
Chapter 1

Basic Concepts

In this chapter we will introduce the basic terminology of probability theory.
The notions of independence, distribution, and expected value will be studied
in more detail later, but it is hard to discuss examples without them, so we
introduce them quickly here.

1.1 Outcomes, Events, Probability

The subject of probability can be traced back to the 17th century when it arose
out of the study of gambling games. As we will see, the range of applications
extends beyond games into business decisions, insurance, law, medical tests, and
the social sciences. The stock market, “the largest casino in the world,” cannot
do without it. The telephone network, call centers, and airline companies with
their randomly fluctuating loads could not have been economically designed
without probability theory. To quote Pierre Simon, Marquis de Laplace from
several hundred years ago:

“It is remarkable that this science, which originated in the consider-
ation of games of chance, should become the most important object
of human knowledge . . . The most important questions of life are,
for the most part, really only problems of probability.”

In order to address these applications, we need to develop a language for
discussing them. Here and throughout the book bold face type indicates a
term that is being defined. An experiment is an activity or procedure that
produces distinct, well-defined possibilities called outcomes.

Example 1.1. If our experiment is to roll one die, then there are six outcomes
corresponding to the number that shows on the top. The set of all outcomes in
this case is {1, 2, 3, 4, 5, 6}. It is called the sample space and is usually denoted
by Ω (capital Omega). Symmetry dictates that all outcomes are equally likely
so each has probability 1/6.
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Example 1.2. Things get a little more interesting when we roll two dice. If
we suppose, for convenience, that they are red and green, then we can write
the outcomes of this experiment as (m,n), where m is the number on the red
die and n is the number on the green die. To visualize the set of outcomes it is
useful to make a little table:

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

There are 36 = 6 · 6 outcomes since there are 6 possible numbers to write in the
first slot and for each number written in the first slot there are 6 possibilities
for the second.

The goal of probability theory is to compute the probability of various
events of interest. Intuitively, an event is a statement about the outcome of
an experiment. The formal definition is: An event is a subset of the sam-
ple space. For example, “the sum of the two dice is 8” translates into the
set A = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}. Since this event contains 5 of the 36
possible outcomes its probability P (A) = 5/36.

For a second example, consider B = “there is at least one six.” B consists
of the last row and last column of the table, so it contains 11 outcomes and
hence has probability P (B) = 11/36. In general the probability of an event C
concerning the roll of two dice is the number of outcomes in C divided by 36.

Axioms of Probability Theory

Let ∅ be the empty set, i.e., the event with no outcomes. We assume that
the reader is familiar with the basic concepts of set theory such as union (A∪B
the outcomes in either A or B) and intersection (A∩B, the outcomes in both
A and B).

Abstractly, a probability is a function that assigns numbers to events,
which satisfies the following assumptions:

(i) For any event A, 0 ≤ P (A) ≤ 1.
(ii) If Ω is the sample space then P (Ω) = 1.
(iii) If A and B are disjoint, i.e., the intersection A ∩B = ∅ then

P (A ∪B) = P (A) + P (B)

(iv) If A1, A2, . . . is an infinite sequence of pairwise disjoint events (i.e.,
Ai ∩Aj = ∅ when i 6= j) then

P (∪∞i=1Ai) =
∞∑

i=1

P (Ai)
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These assumptions are motivated by the frequency interpretation of
probability, which states that if we repeat an experiment a large number of
times then the fraction of times the event A occurs will be close to P (A). To be
precise, if we let N(A,n) be the number of times A occurs in the first n trials
then

P (A) = lim
n→∞

N(A,n)
n

(1.1)

In Chapter 6 we will see this result is a theorem called the law of large num-
bers. For the moment, we will use this interpretation of P (A) to motivate the
definition.

Given (1.1), properties (i) and (ii) are clear: the fraction of times that a
given event A occurs must be between 0 and 1, and if Ω has been defined
properly (recall that it is the set of ALL possible outcomes), the fraction of
times something in Ω happens is 1. To explain (iii), note that if the events A
and B are disjoint then

N(A ∪B,n) = N(A,n) + N(B,n)

since A∪B occurs if either A or B occurs but it is impossible for both to happen.
Dividing by n and letting n →∞, we arrive at (iii).

Property (iii) implies that (iv) holds for a finite number of events, but for
infinitely many events, the last argument breaks down, and this is a new as-
sumption. Not everyone believes that assumption (iv) should be used. However,
without (iv) the theory of probability becomes much more difficult and less use-
ful, so we will impose this assumption and not apologize further for it. In many
cases the sample space is finite so (iv) is not relevant anyway.

Example 1.3. Suppose we pick a letter at random from the word TENNESSEE.
What is the sample space Ω and what probabilities should be assigned to the
outcomes?

The sample space Ω = {T,E,N, S}. To describe the probability it is enough
to give the values for the individual outcomes, since (iii) implies that P (A)
is the sum of the probabilities of the outcomes in A. Since there are nine
letters in TENNESSEE the probabilities are P ({T}) = 1/9, P ({E}) = 4/9,
P ({N}) = 2/9, and P ({S}) = 2/9.

Having introduced a number of definitions, we will now derive some basic
properties of probabilities and illustrate their use.

Property 1. Let Ac be the complement of A, i.e., the set of outcomes not in
A, then

P (A) = 1− P (Ac) (1.2)

Proof. Let A1 = A and A2 = Ac. Then A1 ∩ A2 = ∅ and A1 ∪ A2 = Ω so (iii)
implies P (A) + P (Ac) = P (Ω) = 1 by (ii). Subtracting P (A) from each side of
the equation gives the result.
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This formula is useful because sometimes it is easier to compute the probability
of Ac. For an example, consider A = “at least one six.” In this case Ac =
“no six.” There are 5 · 5 outcomes with no six, so P (Ac) = 25/36 and P (A) =
1− 25/36 = 11/36, as we computed before.

Property 2. For any events A and B,

P (A ∪B) = P (A) + P (B)− P (A ∩B) (1.3)

Proof by picture. We can explain this result by drawing a picture:

PPPPPPPPPPPP

P (A)

P (B)

−P (A ∩B)

+ +

+ +

−

A

B

Intuitively, P (A) + P (B) counts A ∩B twice so we have to subtract P (A ∩B)
to make the net number of times A ∩B is counted equal to 1.

