What is the probability he is late for work?

25. The population of Cyprus is 70% Greek and 30% Turkish. 20% of the
Greeks and 10% of the Turks speak English. What fraction of the people of
Cyprus speak English?
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26. You are going to meet a friend at the airport. Your experience tells you
that the plane is late 70% of the time when it rains, but is late only 20% of the
time when it does not rain. The weather forecast that morning calls for a 40%
chance of rain. What is the probability the plane will be late?

27. Two boys have identical piggy banks. The older boy has 18 quarters and 12
dimes in his; the younger boy, 2 quarters and 8 dimes. One day the two banks
get mixed up. You pick up a bank at random and shake it until a coin comes
out. What is the probability you get a quarter? Note that there are 20 quarters
and 20 dimes in all.

28. Suppose that the number of children in a family has the following distribu-
tion

number of children 0 1 2 3 4
probability 0.15 0.25 0.3 0.2 0.1

Assume that each child is independently a girl or a boy with probability 1/2
each. If a family is picked at random what is the chance it has exactly two girls.

29. A student is taking a multiple-choice test in which each question has four
possible answers. She knows the answers to 50% of the questions, can narrow
the choices down to two 30% of the time, and does not know anything about 20%
of the questions. What is the probability she will correctly answer a question
chosen at random from the test?

30. A student is taking a multiple-choice test in which each question has four
possible answers. She knows the answers to 5 of the questions, can narrow the
choices down to 2 in 3 cases, and does not know anything about 2 of the ques-
tions. What is the probability she will correctly answer (a) 10, (b) 9, (c) 8, (d) 7,
(e) 6, (f) 5 questions?

31. Two boys, Charlie and Doug, take turns rolling two dice with Charlie going
first. If Charlie rolls a 6 before Doug rolls a 7 he wins. What is the probability
Charlie wins?

32. Three boys take turns shooting a basketball and have probabilities 0.2, 0.3,
and 0.5 of scoring a basket. Compute the probabilities for each boy to get the
first basket.

33. Change the second and third probabilities in the last problem so that each
boy has an equal chance of winning.

Bayes’ formula

34. 5% of men and 0.25% of women are color blind. Assuming that there are an
equal number of men and women, what is the probability a color blind person
is a man?

35. The alpha fetal protein test is meant to detect spina bifida in unborn babies,
a condition that affects 1 out of 1000 children who are born. The literature on
the test indicates that 5% of the time a healthy baby will cause a positive
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reaction. We will assume that the test is positive 100% of the time when spina
bifida is present. Your doctor has just told you that your alpha fetal protein
test was positive. What is the probability that your baby has spina bifida?

36. Binary digits, i.e., 0’s and 1’s, are sent down a noisy communications chan-
nel. They are received as sent with probability 0.9 but errors occur with prob-
ability 0.1. Assuming that 0’s and 1’s are equally likely, what is the probability
that a 1 was sent given that we received a 1?

37. To improve the reliability of the channel described in the last example, we
repeat each digit in the message three times. What is the probability that 111
was sent given that (a) we received 101? (b) we received 000?

38. Two hunters shoot at a deer, which is hit by exactly one bullet. If the first
hunter hits his targets with probability 0.3 and the second with probability 0.6,
what is the probability the second hunter killed the deer? The answer is not
2/3. Do you think the answer is larger or smaller?

39. A cab was involved in a hit and run accident at night. Two cab companies
green and blue operate 85% and 15% of the cabs in the city respectively. A
witness identified the cab as blue. However, in a test only 80% of witnesses
were able to correctly identify the cab color. Given this what is the probability
that the cab involved in the accident was blue?

40. A student goes to class on a snowy day with probability 0.4, but on a
nonsnowy day attends with probability 0.7. Suppose that 20% of the days in
February are snowy. What is the probability it snowed on February 7th given
that the student was in class on that day?

41. A company gave a test to 100 salesman, 80 with good sales records and
20 with poor sales records. 60% of the good salesman passed the test but only
30% of the poor salesmen did. Andy passed the test. Given this, what is the
probability that he is a good salesman?

42. A company rates 80% of its employees as satisfactory and 20% as unsat-
isfactory. Personnel records indicate that 70% of the satisfactory workers had
prior experience but only 40% of the unsatisfactory workers did. If a person
with previous work experience is hired, what is the probability they will be a
satisfactory worker?

43. A golfer hits his drive in the fairway with probability 0.7. When he hits his
drive in the fairway he makes par 80% of the time. When he doesn’t he makes
par only 30% of the time. He just made par on a hole. What is the probability
he hit his drive in the fairway?

44. You are about to have an interview for Harvard Law School. 60% of the
interviewers are conservative and 40% are liberal. 50% of the conservatives
smoke cigars but only 25% of the liberals do. Your interviewer lights up a cigar.
What is the probability he is a liberal?

45. Five pennies are sitting on a table. One is a trick coin that has Heads on
both sides, but the other four are normal. You pick up a penny at random and
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flip it four times, getting Heads each time. Given this, what is the probability
you picked up the two-headed penny?

46. One slot machine pays off 1/2 of the time, while another pays off 1/4 of
the time. We pick one of the machines and play it six times, winning 3 times.
What is the probability we are playing the machine that pays off only 1/4 of
the time?

