Section 7.6 Partial Orderings

Definition: Let *R* be a relation on A. Then R is a *partial* order iff *R* is

- reflexive
- antisymmetric

and

- transitive
- (A, R) is called a partially ordered set or a *poset*.

Note: It is <u>not</u> required that two things be related under a partial order. That's the *partial* part of it.

If two objects are <u>always</u> related in a poset, it is called a *total order* or *linear order* or *simple order*. In this case (A, R) is called a *chain*.

Examples:

• (Z) is a poset. In this case either a b or b a so two things are always related. Hence, is a total order and (Z, b) is a chain.

• If <i>S</i> is a se	et then (P	(S),) is a p) is a poset. It may not be		
the case that A	B or B	A. Hence,	is not a total		
order.					

• (Z^+ , 'divides') is a poset which is not a chain.

Definition: Let R be a total order on A and suppose S A. An element s in S is a *least element* of S iff sRb for every b in S.

Similarly for *greatest* element.

Note: this implies that $\langle a, s \rangle$ is not in R for any a unless a = s. (There is nothing smaller than s under the order R).

Definition: A chain (A, R) is well-ordered iff every subset of A has a least element.

Examples:

- (Z,) is a chain but not well-ordered. Z does not have least element.
 - (N,) is well-ordered.
 - (N,) is not well-ordered.

Lexicographic Order

Given two posets (A_1, R_1) and (A_2, R_2) we construct an *induced* partial order R on $A_1 \times A_2$:

$$< x_1, y_1 > R < x_2, y_2 > iff$$

•
$$x_1 R_1 x_2$$

or

•
$$x_1 = x_2$$
 and $y_1 R_2 y_2$.

Example:

Let
$$A_1 = A_2 = Z^+$$
 and $R_1 = R_2 =$ 'divides'.

Then

- <2, 4>R<2, 8> since $x_1=x_2$ and $y_1R_2y_2$.
- <2, 4> is not related under R to <2, 6> since $x_1 = x_2$ but 4 does not divide 6.
- <2, 4> R <4, 5> since $x_1 R_1 x_2$. (Note that 4 is not related to 5).

This definition extends naturally to multiple Cartesian products of partially ordered sets:

$$A_1 \times A_2 \times A_3 \times \ldots \times A_n$$

Example: Using the same definitions of A_i and R_i as above,

- < 2, 3, 4, 5> R < 2, 3, 8, 2> since $x_1 = x_2$, $y_1 = y_2$ and 4 divides 8.
- <2, 3, 4, 5> is not related to <3, 6, 8, 10> since 2 does not divide 3.

Strings

We apply this ordering to strings of symbols where there is an underlying 'alphabetical' or partial order (which is a total order in this case) as used in dictionaries.

Example:

Let $A = \{ a, b, c \}$ and suppose R is the natural alphabetical order on A:

a R b and b R c.

Then

- If all letters agree, shorter string is related to a longer string (comes before it in the ordering).
- If two strings have the same length then the induced partial order from the alphabetical order is used:

aabc R abac

Hasse or Poset Diagrams

To construct a Hasse diagram:

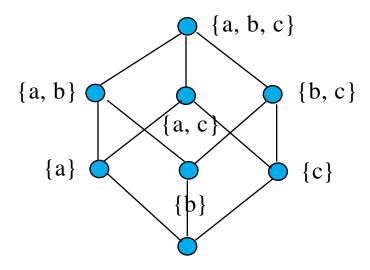
- 1) Construct a digraph representation of the poset (A, R) so that all arcs point up (except the loops).
 - 2) Eliminate all loops
- 3) Eliminate all arcs that are redundant because of transitivity
- 4) eliminate the arrows at the ends of arcs since everything points up.

Example:

Construct the Hasse diagram of $(P(\{a, b, c\}), \ldots)$.

The elements of $P(\{a, b, c\})$ are

The digraph is



Maximal and Minimal Elements

Definition: Let (A, R) be a poset. Then a in A is a *minimal element* if there does not exist an element b in A such that bRa.

Similarly for a maximal element.