Proof. To prove this result we note that by assumption (ii)

P (A) = P (A ∩B) + P (A ∩Bc)
P (B) = P (B ∩A) + P (B ∩Ac)

Adding the two equations and subtracting P (A ∩B):

P (A) + P (B)− P (A ∩B) = P (A ∩B) + P (A ∩Bc) + P (B ∩Ac) = P (A ∪B)

which gives the desired equality.

To illustrate property 2, let A = “the red die shows six,” and B = “the green
die shows six.” In this case A ∪ B = “at least one 6” and A ∩ B = {(6, 6)}, so
we have

P (A ∪B) = P (A) + P (B)− P (A ∩B) =
1
6

+
1
6
− 1

36
=

11
36

The same principle applies to counting outcomes in events.
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Example 1.4. A survey of 1000 students revealed that 750 owned stereos, 450
owned cars, and 350 owned both. How many own either a car or a stereo?

Given a set A, we use to |A| denote the number of points in A. The reasoning
that led to (1.3) tells us that

|S ∪ C| = |S|+ |C| − |S ∩ C| = 750 + 450− 350 = 850

We can confirm this by drawing a picture:

400 350 100

S

C

Property 3. Monotonicity. If A ⊂ B, i.e., any outcome in A is also in B,
then

P (A) ≤ P (B) (1.4)

Proof. A and Ac ∩ B are disjoint, with union B, so assumption (iii) implies
P (B) = P (A) + P (Ac ∩B) ≥ P (A) by (i).

We write An ↑ A if A1 ⊂ A2 ⊂ ... and ∪∞i=1Ai = A. We write An ↓ A if
A1 ⊃ A2 ⊃ ... and ∩∞i=1Ai = A.

Property 4. Monotone limits. If An ↑ A or An ↓ A then

lim
n→∞

P (An) = A (1.5)

Proof. Let B1 = A1 and for i ≥ 2, let Bi = Ai ∩ Ac
i−1. The events Bi are

disjoint, with ∪∞i=1Bi = A, so (iv) implies

P (A) =
∞∑

i=1

P (Bi) = lim
n→∞

n∑
i=1

P (Bi) = lim
n→∞

P (An)

by (iii) since Bi, 1 ≤ i ≤ n, are disjoint and their union is An.
To prove the second result, let Bi = Ac

i . We have Bn ↑ Ac so by (1.5) and
(1.2), limn→∞ P (Bn) = 1− P (A). Since P (Bn) = 1− P (An) the desired result
follows.
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1.2 Flipping coins, the World Series

Even simpler than rolling a die is flipping a coin, which produces one of two
outcomes, called “Heads” (H) or “Tails” (T ). If we flip two coins there are four
outcomes

HT
HH TH TT

heads 2 1 0
probability 1/4 1/2 1/4

Flipping three coins there are eight possibilities:

HHT TTH
HHH HTH THT TTT

THH HTT
heads 3 2 1 0
probability 1/8 3/8 3/8 1/8

Our next problem concerns flipping four to seven coins:

Example 1.5. World Series. In this baseball event, the first team to win
four games wins the championship. Obviously, the series may last 4, 5, 6, or 7
games. However, a fan who wants to buy a ticket would like to know what are
the probabilities of each of these outcomes.

Ignoring potential complicating factors like the advantage of playing at home
or psychological factors that make the outcome of one game affect the next one,
we suppose that the games are decided by tossing a fair coin to determine if
team A or team B wins.

Four games. There are two possible ways this can happen: A wins all four
games or B wins all four games. There are 2 · 2 · 2 · 2 = 16 possible outcomes
and these are 2 of them so P (4) = 2/16 = 1/8.

Five games. Here and in the next case we will compute the probability that A
wins in the specified number of games and then multiply by 2. There are four
possible outcomes

BAAAA, ABAAA, AABAA, AAABA

AAAAB is not possible since in that case the series would have ended in four
games. There are 25 = 32 outcomes so P (5) = 2 · 4/32 = 1/4.

Six games. In the next section we will learn systematic ways of doing this, but
for now we will compute the probabilities by enumerating the possibilities:

BBAAAA ABBAAA AABBAA AAABBA
BABAAA ABABAA AABABA
BAABAA ABAABA
BAAABA
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The first column corresponds to outcomes in which B wins the first game, the
second one to outcomes in which the first game B wins is the second game, etc.
We then move the remaining win for B through its possibilities. There are 10
outcomes out of 26 = 64 total, so remembering to multiply by 2 to account for
the ways B can win in six games, P (6) = 2 · 10/64.

Seven games. The analysis from the previous case becomes even messier here,
so we instead observe that the probabilities for the four possible outcomes must
add up to one, so

P (7) = 1− P (4)− P (5)− P (6) = 1− 2
16

− 4
16

− 5
16

=
5
16

As mentioned earlier, we are ignoring things that many fans think are impor-
tant to determining the outcomes of the games, so our next step is to compare
the probabilities just calculated with the observed frequencies of the duration
of best of seven series in three sports. The numbers in parentheses give the
number of series in our sample.

Games 4 5 6 7
Probabilities 0.125 0.25 0.3125 0.3125
World Series (94) 0.181 0.224 0.224 0.372
Stanley Cup (74) 0.270 0.216 0.230 0.284
NBA finals (57) 0.122 0.228 0.386 0.263

To determine whether or not the data agrees with predictions, statisticians use
a chi-squared statistic:

χ2 =
∑ (oi − ei)2

ei

where oi is the number of observations in category i and ei is what the model
predicts. The details of the test are beyond the scope of this book so we just
quote the results: the Stanley Cup data is very unusual (the probability of a
chi-saure score this large or larger has probability p < 0.01) due to the larger
than expected number of four game series. The World Series data does not fit
the model well, but is not very unusual (p > 0.05). On the other hand, the NBA
finals data looks like what we should expect to see. The excess of six game series
can be due just to chance.

Example 1.6. Birthday problem. There are 30 people at a party. Someone
wants to bet you $10 that there are two people with exactly the same birthday.
Should you take the bet?

To pose a mathematical problem, we ignore Feb. 29 which only comes in leap
years, and suppose that each person at the party picks their birthday at random
from the calendar. There are 36530 possible outcomes for that experiment. The
number of outcomes in which all the birthdays are different is

365 · 364 · 363 · · · 336
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since the second person must avoid the first person’s birthday, the third the
first two birthdays and so on until the 30th person must avoid the 29 previous
birthdays. Let D be the event that all birthdays are different. Dividing the
number of outcomes in which all the birthdays are different by the total number
of outcomes, we have

P (D) =
365 · 364 · 363 · · · 336

36530
= 0.293684

In words, only about 29% of the time all the birthdays are different, so you will
lose the bet 71% of the time.