47. A student is taking a multiple choice exam in which each question has four
possible answers. She knows the answers to 60% of the questions and guesses
at the others. What is the probability she guessed given that she got question
#12 right?

48. 20% of people are “accident-prone” and have a probability 0.15 of having
an accident in a one-year period in contrast to a probability of 0.05 for the other
80% of people. (a) If we pick a person at random, what is the probability he will
have an accident this year? (b) What is the probability a person is accident-
prone if they had an accident last year? (c) What is the probability they will
have an accident this year if they had one last year?

49. One die has 4 red and 2 white sides; a second has 2 red and 4 white sides.
(a) If we pick a die at random and roll it, what is the probability the result is
a red side? (b) If the first result is a red side and we roll the same die again,
what is the probability of a second red side?

50. A particular football team is known to run 40% of its plays to the left and
60% to the right. When the play goes to the right, the right tackle shifts his
stance 80% of the time, but does so only 10% of the time when the play goes
to the left. As the team sets up for the play the right tackle shifts his stance.
What is the probability that the play will go to the right?

51. A company gives a test to 100 salesmen, 80 with good sales records and 20
with poor records. 60% of the good salesmen pass the test, but only 30% of
the poor salesmen do. A new applicant takes the test and passes. What is the
probability he is a good salesman?

52. You are a serious student who studies on Friday nights but your roommate
goes out and has a good time. 40% of the time he goes out with his girlfriend;
60% of the time he goes to a bar. 30% of the times when he goes out with his
girlfriend he spends the night at her apartment. 40% of the times when he goes
to a bar he gets in a fight and gets thrown in jail. You wake up on Saturday
morning and your roomate is not home. What is the probability he is in jail?

53. Two masked robbers try to rob a crowded bank during the lunch hour but
the teller presses a button that sets off an alarm and locks the front door. The
robbers, realizing they are trapped, throw away their masks and disappear into
the chaotic crowd. Confronted with 40 people claiming they are innocent, the
police give everyone a lie detector test. Suppose that guilty people are detected
with probability 0.95, and innocent people appear to be guilty with probability
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0.01. What is the probability Mr. Jones is guilty given that the lie detector
says he is?

54. Three bags lie on the table. One has two gold coins, one has two silver
coins, and one has one silver and one gold. You pick a bag at random, and pick
out one coin. If this coin is gold, what is the probability you picked from the
bag with two gold coins?

55. In a certain city 30% of the people are Conservatives, 50% are Liberals, and
20% are Independents. In a given election, 2/3 of the Conservatives voted, 80%
of the Liberals voted, and 50% of the Independents voted. If we pick a voter at
random what is the probability she is Liberal?

56. An undergraduate student has asked a professor for a letter of recommen-
dation. He estimates that the probability he will get the job is 0.8 with a strong
letter, 0.4 with a medium letter, and 0.1 with a weak letter. He also believes
that the probabilities that the letter will be strong, medium, or weak are 0.5,
0.3, and 0.2. What is the probability that the letter was strong given that he
got the job.

57. A group of 20 people go out to dinner. 10 go to an Italian restaurant, 6 to
a Japanese restaurant, and 4 to a French restaurant. The fractions of people
satisfied with their meals were 0.8, 2/3, and 1/2 respectively. The next day
the person you are talking to was satified with what they ate. What is the
probability they went to the Italian restuarant? the Japanese restaurant?, the
French restaurant?

58. 1 out of 1000 births results in fraternal twins; 1 out of 1500 births results in
identical twins. Identical twins must be the same sex but the sexes of fraternal
twins are independent. If two girls are twins, what is the probability they are
fraternal twins?

59. Consider the following data on traffic accidents

age group % of drivers accident probability
16 to 25 15 .10
26 to 45 35 .04
46 to 65 35 .06
over 65 15 .08

Calculate (a) the probability a randomly chosen driver will have an accident
this year, and (b) the probability a driver is between 46 and 65 given that they
had an accident.

Joint distributions

60. Suppose we draw two tickets from a hat that contains tickets numbered
1,2,3,4. Let X be the first number drawn and Y be the second. Find the joint
distribution of X and Y .

61. Suppose we roll one die repeatedly and let Ni be the number of the roll on
which i first appears. Find the joint distribution of N1 and N6.
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62. Compute (a) P (X = 1|Y = 1), (b) P (X = 2|Y = 2) for the following joint
distribution:

Y X=1 2 3
1 .1 .2 .3
2 .15 .15 0
3 .05 0 .05

63. Compute (a) P (X = 2|Y = 3), (b) P (Y = 3|X = 3) for the following joint
distribution

Y X=1 2 3
1 .2 .15 .05
2 .10 0 .10
3 .05 .15 .20

64. Using the clues given below, fill in the rest of the joint distribution. There
is only one answer.

Y X=0 3 6
1 ? ? ?
2 .1 .05 ?

(a) P (Y = 2|X = 0) = 1/4, (b) X and Y are independent.

65. Using the clues given below, fill in the rest of the joint distribution. There
is only one answer.

Y X=1 2 3
1 ? ? ?
2 ? 0 ?
3 0 ? 0

For k = 1, 2, 3, (a) P (Y = 1|X = k) = 2/3, (b) P (X = k|Y = 1) = k/6.

66. Fill in the rest of the joint distribution so that X and Y are independent.
There are two possible answers

Y X=0 1
0 ? 2/9
1 2/9 ?