Note: there can be more than one minimal and maximal element in a poset.				
Example: In the above Hasse diagram, is a minimal element and $\{a, b, c\}$ is a maximal element.				
Least and Greatest Elements				
Definition: Let (A, R) be a poset. Then a in A is the <i>least element</i> if for every element b in A , aRb and b is the <i>greatest element</i> if for every element a in A , aRb .				
Theorem: Least and greatest elements are unique.				
Proof:				
Assume they are not				
Example:				
In the poset above $\{a, b, c\}$ is the greatest element. is the least element.				

Upper and Lower Bounds

Definition: Let S be a subset of A in the poset (A, R). If there exists an element a in A such that sRa for all s in S, then a is called an $upper\ bound$. Similarly for lower bounds.

Note: to be an upper bound you must be related to every element in the set. Similarly for lower bounds.

Example:

• In the poset above, $\{a, b, c\}$, is an upper bound for all other subsets. is a lower bound for all other subsets.

Least Upper and Greatest Lower Bounds

Definition: If a is an upper bound for S which is related to all other upper bounds then it is the *least upper bound*, denoted lub(S). Similarly for the *greatest lower bound*, glb(S).

Example:

Consider the element {a}.

Since

$${a, b, c}, {a, b} {a, c}$$
and ${a}$

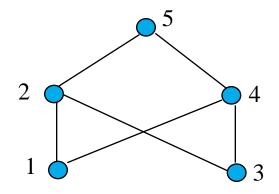
are upper bounds and {a} is related to all of them, {a} must be the lub. It is also the glb.

Lattices

Definition: A poset is a *lattice* if every pair of elements has a lub and a glb.

Examples:

- In the poset (P(S),), lub(A, B) = A B. What is the glb(A, B)?
 - Ex. 20, 21, 22, p. 524



Consider the elements 1 and 3.

- Upper bounds of 1 are 1, 2, 4 and 5.
- Upper bounds of 3 are 3, 2, 4 and 5.
- 2, 4 and 5 are upper bounds for the pair 1 and 3.
- There is no lub since
 - 2 is not related to 4
 - 4 is not related to 2
 - 2 and 4 are both related to 5.
- There is no glb either.

The poset is <u>not</u> a lattice.

Topological Sorting

We impose a <u>total</u> ordering R on a poset *compatible* with the partial order.

- Useful to determine an ordering of tasks.
- Useful in rendering in graphics to render objects from back to front to obscure hidden surfaces

• A painter uses a topological sort when applying paint to a canvas - he/she paints parts of the scene furthest from the view first

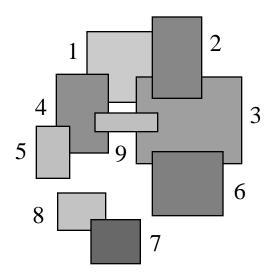
Algorithm: To sort a poset (S, R).

- Select a (any) minimal element and put it in the list. Delete it from S.
- Continue until all elements appear in the list (and S is void).

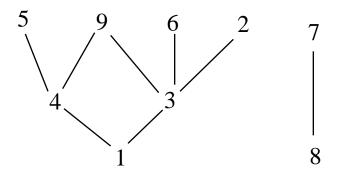
Example:

Consider the rectangles T and the relation R = "is more distant than." Then R is a partial order on the set of rectangles.

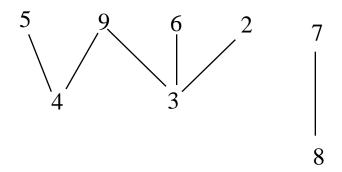
Two rectangles, T_i and T_j , are related, $T_i R T_j$, if T_i is more distant from the viewer than T_i .



Then 1*R*2, 1*R*4, 1*R*3, 4*R*9, 4*R*5, 3*R*2, 3*R*9, 3*R*6, 8*R*7. The Hasse diagram for *R* is



Draw 1 (or 8) and delete 1 from the diagram to get



Now draw 4 (or 3 or 8) and delete from the diagram. Always choose a minimal element. Any one will do.

...and so forth.

Ex. 26, p. 527, problem 59, p. 530