At first glance it is surprising that the probability of two people having the
same birthday is so large, since there are only 30 people compared with 365
days on the calendar. Some of the surprise disappears if you realize that there
are (30 · 29)/2 = 435 pairs of people who are going to compare their birthdays.
Let pk be the probability that k people all have different birthdays. Clearly,
p1 = 1 and pk+1 = pk(365− k)/365. Using this recursion it is easy to generate
the values of pk for 1 ≤ k ≤ 40.

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

Figure 1.1: Birthday coincidence probability as a function of group size.

The graph shows the trends, but to get precise values a table is better:

1 1.00000 11 0.85886 21 0.55631 31 0.26955
2 0.99726 12 0.83298 22 0.52430 32 0.24665
3 0.99180 13 0.80559 23 0.49270 33 0.22503
4 0.98364 14 0.77690 24 0.46166 34 0.20468
5 0.97286 15 0.74710 25 0.43130 35 0.18562
6 0.95954 16 0.71640 26 0.40176 36 0.16782
7 0.94376 17 0.68499 27 0.37314 37 0.15127
8 0.92566 18 0.65309 28 0.34554 38 0.13593
9 0.90538 19 0.62088 29 0.31903 39 0.12178
10 0.88305 20 0.58856 30 0.29368 40 0.10877
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A graph is less precise but conveys more qualitative information:
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1.3 Independence

Intuitively, two events A and B are independent if the occurrence of A has no
influence on the probability of occurrence of B. The formal definition is: A and
B are independent if

P (A ∩B) = P (A)P (B)

To make the connection between the two definitions, we need to introduce the
notion of conditional probability, which will be discussed in more detail in Chap-
ter 3.

Suppose we are told that the event A with P (A) > 0 occurs. Then the
sample space is reduced from Ω to A and the probability that B will occur
given that A has occurred is

P (B|A) = P (B ∩A)/P (A) (1.6)

To explain this formula, note that (i) only the part of B that lies in A can
possibly occur, and (ii) since the sample space is now A, we have to divide by
P (A) to make P (A|A) = 1.

((((((((((((
A

B

B ∩A

Ac

Suppose A and B are independent. In this case P (A ∩B) = P (A)P (B), so

P (B|A) =
P (A)P (B)

P (A)
= P (B)

or in the words of the intuitive definition of independence, “the occurrence of A
has no influence on the probability of the occurrence of B.”

Turning to concrete examples, in each case it should be clear that the intu-
itive definition is satisfied, so we will only check the formal one.

• Flip two coins. Let A = “the first coin shows Heads,” and B = “the
second coin shows Heads.” P (A) = 1/2, P (B) = 1/2, P (A ∩B) = 1/4.

• Roll two dice. Let A = “the first die shows 5,” and B = “the second die
shows 2.” P (A) = 1/6, P (B) = 1/6, P (A ∩B) = 1/36.

• Pick a card from a standard deck of 52 cards. Let A = “the card is
an ace,” and B = “the card is a spade.” P (A) = 1/13, P (B) = 1/4,
P (A ∩B) = 1/52.



1.3. INDEPENDENCE 11

Two examples of events that are not independent are

Example 1.7. Draw two cards from a deck. Let A = “the first card is a spade,”
and B = “the second card is a spade.” Then P (A) = 1/4 and P (B) = 1/4, but

P (A ∩B) =
13 · 12
52 · 51

<

(
1
4

)2

To derive the answer, we note that there are 52 ·51 outcomes for drawing two
cards from the deck when keep track of the order they are drawn, while there
are 13 · 12 outcomes that result in two spades. A second approach is to note
that we have a probability of P (A) = 13/52 of getting a spade the first time
and, if we succeed then the probability on the second draw is P (B|A) = 12/51.
Rearranging the definition of conditional probability in (1.6)

P (A ∩B) = P (A)P (B|A)

Thus, these two events are not independent, since getting a spade the first time
reduces the fraction of spades in the deck and makes it harder to get a spade
the second time.

Example 1.8. Roll two dice. Let A = “the sum of the two dice is 9,” and
B = “the first die is 2.” A = {(6, 3), (5, 4), (4, 5), (3, 6)}, so P (A) = 4/36.
P (B) = 1/6, but P (A ∩B) = 0 since (2, 7) is impossible.

In general, if A and B are disjoint events that have positive probability, they
are not independent since P (A)P (B) > 0 = P (A ∩B).

There are two ways of extending the definition of independence to more than
two events. A1, . . . , An are said to be pairwise independent if for each i 6= j,
P (Ai ∩ Aj) = P (Ai)P (Aj), that is, each pair is independent. A1, . . . , An are
said to be independent if for any 1 ≤ i1 < i2 < . . . < ik ≤ n we have

P (Ai1 ∩ . . . ∩Aik
) = P (Ai1) · · ·P (Aik

)

If we flip n coins and let Ai = “the ith coin shows Heads,” then the events Ai are
independent since P (Ai) = 1/2 and P (Ai1 ∩ . . .∩Aik

) = 1/2k. We have already
seen an example of events that are pairwise independent but not independent:

Example 1.9. Let A = “Alice and Betty have the same birthday,” B = “Betty
and Carol have the same birthday,” C = “Carol and Alice have the same birth-
day.” Each pair of events is independent but the three are not.

Since there are 365 ways two girls can have the same birthday out of 3652

possibilities (as in Example 1.6, we are assuming that leap year does not exist
and that all the birthdays are equally likely), P (A) = P (B) = P (C) = 1/365.
Likewise, there are 365 ways all three girls can have the same birthday out of
3653 possibilities, so

P (A ∩B) =
1

3652
= P (A)P (B)
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i.e., A and B are independent. Similarly, B and C are independent and C and
A are independent, so A, B, and C are pairwise independent. The three events
A, B, and C are not independent, however, since A∩B = A∩B ∩C and hence

P (A ∩B ∩ C) =
1

3652
6=

(
1

365

)3

= P (A)P (B)P (C)

Example 1.10. Roll three dice. Let A = “the numbers on the first and second
add to 7,” B = “the numbers on the second and third add to 7,” C = “the num-
bers on the third and first add to 7.” Again each pair of events is independent
but the three are not.

To check that A and B are independent, note that no matter what the values
i and j are on the first two dice there is probability 1/6 that the third die is
7− j. Similar arguments show that B and C are independent and A and C are
independent.

To show that the three events are not independent we note that A∩B∩C = ∅.
Let i, j, k be the values for the three dice. We claim that if A and B occur then
i + k is even so C ismpossible. To check this note that if j is odd then i and k
are even, while if j is even, i and k are odd.

The last two examples are somewhat unusual. However, the moral of the
story is that to show several events are independent, you have to check more
than just that each pair is independent.
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1.4 Distributions

A random variable is a numerical value determined by the outcome of an
experiment. Four examples:

• Roll two dice and let X = the sum of the two numbers that appear.

• Roll a die until a 4 appears and let X = the number of rolls we need.

• Flip a coin 10 times and let X = the number of Heads we get.

• Draw 13 cards out of a deck and let X = the number of Hearts we get.

In these cases X is a discrete random variable. That is, there is a finite
or countable sequence of possible values. In contrast, the height of a randomly
chosen person, or the time they spent waiting for the bus this morning are
continuous random variables, since the value could be any positive real
number. In this book we will primarily be concerned with discrete random vari-
ables. Continuous random variables will not make an appearace until Chapter
5.

The distribution of a discrete random variable, is described by giving the
value of P (X = x) for all values of x. In each case, we will only give the values
of P (X = x) when P (X = x) > 0. The other values we do not mention are 0.
We begin with the first two examples above.

Example 1.11. Roll two dice. Let X = the sum of the two numbers that
appear.

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

Using the table of outcomes, it is easy to see:

x 2 3 4 5 6 7 8 9 10 11 12
P (X = x) 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

To check this, note that the outcomes with a given sum are diagonal lines in
the square. For example, the four outcomes in bold are the ones for which the
sum is 5.

Example 1.12. Geometric distribution. If we repeat an experiment with
probability p of success until a success occurs then the number of trials required
N has

P (N = n) = (1− p)n−1p for n = 1, 2, . . .

In words, N has a geometric distribution with parameter p, a phrase we will
abbreviate as N = geometric(p).
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.05

P (N = n)

.1

.15

n = 1 5 10 15 20

Figure 1.2: Geometric(1/6) distribution

To check the formula note that in order to first have success on trial n, we must
have n− 1 failures followed by a success, which has probability (1− p)n−1p. In
the example at the beginning of the section, success is rolling a 4, so p = 1/6.
The next graph gives a picture of the distribution in this case.
For an example of the use of the geometric distribution, we consider

Example 1.13. Birthday problem, II. How large must the group be so that
there is a probability > 0.5 that someone will have the same birthday as you
do?

In our first encounter with the birthday problem it was surprising that the size
needed to have two people with the same birthday was so small. This time the
surprise goes in the other direction. Assuming 365 equally likely birthdays, a
naive guess is that 183 people will be enough. However in a group of n people
the probability all will fail to have your birthday is (364/365)n. Setting this
equal to 0.5 and solving,

n =
log(0.5)

log(364/365)
=

−0.69314
−.0027435

= 252.7

So we need 253 people. The “problem” is that many people in the group will
have the same birthday, so the number of different birthdays is smaller than the
size of the group.

Example 1.14. Astragali. Board games involving chance were known in
Egypt, 3000 years B.C. The element of chance needed for these games was at
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Figure 1.3: Astragali

first provided by tossing astragali, the ankle bones of sheep. These bones could
come to rest on only four sides, the other two sides being rounded. The upper
side of the bone, broad and slightly convex, counted four (Tetras); the opposite
side, broad and slightly concave counted three (Trias); the lateral side, flat and
narrow, one (Monas), and the opposite narrow lateral side, which is slightly
hollow, six (Hexas).

The outcomes of this experiment are Ω = {1, 3, 4, 6}. There is no reason to
suppose that all four sides have the same probability, so our model will have
probabilities for the four outcomes p1, p3, p4, p6 ≥ 0 that have p1+p3+p4+p6 =
1. To define the probability of an event A we let

P (A) =
∑
i∈A

pi

In words, we add up the probabilities of the outcomes in A. With a little thought
we see that any probability with a finite set of outcomes has this form.

Example 1.15. English letter frequencies. In text written in English the
26 letters in the alphabet occur with the following frequencies

E 13.0% H 3.5% W 1.6%
T 9.3% L 3.5% V 1.3%
N 7.8% C 3.0% B 0.9%
R 7.7% F 2.8% X 0.5%
O 7.4% P 2.7% K 0.3%
I 7.4% U 2.7% Q 0.3%
A 7.3% M 2.5% J 0.2%
S 6.3% Y 1.9% Z 0.1%
D 4.4 % G 1.6%

From this it follows that vowels (A,E,I,O,U) are used (7.3+13.0+7.4+7.4+2.7)
= 37.8% of the time.
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Example 1.16. Scrabble. In this game, there are 100 tiles with the following
distribution. The first number after the letter is its point value, the second is
the number of tiles.

E 1 12 U 1 4 V 4 2
A 1 9 D 2 4 W 4 2
I 1 9 G 2 3 Y 4 2
O 1 8 B 3 2 K 5 1
N 1 6 C 3 2 J 8 1
R 1 6 M 3 2 X 8 1
T 1 6 P 3 2 Q 10 1
L 1 4 F 4 2 Z 10 1
S 1 4 H 4 2 blank 0 2

In Scrabble, vowels are 12 + 9 + 9 + 8 + 4 = 42% of the letters. The number of
points on a randomly chosen tile has the following distribution:

0 1 2 3 4 5 8 10
.02 .68 .07 .08 .10 .01 .02 .02

Example 1.17. Benford’s law is named after the late Dr. Frank Benford,
a physicist at General Electric Company. In 1938 he noticed that pages of
logarithms corresponding to numbers starting with 1 were dirtier and more worm
than other pages. He examined 20,229 data sets, and developed a prediction
about the number observed distribution of first digits:

pk = log10(k + 1)− log10(k) for k = 1, 2, . . . , 9

This is a probability distribution because pk ≥ 0 and
∑9

k=1 pk = log10(10) −
log10(1). The numerical values of the probabilities are:

1 2 3 4 5 6 7 8 9
.3010 .1761 .1249 .0969 .0792 .0669 .0580 .0512 .0458

Some of the many examples that are supposed to follow Benford’s law are:
census populations of 3259 counties, 308 numbers from Reader’s digest, areas of
335 rivers, 342 addresses of American Men of Science. The next table compares
the percentages of the observations in the first five categories to Benford’s law:

1 2 3 4 5
Census 33.9 20.4 14.2 8.1 7.2
Reader’s Digest 33.4 18.5 12.4 7.5 7.1
Rivers 31.0 16.4 10.7 11.3 7.2
Benford’s Law 30.1 17.6 12.5 9.7 7.9
Addresses 28.9 19.2 12.6 8.8 8.5

The fits are far from perfect, but in each case Benford’s law matches the general
shape of the observed distribution.
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Why should Benford’s law hold? It is mathematical fact that the first digits
of 2n follow Benford’s law. This can be established by showing that the frac-
tional parts of log10(2m) for 1 ≤ m ≤ n (i.e., the part of the number to the right
of the decimal point) are approximately uniformly distributed on (0,1).

There are two good general explanations. (i) If the Dow Jones average or
some other statistic grows at rate r, i.e., f(t) = Cert, then the amount of time
it takes for the first digit to change from k to k + 1 is (ln(k + 1) − ln(k))/r.
When we divide by the total time to go from 1 to 10, the result is Benford’s
law. (ii) Ted Hill proved (see Statistical Science 10, 354–363) that if the first
digit distribution does not depend on the units used then Benford’s law is the
only possibility.
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1.5 Expected Value

The expected value of X, or mean of X is defined to be

EX =
∑

x

xP (X = x) (1.7)

In words, we multiply each possible value by its probability and sum.

Example 1.18. Roulette. If you play roulette and bet $1 on black then you
win $1 with probability 18/38 and you lose $1 with probability 20/38, so the
expected value of your winnings X is

EX = 1 · 18
38

+ (−1) · 20
38

=
−2
38

= −0.0526

The expected value has a meaning much like the frequency interpretation of
probability. Suppose X1, . . . , Xn are independent and have the same distribu-
tion as X, that is,

P (X1 = x1, . . . , Xn = xn) = P (X = x1) · · ·P (X = xn)

then, when n is large, the average of the values we have observed, (X1 + · · · +
Xn)/n, will be close to EX with high probability. This result is called the law
of large numbers, and will be proved in Chapter 6.

In the roulette example, if we let Xi be your winnings on the ith play then
this says that (X1 + · · ·+ Xn)/n will be close to −0.0526. In words, in the long
run you will lose about 5.26 cents per play.

Example 1.19. Roll one die. Let X be the number that appears on the die.
P (X = x) = 1/6 for x = 1, 2, 3, 4, 5, 6, so

EX = 1 · 1
6

+ 2 · 1
6

+ 3 · 1
6

+ 4 · 1
6

+ 5 · 1
6

+ 6 · 1
6

=
21
6

= 3
1
2

In this case the expected value is just the average of the six possible values.
To deal with more than one die we use the following fact, which will be

proved in Chapter 6.

Theorem 1.1. If X1, . . . , Xn are random variables then

E(X1 + · · ·+ Xn) = EX1 + · · ·+ EXn (1.8)

From this and Example 1.19, it follows that if we roll two dice the expected
value of the sum is 7. As another example, let Xi = 1 if the ith flip of a coin is
heads and 0 otherwise. X1 + · · ·+ Xn is the number of heads in n tosses. Since
EXi = 1/2 for a fair coin, the last result implies that

E(X1 + · · ·+ Xn) = nEXi = n/2
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Example 1.20. Scrabble. As we computed in Example 1.16, the point value
of a randomly chosen scrabble tile has the following distribution:

value 0 1 2 3 4 5 8 10
prob. .02 .68 .07 .08 .10 .01 .02 .02

The expected value is

= .68 + .14 + .24 + .4 + .05 + .16 + .2 = 1.87

This means that when we draw seven letters to start the game the average
numbers of points on our rack will be 7(1.87) = 13.09. Of course, on any play
of the game the number of points may be more or less than 13. The law of large
numbers implies that if we kept records for a large number of games then the
average we have seen on our first draws will be close to the expected value.

Example 1.21. Fair division of a bet on an interrupted game. Pascal
and Fermat were sitting in a café in Paris playing the simplest of all games,
flipping a coin. Each had put up a bet of 50 francs and the first to get 10 points
wins. Fermat was winning 8 points to 7 when he received an urgent message
that a friend was sick, and he must rush to his home town of Toulouse. The
carriage man who delivered the message offered to take him, but only if he would
leave immediately. Later in correspondence between the two men, the problem
arose: how should the money bet (100 francs) be divided?

Fermat came up with the reasonable idea that the fraction of the stakes that
each receives should be equal to the probability it would have won the match.
In the case under consideration, it is easier to calculate the probability that
Pascal (P ) wins. In order for Pascal to win by a score of 10-8 he must win three
flips in a row: PPP , an event of probability 1/8. To win 10-9 he can lose one
flip but not the last one: FPPP , PFPP , PPFP , which has probability 3/16.
Adding the two we see that Pascal wins with probability 5/16 and should get
that fraction of the total bet, i.e., (5/16)(100) = 31.25.

Example 1.22. Deal or No Deal. In this TV game show there are 26 brief-
cases with amounts of money indicated in the first, third, and fifth columns of
the next table. You pick one briefcase then pick five others to open. At that
point they offer you an amount of money. If you take it the game ends. If not
then you open more briefcases. The numbers in the second, fourth, and sixth
columns are the rounds on which I opened those briefcases when I played the
game online at nbc.com:

0.01 2 300 3 75,000 4
1 1 400 4 100,000 2
5 2 500 3 200,000
10 750 3 300,000 2
25 2 1000 9 400,000 5
50 4 5000 1 500,000 3
75 5 10,000 1 750,000 7
100 8 25,000 6 1,000,000 1
200 1 50,000 1
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The expected value of the money in the briefcase you pick is 131,477. The next
table gives the offers I got from the online game compared with the expected
value after each of the rounds.

1 25,866 117,660
2 35,158 122,074
3 30,492 120,970
4 46,446 152,910
5 48,806 162,685
6 64,675 190,222
7 21,620 50,277
8 40,872 67,003
9 62,003 100,005

Notice that in all cases the offer is considerably less than the expected value.
After the ninth round there are two briefcases left, one with 200,000 and one
with 10. If I were playing for real I might have taken the 62,003 for sure but I
stuck with the higher expected value and won 200,000.

Example 1.23. Geometric distribution. When P (N = n) = (1 − p)n−1p,
for n = 1, 2, 3, . . . we have EN = 1/p.

This answer is intuitive. We have a probability p of success on each trial,
so in n trials we have an average of np successes and if we want np = 1 we
need n = 1/p. To get this from the definition, we begin with the sum of the
geometric series

∞∑
k=0

xk =
1

1− x

and differentiate with respect to x to get

∞∑
k=0

kxk−1 =
1

(1− x)2

Dropping the k = 0 term from the left since it is 0 and setting x = 1− p

∞∑
k=1

k(1− p)k−1 =
1
p2

Multiplying each side by p we have

∞∑
k=1

kP (N = k) =
1
p

Example 1.24. China’s one child policy. In order to limit the growth of
its population, the Chinese government decided to limit a family to having just
one child. An alternative that was suggested was the “one son” policy: as
long as a woman has only female children she is allowed to have more children.
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One concern voiced about this policy was that no family would have more than
one son, but many families would have several girls. This concern leads to our
question: How would the one son policy affect the ratio of male to female births?

To simplify the problem we assume that a family will keep having children
until it has a male child. Assuming that male and female children are equally
likely and the sexes of successive children are independent, the total number of
children has a geometric distribution with success probability p = 1/2, so by the
previous example the expected number of children is 1/p = 2. There is always
one male child, so the expected number of female children is 2− 1 = 1.

Does this continue to hold if some families stop before they have a male
child? Consider for simplicity the case in which a family will stop when they
have a male child or a total of three children. There are four outcomes

P (M) = 1/2
P (FM) = 1/4

P (FFM) = 1/8
P (FFF ) = 1/8

The average number of male children is 1/2+1/4+1/8 = 7/8 while the average
number of female children is 1(1/4) + 2(1/8) + 3(1/8) = 7/8.

The last calculation makes the equality of the expected values look like a
miracle, but it is not, and the claim holds true if a family with k female children
continues with probability pk and stops with probability 1−pk. To explain this
intuitively, if we replace M by +1 and F by −1, then childbirth is a fair game.
For the stopping rules under consideration the average winnings when we stop
have mean 0, i.e., the expected number of male children equals the expected
number of female children.
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1.6 Moments, Variance

In this section we will be interested in the expected values of various functions
of random variables. The most important of these are the variance and the
standard deviation which give an idea about how spread out the distribution is.
The first basic fact we need in order to do computations is

Theorem 1.2. If X has a discrete distribution and Y = r(X) then

EY =
∑

x

r(x)P (X = x) (1.9)

Proof. P (Y = y) =
∑

x:r(x)=y P (X = x). Multiplying both sides by y and
summing gives

EY =
∑

y

y P (Y = y) =
∑

y

y
∑

x:r(x)=y

P (X = x)

=
∑

y

∑
x:r(x)=y

r(x)P (X = x) =
∑

x

r(x)P (X = x)

since the double sum is just a clumsy way of summing over all the possible
values of x.

If r(x) = xk, E(Xk) is the kth moment of X. When k = 1 this is the first
moment or mean of X.

Example 1.25. Suppose X is the result of rolling one die. Compute EX2.

EX2 =
1
6
(1 + 4 + 9 + 16 + 25 + 36) =

91
6

= 15.1666

To prepare for our next topic we need the following properties:

E(X + b) = EX + b E(aX) = aEX (1.10)

In words, if we add 5 to a random variable then we add 5 to its expected value.
If we multiply a random variable by 3 we multiply its expected value by 3.

Proof. For the first one, we note that

E(X + b) =
∑

x

(x + b) P (X = x) dx

=
∑

x

xP (X = x) +
∑

x

bP (X = x) = EX + b

The second is easier:

E(aX) = a
∑

x

xP (X = x) = aEX
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If EX2 < ∞ then the variance of X is defined to be

var (X) = E(X − EX)2

To illustrate this concept, we will consider some examples. But first, we need a
formula that enables us to compute var (X) more easily.

var (X) = EX2 − (EX)2 (1.11)

Proof. Letting µ = EX to make the computations easier to see, we have

var (X) = E(X − µ)2 = E{X2 − 2µX + µ2} = EX2 − 2µEX + µ2

by (1.10) and the facts that E(−2µX) = −2µEX, E(µ2) = µ2. Substituting
µ = EX now gives the result.

The reader should note that EX2 means the expected value of X2 and in
the proof E(X −µ)2 means the expected value of (X −µ)2. When we want the
square of the expected value we will write (EX)2. This convention is designed
to cut down on parentheses.

The variance measures how spread-out the distribution of X is. To begin to
explain this statement, we will show that

var (X + b) = var (X) var (aX) = a2 var (X) (1.12)

In words, the variance is not changed by adding a constant to X, but multiplying
X by a multiplies the variance by a2.

Proof. If Y = X + b then the mean of Y , µY = µX + b by (1.10), so

var (X + b) = E{(X + b)− (µX + b)}2 = E{X − µX}2 = var (X)

If Y = aX then µY = aµX by (1.10), so

var (aX) = E{(aX − aµX)2} = a2E(X − µX)2 = a2 var (X)

The scaling relationship (1.12) shows that if X is measured in feet then the
variance is measured in feet2. This motivates the definition of the standard
deviation σ(X) =

√
var (X), which is measured in the same units as X and

has a nicer scaling property:

σ(aX) = |a|σ(X) (1.13)

We get the absolute value here since
√

a2 = |a|.

Example 1.26. Roll one die and let X be the resulting number. Find the
variance and standard deviation of X.



24 CHAPTER 1. BASIC CONCEPTS

Examples 1.19 and 1.25 tell us that EX = 7/2 and EX2 = 91/6, so

var (X) = EX2 − (EX)2 =
91
6
− 49

4
=

105
36

= 2.9166

and σ(X) =
√

var (X) = 1.7078. The standard deviation σ(X) gives the size
of the “typical deviation from the mean.” To explain this, we note that the
deviation from the mean

|X − µ| =


0.5 when X = 3, 4
1.5 when X = 2, 5
2.5 when X = 1, 6

so E|X − µ| = 1.5. The standard deviation σ(X) =
√

E|X − µ|2 is a slightly
less intuitive way of averaging the deviations |X − µ| but, as we will see later,
is one that has nicer properties.

Example 1.27. Scrabble. As we computed in Example 1.16, the point value
of a randomly chosen scrabble tile has the following distribution:

value 0 1 2 3 4 5 8 10
prob. .02 .68 .07 .08 .10 .01 .02 .02

In Example 1.20 we have computed that EX = 1.87.

EX2 = .68 + 4(.07) + 9(.08) + 16(.10) + 25(.01) + 64(.02) + 100(.02) = 9.06

so the variance is 9.06−(1.87)2 = 5.5631 and the standard deviation is
√

5.5631 =
2.35.

Example 1.28. Geometric distribution. Suppose N = geometric(p). That
is, P (N = n) = (1 − p)n−1p for n = 1, 2, . . . and 0 otherwise. Compute the
variance and standard deviation of N .

To compute the variance, we begin, as in Example 1.23 by observing that

∞∑
n=0

xn = (1− x)−1

Differentiating this identity twice and noticing that the n = 0 term in the first
derivative is 0 gives

∞∑
n=1

nxn−1 = (1− x)−2
∞∑

n=1

n(n− 1)xn−2 = 2(1− x)−3

Setting x = 1− p gives

∞∑
n=1

n(1− p)n−1 = p−2
∞∑

n=1

n(n− 1)(1− p)n−2 = 2p−3
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Multiplying both sides by p in the first case and p(1− p) in the second, we have

EN =
∞∑

n=1

n(1− p)n−1p = p−1

E{N(N − 1)} =
∞∑

n=1

n(n− 1)(1− p)n−1p = 2p−2(1− p)

From this it follows that

EN2 = E{N(N − 1)}+ EN =
2− 2p

p2
+

1
p

=
(2− p)

p2

var (N) = EN2 − (EN)2 =
2− p

p2
− 1

p2
=

(1− p)
p2

Taking the square root we see that σ(X) =
√

1− p/p.

Example 1.29. New York Yankees 2004 salaries. Salaries are in units of
M, millions of dollars per year and, for convenience, have been truncated at the
thousands place.

A. Rodriguez 21.726 D. Jeter 18.6
M. Mussina 16 K. Brown 15.714
J. Giambi 12.428 B. Williams 12.357
G. Sheffield 12.029 M. Rivera 10.89
J. Posada 9 J. Vazquez 9
J. Contreras 9 J. Olerud 7.7
H. Matsui 7 S. Karsay 6
E. Loazia 4 T. Gordon 3.5
P. Quantrill 3 K. Lofton 2.985
J. Lieber 2.7 T. Lee 2
G. White 1.925 F. Heredia 1.8
R. Sierra 1 M. Cairo .9
J. Falherty .775 T. Clark .75
E. Wilson .7 O. Hernandez .5
D. Osborne .45 C.J. Nitowski .35
J. DePaula .302 B. Crosby .301

The total team salary is 183.355 M. Dividing by 32 players gives a mean of
6.149 M dollars. The second moment is 73.778 M2 so the variance is 73.778−
(6.149)2 = 35.961M2 and the standard deviation is 5.996 M .
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1.7 Exercises

Basic definitions

1. A man receives presents from his three children, Allison, Betty, and Chelsea.
To avoid disputes he opens the presents in a random order. What are the
possible outcomes?

2. Suppose we pick a number at random from the phone book and look at
the last digit. (a) What is the set of outcomes and what probability should
be assigned to each outcome? (b) Would this model be appropriate if we were
looking at the first digit?

3. Two students arrive late for a math final exam with the excuse that their car
had a flat tire. Suspicious, the professor says “each one of you write down on a
piece of paper which tire was flat. What is the probability that both students
pick the same tire?

4. Suppose we roll a red die and a green die. What is the probability the number
on the red die is larger (>) than the number on the green die?

5. Two dice are rolled. What is the probability (a) the two numbers will differ
by 1 or less, (b) the maximum of the two numbers will be 5 or larger?

6. If we flip a coin 5 times, what is the probability that the number of heads is
an even number (i.e., divisible by 2)?

7. The 1987 World Series was tied at two games a piece before the St. Louis
Cardinals won the fifth game. According to the Associated Press, “The number
of history support the Cardinals and the momentum they carry. Whenever the
series has been tied 2-2 the team that won the fifth game won the series 71%
of the time.” If momentum is not a factor and each team has a 50% chance of
winning each game, what the probaiblity that the game 5 winner will win the
series?

8. Two boys are repeatedly playing a game that they each have probability 1/2
of winning. The first person to win five games wins the match. What is the
probability that Al will win if (a) he has won 4 games and Bobby has won 3;
(b) he leads by a score of 3 games to 2?

9. 20 families live in a neighborhood. 4 have 1 child, 8 have 2 children, 5 have
3 children, and 3 have 4 children. If we pick a child at random what is the
probability they come from a family with 1, 2, 3, 4 children?

10. In Galileo’s time people thought that when three dice were rolled, a sum of
9 and a sum of 10 had the same probability since each could be obtained in 6
ways:

9 : 1 + 2 + 6, 1 + 3 + 5, 1 + 4 + 4, 2 + 2 + 5, 2 + 3 + 4, 3 + 3 + 3
10 : 1 + 3 + 6, 1 + 4 + 5, 2 + 4 + 4, 2 + 3 + 5, 2 + 4 + 4, 3 + 3 + 4
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Compute the probabilities of these sums and show that 10 is a more likely total
than 9.

11. Suppose we roll three dice. Compute the probability that the sum is (a) 3,
(b) 4, (c) 5, (d) 6, (e) 7, (f) 8 (g) 9 (h) 10.

12. In a group of students, 25% smoke cigarettes, 60% drink alcohol, and 15%
do both. What fraction of students have at least one of these bad habits?

13. In a group of 320 high school graduates, only 160 went to college but 100
of the 170 men did. How many women did not go to college?

14. In the freshman class, 62% of the students take math, 49% take science, and
38% take both science and math. What percentage takes at least one science
or math course?

15. 24% of people have American Express cards, 61% have Visa cards and 8%
have both. What percentage of people have at least one credit card?

16. Suppose Ω = {a, b, c}, P ({a, b}) = 0.7, and P ({b, c}) = 0.6. Compute the
probabilities of {a}, {b}, and {c}.

17. Suppose A and B are disjoint with P (A) = 0.3 and P (B) = 0.5. What is
P (Ac ∩Bc)?

18. Given two events A and B with P (A) = 0.4 and P (B) = 0.7, what are the
maximum and minimum possible values for P (A ∩B)?

Independence

19. Suppose we draw two cards out of a deck of 52. Let A = “the first card is
an Ace,” and B = “the second card is a spade.” Are A and B independent?

20. A family has three children, each of whom is a boy or a girl with probability
1/2. Let A = “there is at most 1 girl,” B = “the family has children of both
sexes.” (a) Are A and B independent? (b) Are A and B independent if the
family has four children?

21. Suppose we roll a red and a green die. Let A = “the red die shows a 2 or a
5,” B = “the sum of the two dice is at least 7.” Are A and B independent?

22. Roll two dice. Let A = “the sum is even,” and B = “the sum is divisible
by 3,” i.e., B = {3, 6, 9, 12}. Are A and B independent?

23. Roll two dice. Let A = “the first die is odd,” B = “the second die is odd,”
and C = “the sum is odd.” Show that these events are pairwise independent
but not independent.

24. Nine children are seated at random in three rows of three desks. Let A =
“Al and Bobby sit in the same row,” B = “Al and Bobby both sit at one of the
four corner desks.” Are A and B independent?
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25. Two students, Alice and Betty, are registered for a statistics class. Alice
attends 80% of the time, Betty 60% of the time, and their absences are indepen-
dent. On a given day, what is the probability (a) at least one of these students
is in class, (b) exactly one of them is there?

26. Let A and B be two independent events with P (A) = 0.4 and P (A ∪B) =
0.64. What is P (B)?

27. Three students each have probability 1/3 of solving a problem. What is the
probability at least one of them will solve the problem?

28. Three independent events have probabilities 1/4, 1/3, and 1/2. What is the
probability exactly one will occur?

29. Three missiles are fired at a target. They will hit it with probabilities 0.2,
0.4, and 0.6. Find the probability that the target is hit by (a) three, (b) two,
(c) one, (d) no missiles.

30. Three couples that were invited to dinner will independently show up with
probabilities 0.9, 8/9, and 0.75. Let N be the number of couples that show up.
Calculate the probability N = 3, 2, 1, 0.

31. A college student takes 4 courses a semester for 8 semesters. In each course
she has a probability 1/2 of getting an A. Assuming her grades in different
courses are independent, what is the probability she will have at least one se-
memster with all A’s?

32. When Al and Bob play tennis, Al wins a set with probability 0.7 while Bob
wins with probability 0.3. What is the probability Al will be the first to win
(a) two sets, (b) three sets?

33. Chevalier de Mere made money betting that he could “roll at least one 6
in four tries.” When people got tired of this wager he changed it to “roll at
least one double 6 in 24 tries” but then he started losing money. Compute the
probabilities of winning these two bets.

34. Samuel Pepys wrote to Isaac Newton: “What is more likely, (a) one 6 in 6
rolls of one die or (b) two 6’s in 12 rolls?” Compute the probabilities of these
events.

Distributions

35. Suppose we roll two dice and let X and Y be the two numbers that appear.
Find the distribution of |X − Y |.

36. Suppose we roll three tetrahedral dice that have 1, 2, 3, and 4 on their four
sides. Find the distribution for the sum of the three numbers.

37. We roll two six-sided dice, one with sides 1,2,2,3,3,4 and the other with
sides 1,3,4,5,6,8. What is the distribution of the sum?

38. How many children should a family plan to have so that the probability of
having at least one child of each sex is at least 0.95?
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39. How many times should a coin be tossed so that the probability of at least
one head is at least 99%?

Expected Value

40. You want to invent a gambling game in which a person rolls two dice and is
paid some money if the sum is 7, but otherwise he loses his money. How much
should you pay him for winning a $1 bet if you want this to be a fair game, that
is, to have expected value 0?

41. A bet is said to carry 3 to 1 odds if you win $3 for each $1 you bet. What
must the probability of winning be for this to be a fair bet?

42. A lottery has one $100 prize, two $25 prizes, and five $10 prizes. What
should you be willing to pay for a ticket if 100 tickets are sold?

43. In a popular gambling game, three dice are rolled. For a $1 bet you win
$1 for each six that appears (plus your dollar back). If no six appears you lose
your dollar. What is your expected value?

44. A roulette wheel has slots numbered 1 to 36 and two labeled with 0 and 00.
Suppose that all 38 outcomes have equal probability. Compute the expected
values of the following bets. In each case you bet one dollar and when you win
you get your dollar back in addition to your winnings. (a) You win $1 if one of
the numbers 1 through 18 comes up. (b) You win $2 if the number that comes
up is divisible by 3 (0 and 00 do not count). (c) You win $35 if the number 7
comes up.

45. In the Las Vegas game Wheel of Fortune, there are 54 possible outcomes.
One is labeled “Joker,” one “Flag,” two “20,” four “10,” seven “5,” fifteen “2,”
and twenty-four “1.” If you bet $1 on a number you win that amount of money
if the number comes up (plus your dollar back). If you bet $1 on Flag or Joker
you win $40 if that symbol comes up (plus your dollar back). What bets have
the best and worst expected value here?

46. Sic Bo is an ancient Chinese dice game played with 3 dice. One of the
possibilities for betting in the game is to bet “big.” For this bet you win if the
total X is 11, 12, 13, 14, 15, 16, or 17, except when there are three 4’s or three
5’s. On a $1 bet on big you win $1 plus your dollar back if it happens. What
is your expected value?

47. Five people play a game of “odd man out” to determine who will pay for the
pizza they ordered. Each flips a coin. If only one person gets Heads (or Tails)
while the other four get Tails (or Heads) then he is the odd man and has to
pay. Otherwise they flip again. What is the expected number of tosses needed
to determine who will pay?

48. A man and wife decide that they will keep having children until they have
one of each sex. Ignoring the possibility of twins and supposing that each trial
is independent and results in a boy or girl with probability 1/2, what is the
expected value of the number of children they will have?
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49. An unreliable clothes dryer dries your clothes and takes 20 minutes with
probability 0.6, buzzes for 4 minutes and does nothing with probability 0.4. If
we assume that successive trials are independent and that we patiently keep
putting our money in to try to get it to work, what is the expected time we
need to get our clothes dry?

Moments, Variance

50. A random variable has P (X = x) = x/15 for x = 1, 2, 3, 4, 5 and 0 otherwise.
Find the mean and variance of X.

51. Find the mean and variance of the number of games in the World Series.
Recall that it is won by the first team to win four games and assume that the
outcomes are determined by flipping a coin.

52. Suppose we pick a month at random from a non-leap year calendar and let
X be the number of days in the month. Find the mean and variance of X.

53. The Elm Tree golf course in Cortland, NY is a par 70 layout with 3 par
fives, 5 par threes, and 10 par fours. Find the mean and variance of par on this
course.

54. In a group of five items, two are defective. Find the distribution of N the
number of draws we need to find the first defective item. Find the mean and
variance of N .

55. Can we have a random variable with EX = 3 and EX2 = 8?

56. Suppose P (X ∈ {1, 2, 3}) = 1, and EX = 2.5. What are the smallest and
largest possible values for the variance?


